Boundary Conformal Volume And First Eigenvalue

Habeeb. I.A. Ibrahim¹, Mohammed Nour A.Rabih², Osman Abdalla Adam Osman³(Email: o.osman@qu.edu.sa)

^{1, 2, 3} Dept of Mathematics

¹Feculty of Education University of Zaligei –Sudan

¹College of Science & Arts in Elmiznab – Qassim University – Saudia Arabia.

²College of Science - University of Bakht Er-ruda-Eddwaim –Sudan

^{2, 3}College of Science & Arts in Uglat Asugour – Qassim University – Saudia Arabia.

Abstract- In this paper we give an overview of results about the boundary and relative conformal volume to manifolds Σ , and we prove that $\operatorname{Vol}_{bc}(\Sigma, n, \varphi) \leq 2\pi$ and $\operatorname{Vol}_{bc}(\Sigma, n, \varphi) \leq L^2/2A$, where $\operatorname{Vol}_{bc}(\Sigma, n, \varphi)$ is a boundary n-conformal volume of φ , we also prove that $\operatorname{Vol}_{rc}(\Sigma, n) \geq \operatorname{Vol}_{rc}(\Sigma, n+\epsilon)$

Keywords- Conformal, Volume, Eigenvalue, Riemannian manifold, Laplacian.

I. INTRODUCTION

Let (Σ^k, g) be a k-dimensional compact Riemannian manifold with boundary $\partial \Sigma \neq \emptyset$, and let B^n be the unit ball in \mathbb{R}^n . Assume that Σ admits a conformal map $\varphi: \Sigma \to B^n$ with $\varphi(\partial \Sigma) \subset \partial B^n$. Let G be the group of conformal diffeomorphisms of B^n . We define the boundary conformal volume to be the Li-Yau [2] conformal volume of the boundary submanifold $\partial \Sigma$. we give estimates for the first eigenvalue of the Dirichlet-to-Neumann map which are analogs of the estimates of [2] and [5] for the first Neumann eigenvalue of the Laplacian[1].

Definition .1 : Given a map $\varphi \in C^1(\partial \Sigma, \partial B^n)$ that admits a conformal extension $\varphi: \Sigma \to B^n$, define the boundary n-conformal volume of φ by:

$$\operatorname{Vol}_{bc}(\Sigma, n, \varphi) = \sup_{f \in G} \operatorname{Vol}\left(f(\varphi(\partial \Sigma))\right).$$

The boundary n-conformal volume of Σ is then defined to be:

$$\operatorname{Vol}_{bc}(\Sigma, n) = \inf_{\varphi} \operatorname{Vol}_{bc}(\Sigma, n, \varphi).$$

where the infimum is over all $\varphi \in C^1(\partial \Sigma, \partial B^n)$ that admit conformal extensions $\varphi \colon \Sigma \to B^n$. It can be shown (see Lemma 7) that $\operatorname{Vol}_{bc}(\Sigma, n) \geq \operatorname{Vol}_{bc}(\Sigma, n + 1)$. The boundary conformal volume of Σ is defined to be:

$$\operatorname{Vol}_{bc}(\Sigma) = \lim_{n \to \infty} \operatorname{Vol}_{bc}(\Sigma, n).$$

Note that: For any k-dimensional manifold Σ with boundary, the boundary n-conformal volume of Σ is bounded below by the volume of the (k-1)-dimensional sphere:

$$\operatorname{Vol}_{bc}(\Sigma, n) \ge \operatorname{Vol}(\mathbb{S}^{k-1}).$$

The proof is as in [2]; given a point θ on \mathbb{S}^{n-1} , let $f_{\theta}(t)$ be the one parameter subgroup of the group of conformal diffeomorphisms of the sphere generated by the gradient of the linear functions of \mathbb{R}^n in the direction θ . For all $t, f_{\theta}(t)$ fixes the points θ and $-\theta$, and $\lim_{t\to\infty} f_{\theta}(t)(x) = \theta$ for all $x \in \mathbb{S}^{n-1} \setminus \{-\theta\}$. If $\varphi: \partial \Sigma \to \mathbb{S}^{n-1}$ is a map whose differential has rank k - 1 at x, then,

$$\lim_{t\to\infty} \operatorname{Vol}\left(f_{-\varphi(X)}(t)(\varphi(\partial\Sigma))\right) = m\operatorname{Vol}(\mathbb{S}^{k-1})$$

for some $m \in \mathbb{Z}^+$ (here the integer m is the multiplicity of the immersed submanifold $\partial \Sigma$ at the point $-\theta$).

