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Abstract- In this paper we give an overview of results about  

the boundary and relative conformal volume to  manifolds  , 

and  we prove that    and  

 , where  is a boundary 

n-conformal volume of  , we  also prove 

that  
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I. INTRODUCTION 

 

 Let  be a -dimensional compact Riemannian 

manifold with boundary , and let  be the unit ball in 

. Assume that  admits a conformal map  with 

. Let  be the group of conformal 

diffeomorphisms of . We define the boundary conformal 

volume to be the Li-Yau  conformal volume of the 

boundary submanifold . we give estimates for the first 

eigenvalue of the Dirichlet-to-Neumann map which are 

analogs of the estimates of [2] and [5] for the first Neumann 

eigenvalue of the Laplacian[1]. 

 

Definition .1 : Given a map  that admits a 

conformal extension , define the boundary -

conformal volume of  by: 

 

 
 

The boundary -conformal volume of   is then defined to be: 

 

 
 

where the infimum is over all  that 

admit conformal extensions . It can be shown (see 

Lemma 7) that . The boundary 

conformal volume of  is defined to be: 

 

 
 

Note that: For any -dimensional manifold  with 

boundary, the boundary -conformal volume of  is bounded 

below by the volume of the -dimensional sphere: 

 

 
 

The proof is as in [2]; given a point  on , let 

 be the one parameter subgroup of the group of 

conformal diffeomorphisms of the sphere generated by the 

gradient of the linear functions of  in the direction . For 

all fixes the points  and , and  

for all If is a map whose 

differential  has rank  at , then, 

 

 
 

for some  (here the integer  is the 

multiplicity of the immersed submanifold  atthe point ). 

 

For  and for a minimal surface  that is a 

solution to the free boundary problem inthe unit ball  in , 

the boundary -conformal volume of  is the length of the 

boundaryof ; that is, its boundary length is maximal in its 

conformal orbit. 

 

Theorem .2 : Let  a minimal surface [1] in , with 

nonempty boundary , and meeting  orthogonally 

along , given by the isometric immersion . Then, 

 
 

The length of the boundary of . 

 

Proof:  

 

The trace-free second fundamental form 

 is conformally invariant for surfaces. 
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Using the Gauss equation, we have 

. Therefore, given any ,  

 
 

Where  denotes the induced area element on , 

and  and  denote the Gauss and mean curvatures of  in 

. Since  is minimal, , and so we have, 

 

 
 

By the Gauss-Bonnet Theorem, 

 

 

 
 

and using this in (1), since , we obtain 

 

 

 
 

If  is the oriented unit tangent vector of and  is 

the inward unit conormal vectoralong , then. 

 

 
 

where in the third to last equality we have used the 

fact that  since  meets orthogonally along 

Since  is conformal,  also meets  orthogonally 

along ,and so we also have that . Using this in (2) 

we obtain. 

 

 
 

This shows that 

 

 
 

as claimed. 

 

The proof of Theorem 2 implies that any minimal 

surface [1], that is a solution to the free boundary problem in 

the unit ball in  has area greater than or equal to that of a 

flat equatorial disk solution. 

 

Theorem .3 : Let  be a minimal surface in , with 

(nonempty) boundary , and meeting  

orthogonally along . Then, 

 

 
 

Proof: Given , as in the proof Theorem 4, we have, 

 

 
 

Since  is minimal, the coordinate functions are harmonic 

, and . Therefore,  

 

 
 

Using this in (3) gives, 

 

 
 

If , then,  

 

 
 

For some , and so, we have the desired conclusion. 

 
 

Corollary .4 :The sharp isoperimetric inequality [3], holds for 

free boundary minimal surfacesin the ball: 

 

 
 

Proof:  For free boundary minimal surfaces in the ball we 

have , as shown in the proof of Theorem 3. It 

follows that the inequality  is equivalent to the sharp 

isoperimetric inequality . 

 

Corollary .5 : Show that  

 

(i)  

(ii)  
 

Proof :(i) Theorem 2 and Theorem 3 show that  
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 (ii) Since      then,  

 

 
 

Definition .6 :Let  be a -dimensional compact Riemannian 

manifold [5], with boundary that admits a conformal map 

 with . Define the relative -

conformal volume of  by. 

 

 
 

The relative -conformal volume of  is then defined to be: 

 

 
 

Where the infimum is over all non-degenerate conformal maps 

 with . 

 

Lemma .7 : If , then . 

 

Proof:  To see this, suppose  is conformal, 

with . Let  and suppose 

that  is a conformal transformation of . Then  lies in 

the spherical cap  in  whose boundary lies in  

Let  be an orthogonal transformation that rotates 

this spherical cap so that its boundary lies in an -plane 

parallel to the -plane containing the boundary of the original 

equatorial . Let  be the conformal projection of  

onto , and let . Clearly  is volume 

increasing, and so.  