For k = 2 and for a minimal surface Σ that is a solution to the free boundary problem in the unit ball \mathbb{B}^n in \mathbb{R}^n , the boundary *n*-conformal volume of Σ is the length of the boundary of Σ ; that is, its boundary length is maximal in its conformal orbit.

Theorem .2: Let Σ a minimal surface [1] in B^n , with nonempty boundary $\partial \Sigma \subset \partial B^n$, and meeting ∂B^n orthogonally along $\partial \Sigma$, given by the isometric immersion $\varphi: \Sigma \to B^n$. Then, $\operatorname{Vol}_{bc}(\Sigma, n, \varphi) = L(\partial \Sigma)$,

The length of the boundary of Σ .

Proof:

The trace-free second fundamental form $\left\|A - \frac{1}{2}(Tr_{g}A)g\right\|^{2} dV_{g}$ is conformally invariant for surfaces. www.ijsart.com

Using the Gauss equation, we have

$$2 \left\| A - \frac{1}{2} (Tr_g A)g \right\|^2 = H^2 - 4K$$
. Therefore, given any $f \in G$,
 $\int_{\Sigma} (H^2 - 4K) da = \int_{f(\Sigma)} (\tilde{H}^2 - 4\tilde{K}) d\tilde{a}$,

Where $d\tilde{a}$ denotes the induced area element on $f(\Sigma)$, and \tilde{K} and \tilde{H} denote the Gauss and mean curvatures of $f(\Sigma)$ in \mathbb{R}^{n} . Since Σ is minimal, H = 0, and so we have,

$$-4\int_{\Sigma} K \, da = \int_{f(\Sigma)} \tilde{H}^2 \, d\tilde{a} - 4\int_{f(\Sigma)} \tilde{K} \, d\tilde{a}. \, (1)$$

By the Gauss-Bonnet Theorem,

$$\int_{\Sigma} K \, da = 2\pi \chi(\Sigma) - \int_{\partial \Sigma} k \, ds$$
$$\int_{f(\Sigma)} \tilde{K} \, da = 2\pi \chi (f(\Sigma)) - \int_{\partial f(\Sigma)} \tilde{k} \, ds,$$

and using this in (1), since $\chi(\Sigma) = \chi(f(\Sigma))$, we obtain

$$4 \int_{\partial \Sigma} k \, ds = \int_{f(\Sigma)} \tilde{H}^2 \, d\tilde{a} + 4 \int_{\partial f(\Sigma)} \tilde{k} \, d\tilde{s} \, (2)$$
$$\geq 4 \int_{\partial f(\Sigma)} \tilde{k} \, d\tilde{s}$$

If T is the oriented unit tangent vector of $\partial \Sigma$ and ν is the inward unit conormal vectoralong $\partial \Sigma$, then.

$$k = \langle \frac{dT}{ds}, v \rangle = - \langle T, \frac{dv}{ds} \rangle = \langle T, \frac{d\varphi}{ds} \rangle = \langle T, T \rangle = 1,$$

where in the third to last equality we have used the fact that $v = -\varphi$ since Σ meets ∂B^n orthogonally along $\partial \Sigma$ Since f is conformal, $f(\Sigma)$ also meets ∂B^n orthogonally along $\partial f(\Sigma)$, and so we also have that $\tilde{k} = 1$. Using this in (2) we obtain.

$$L(\partial \Sigma) \ge L(\partial f(\Sigma))$$

This shows that

$$L(\partial \Sigma) \geq \operatorname{Vol}_{bc}(\Sigma, n, \varphi)$$

as claimed.

The proof of Theorem 2 implies that any minimal surface [1], that is a solution to the free boundary problem in

the unit ball in \mathbb{R}^n has area greater than or equal to that of a flat equatorial disk solution.

Theorem .3: Let Σ be a minimal surface in B^n , with (nonempty) boundary $\partial \Sigma \subset \partial B^n$, and meeting ∂B^n orthogonally along $\partial \Sigma$. Then,

$$2A(\Sigma) = L(\partial \Sigma) \ge 2\pi$$
.