 

 
 

But  is the image of  under some conformal transformation 

of , therefore, 

 

 
 

Where  denotes the group of conformal 

transformations of , and denotes the group of conformal 

transformations of . 

 

The relative conformal volume of  is defined to be, 

 
 

Note that : For any -dimensional manifold  with boundary, 

the relative -conformal volume of  is bounded below by the 

volume of the -dimensional ball: 

 

 
 

To see this, suppose  is a conformal map 

with , whose differential has rank  at . 

The conformal diffeomorphisms  of the sphere, 

extend to conformal diffeomorphisms of , and, 

 

 
 

For some , the multiplicity of  at . 

 

Corollary .8 : Show that  . 

 

Proof:  

 

For  suppose    is conformal, 

with . Let  and suppose 

that  is a conformal transformation of . Then  

lies in the spherical cap in . whose boundary 

lies in . Let  be an orthogonal transformation 

that rotates this spherical cap so that its boundary lies in an -

plane parallel to the -plane containing the boundary of the 

original equatorial . Let  be the conformal projection of 

onto , and let 

. Clearly  is volume 

increasing, and so,  

 

 
 

But  is the image of  under some conformal 

transformation of , Hence, 
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Where  is the group of conformal transformations 

of , and denotes the group of conformal transformations 

of . 

 

The relative conformal volume of  is defined to be. 

 

 
 

Lemma .9 : Let  be a compact Riemannian manifold, 

and let  be an immersion of  into . There exists 

 such that  satisfies: 

 

 
 

For . 

 

Theorem .10 : Let  be a compact -dimensional 

Riemannian manifold [5], with nonempty boundary. Let 

 be the first non-zero eigenvalue of the Dirichlet-to-

Neumann map [1], on . Then, 

 

 
 

For all  for which  is defined (i.e. such 

that there exists a conformal mapping  with 

). Equality implies that there exists a conformal 

harmonic map  which (after rescaling the metric ) 

is an isometry on , with  and such that  

meets  orthogonally along . For  this map is 

an isometric minimal immersion of  to its image. Moreover, 

the immersion is given by a subspace of the first eigenspace. 

The following is an immediate consequence of the theorem. 

Corollary .11 :Let  be a compact surface with nonempty 

boundary and metric . Let  be the first non-zero 

eigenvalue of the Dirichlet-to-Neumann map on . Then 

 

 
 

for all  for which  is defined. Equality implies that 

there exists a conformal minimal immersion  by 

first eigenfunctions which (after rescaling the metric) is 

anisometry on , with  and such that  

meets  orthogonally along . 

 

Proof. Let be a conformal map with . 

 By Lemma 9 we can assume that  satisfies: 

 

 
 

for . Let  be a harmonic extension of .  

 

Then, 

 

 
 

By Holder’s inequality, and since  is conformal then, 

 

 

 

 
 

On the other hand, since ,  

 

 
 

Then by (4) we have, 

 

 
 

Since  we get. 

 

 
 

 Now assume that we have equality, 

. Choose a sequence of 

conformal maps   with , such that, 

 

 
 

and by composing with a conformal transformation of the ball 

we may assume: 
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for all . By changing the order of coordinates, we may 

assume that: 

 

 
 

We have: 

 
 

Letting  and using 

 we get: 

  

 
 

Therefore, for any fixed  us a bounded 

sequence in , and since the inclusion 

 is compact, by passing to a 

subsequence we can assume that  converges weakly in 

, strongly in , and point wise a.e., to map 

. Clearly  a.e. on  

a.e. on , and  for . Since for all . 

 

 
 

And  

 

 
 

We have:  

 

 

 
 

On the other hand,  weakly in , and so,  

 

 
 

Therefore, we must have equality in (6), and so, 

 

 
 

which means converges to strongly in 

. Moreover, 

 

 
 

and it follows that  are first eigenfunctions. In 

particular, is harmonic for . Also, since is 

conformal and converges strongly in  to , the map: 

 

 

 
 

defines a conformal map. Therefore, is 

conformal and harmonic, with . Since 

and 

 

 
 

on  since are eigenfunctions, it follows that  meets 

orthogonally along . 

 

By scaling the metric we can assume that . Then by  

(7), on  we have: 

 

, 

 

and hence is an isometry on  . Finally, for  we have 

from (5) 

 

 

 
 

By lower semicontinuity of the norm under weak 

convergence this implies 
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Now the Holder inequality implies the opposite 

inequality and thus we have equality in the Holder inequality, 

which implies  is constant on , and this constant must 

be  by the boundary normalization. Since  is conformal this 

implies that is an isometry as claimed. 
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