Proof: Given $f \in G$, as in the proof Theorem 4, we have,

$$L(\partial \Sigma) \ge L(\partial f(\Sigma)).$$
 (3)

Since Σ is minimal, the coordinate functions are harmonic $\Delta_{\Sigma} x^i = 0$, and $\Delta_{\Sigma} |x|^2 = 4$. Therefore,

$$4A(\Sigma) = \int_{\Sigma} \Delta_{\Sigma} |x|^2 \, da = \int_{\partial \Sigma} \frac{\partial |x|^2}{\partial v} ds = \int_{\partial \Sigma} 2 \, ds = 2L(\partial \Sigma).$$

Using this in (3) gives,

$$2A(\Sigma) \ge L(\partial f(\Sigma)).$$

If $p \in \partial \Sigma$, then,

$$\lim_{t\to\infty} L\left(f_p(t)(\partial\Sigma)\right) = mL(\mathbb{S}^1) = 2\pi m$$

For some $m \in \mathbb{Z}^+$, and so, we have the desired conclusion. $2A(\Sigma) = L(\partial \Sigma) \ge 2\pi$.

Corollary .4 :The sharp isoperimetric inequality [3], holds for free boundary minimal surfaces in the ball:

$$A \leq \frac{L^2}{4\pi}$$
.

Proof: For free boundary minimal surfaces in the ball we have $2A(\Sigma) = L(\partial \Sigma)$, as shown in the proof of Theorem 3. It follows that the inequality $A(\Sigma) \ge \pi$ is equivalent to the sharp isoperimetric inequality $A \le L^2/4\pi$.

Corollary .5 : Show that

(i)
$$\operatorname{Vol}_{bc}(\Sigma, n, \varphi) \leq 2\pi$$

(ii) $\operatorname{Vol}_{bc}(\Sigma, n, \varphi) \leq L^2/2A$

Proof :(i) Theorem 2 and Theorem 3 show that $\operatorname{Vol}_{bc}(\Sigma, n, \varphi) \leq 2\pi$

(ii) Since $A \le \frac{L^2}{4\pi}$ then,

$$\operatorname{Vol}_{bc}(\Sigma, n, \varphi) \leq 2\pi \leq \frac{L^2}{4\pi}$$

Definition .6:Let Σ be a k-dimensional compact Riemannian manifold [5], with boundary that admits a conformal map $\varphi: \Sigma \to B^n$ with $\varphi(\partial \Sigma) \subset \partial B^n$. Define the relative n-conformal volume of φ by.

$$\operatorname{Vol}_{rc}(\Sigma, n, \varphi) = \sup_{f \in G} \operatorname{Vol}\left(\left(f(\varphi(\Sigma))\right)\right).$$

The relative n-conformal volume of Σ is then defined to be:

$$\operatorname{Vol}_{rc}(\Sigma, n) = \inf_{\varphi} \operatorname{Vol}_{rc}(\Sigma, n, \varphi)$$

Where the infimum is over all non-degenerate conformal maps $\varphi: \Sigma \to B^n \text{ with } \varphi(\partial \Sigma) \subset \partial B^2$.

Lemma .7 : If $m \ge n$, then $\operatorname{Vol}_{rc}(\Sigma, n) \ge \operatorname{Vol}_{rc}(\Sigma, m)$.

Proof: To see this, suppose $\varphi: \Sigma \to B^n \subset B^m$ is conformal, with $\varphi(\partial \Sigma) \subset \partial B^n \subset \partial B^m$. Let $A = \varphi(\Sigma) \subset B^n$ and suppose that f is a conformal transformation of B^m . Then f(A) lies in the spherical cap $f(B^n)$ in B^m whose boundary lies in ∂B^m . Let $T \in O(m)$ be an orthogonal transformation that rotates this spherical cap so that its boundary lies in an *n*-plane parallel to the *n*-plane containing the boundary of the original equatorial B^n . Let *P* be the conformal projection of $T(f(B^n))$ onto B^n , and let A' = P(T(f(A))). Clearly *P* is volume increasing, and so.

$$Vol(A') \ge Vol(f(A))$$

But A' is the image of A under some conformal transformation of B^n , therefore,

$$\sup_{F \in G} \operatorname{Vol}(F(A)) \ge \sup_{f \in G'} \operatorname{Vol}(f(A))$$

Where G denotes the group of conformal transformations of B^n , and G' denotes the group of conformal transformations of B^m .

The relative conformal volume of Σ is defined to be,

$$\operatorname{Vol}_{rc}(\Sigma) = \lim_{n \to \infty} \operatorname{Vol}_{rc}(\Sigma, n)$$

Note that : For any k-dimensional manifold Σ with boundary, the relative n-conformal volume of Σ is bounded below by the volume of the k-dimensional ball:

$$\operatorname{Vol}_{rc}(\Sigma, n) \geq \operatorname{Vol}(B^k).$$

To see this, suppose $\varphi: \Sigma \to B^n$ is a conformal map with $\varphi(\partial \Sigma) \subset \partial B^n$, whose differential has rank k at $x \in \partial \Sigma$. The conformal diffeomorphisms $f_{-\varphi(x)}(t)$ of the sphere, extend to conformal diffeomorphisms of B^n , and,

$$\lim_{t\to\infty} \operatorname{Vol}\left(f_{-\varphi(\chi)}(t)\left(\varphi(\Sigma)\right)\right) = m\operatorname{Vol}(B^k)$$

For some $m \in \mathbb{Z}^+$, the multiplicity of $\varphi(\partial \Sigma)$ at $\varphi(x)$.

Corollary .8: Show that $\operatorname{Vol}_{rc}(\Sigma, n) \geq \operatorname{Vol}_{rc}(\Sigma, n+\epsilon)$.

Proof:

For $\in > 0$ suppose $\varphi: \Sigma \to B_j^n \subset B_j^{n+\epsilon}$ is conformal, with $\varphi(\partial \Sigma) \subset B_j^n \subset \partial B_j^{n+\epsilon}$. Let $A = \varphi(\Sigma) \subset B_j^n$ and suppose that f is a conformal transformation of $B_j^{n+\epsilon}$. Then $\sum_{j=1}^r f(A_j)$ lies in the spherical cap $\sum_{j=1}^r f(B_j^n)_{\text{in}} B_j^{n+\epsilon}$. whose boundary lies in $\partial B_j^{n+\epsilon}$. Let $T \in O(m)$ be an orthogonal transformation that rotates this spherical cap so that its boundary lies in an nplane parallel to the n-plane containing the boundary of the original equatorial B_j^n . Let P be the conformal projection of $T(\sum_{j=1}^r f(B_j^n))_{\text{onto}} \qquad B_j^n$, and let $\sum_{j=1}^r A_j^r = P\left(T(\sum_{j=1}^r f(A_j))\right)$. Clearly P is volume increasing, and so,

$$\operatorname{Vol}\left(\sum_{j=1}^{r} A_{j}'\right) \geq \operatorname{Vol}\left(\sum_{j=1}^{r} f(A_{j})\right)$$

But A'_j is the image of A_j under some conformal transformation of B_j^n , Hence,

$$\sup_{F \in G} \operatorname{Vol}\left(\sum_{j=1}^{r} f(A_j)\right) \ge \sup_{f \in G'} \operatorname{Vol}\left(\sum_{j=1}^{r} f(A_j)\right)$$

Where G is the group of conformal transformations of B_j^n , and G' denotes the group of conformal transformations of $B_j^{n+\epsilon}$.

The relative conformal volume of Σ is defined to be.

$$\operatorname{Vol}_{rc}(\Sigma) = \lim_{n \to \infty} \operatorname{Vol}_{rc}(\Sigma, n)$$

Lemma .9 : Let (M, g) be a compact Riemannian manifold, and let φ be an immersion of M into $\mathbb{S}^{n-1} \subset \mathbb{R}^n$. There exists $f \in G$ such that $\psi = fo\varphi = (\psi^1, \dots \psi^n)$ satisfies:

$$\int_{M} \psi^{i} \, dv_{g} = 0$$

For $i = 1, \dots, n$

Theorem .10 : Let (Σ, g) be a compact k-dimensional Riemannian manifold [5], with nonempty boundary. Let $\sigma_1 > 0$ be the first non-zero eigenvalue of the Dirichlet-to-Neumann map [1], on (Σ, g) . Then,

$$\sigma_1 \operatorname{Vol}(\partial \Sigma) \operatorname{Vol}(\Sigma)^{\frac{2-k}{k}} \leq k \operatorname{Vol}_{rc}(\Sigma, n)^{\frac{2}{k}}$$

For all *n* for which $\operatorname{Vol}_{rc}(\Sigma, n)$ is defined (i.e. such that there exists a conformal mapping $\varphi: \Sigma \to B^n$ with $\varphi(\partial \Sigma) \subset \partial B^n$). Equality implies that there exists a conformal harmonic map $\varphi: \Sigma \to B^n$ which (after rescaling the metric ϑ) is an isometry on $\partial \Sigma$, with $\varphi(\partial \Sigma) \subset \partial B^n$ and such that $\varphi(\Sigma)$ meets ∂B^n orthogonally along $\varphi(\partial \Sigma)$. For k > 2 this map is an isometric minimal immersion of Σ to its image. Moreover, the immersion is given by a subspace of the first eigenspace. The following is an immediate consequence of the theorem.

Corollary .11:Let Σ be a compact surface with nonempty boundary and metric g. Let $\sigma_1 > 0$ be the first non-zero eigenvalue of the Dirichlet-to-Neumann map on (Σ, g) . Then

$$\sigma_1 L(\partial \Sigma) \leq 2 \operatorname{Vol}_{rc}(\Sigma, n)$$

for all n for which $\operatorname{Vol}_{rc}(\Sigma, n)$ is defined. Equality implies that there exists a conformal minimal immersion $\varphi: \Sigma \to B^n$ by first eigenfunctions which (after rescaling the metric) is anisometry on $\partial \Sigma$, with $\varphi(\partial \Sigma) \subset \partial B^n$ and such that $\varphi(\Sigma)$ meets ∂B^n orthogonally along $\varphi(\partial \Sigma)$.

Proof. Let $\varphi: \Sigma \to B^n$ be a conformal map with $\varphi(\partial \Sigma) \subset \partial B^n$. Page | 422 By Lemma 9 we can assume that $\varphi = (\varphi^1, \dots, \varphi^n)$ satisfies:

$$\int_{\partial \Sigma} \varphi^i \, ds = 0$$

for i = 1, ..., n. Let $\hat{\varphi}^i$ be a harmonic extension of $\varphi^i|_{\partial \Sigma}$.

Then,

$$\sigma_{1} \leq \frac{\int_{\Sigma} |\nabla \hat{\varphi}^{i}|^{2} dv_{\Sigma}}{\int_{\partial \Sigma} (\varphi^{i})^{2} dv_{\partial \Sigma}} \leq \frac{\int_{\Sigma} |\nabla \varphi^{i}|^{2} dv_{\Sigma}}{\int_{\partial \Sigma} (\varphi^{i})^{2} dv_{\partial \Sigma}}.$$
(4)

By Holder's inequality, and since φ is conformal then,

$$\begin{split} \int_{\Sigma} \sum_{i=1}^{n} \left| \nabla \varphi^{i} \right|^{2} dv_{\Sigma} &\leq \operatorname{Vol}(\Sigma)^{\frac{k-2}{k}} \left[\int_{\Sigma} \left(\left| \nabla \varphi^{i} \right|^{2} \right)^{\frac{k}{2}} dv_{\Sigma} \right]^{\frac{k}{k}} = \\ \operatorname{Vol}(\Sigma)^{\frac{k-2}{k}} \left[k^{\frac{k}{2}} \operatorname{Vol}(\varphi(T)) \right]^{\frac{2}{k}} &\leq \\ k \operatorname{Vol}(\Sigma)^{\frac{k-2}{k}} \operatorname{Vol}_{rc}(\Sigma, n, \varphi)^{\frac{2}{k}}. \end{split}$$

On the other hand, since $\varphi(\partial \Sigma) \subset \partial B^n$

$$\sum_{i=1}^{n} \int_{\partial \Sigma} (\varphi^{i})^{2} dv_{\partial \Sigma} = \int_{\partial \Sigma} dv_{\partial \Sigma} = \operatorname{Vol}(\partial \Sigma).$$

Then by (4) we have,

$$\sigma_1 \operatorname{Vol}(\partial \Sigma) \operatorname{Vol}(\Sigma)^{\frac{2-\kappa}{k}} \le k \operatorname{Vol}_{rc}(\Sigma, n, \varphi)^{\frac{2}{k}}$$

Since $\operatorname{Vol}_{rc}(\Sigma, n) = \inf_{\varphi} \operatorname{Vol}_{rc}(\Sigma, n, \varphi)$ we get.

$$\sigma_1 \operatorname{Vol}(\partial \Sigma) \operatorname{Vol}(\Sigma)^{\frac{2-\kappa}{k}} \le k \operatorname{Vol}_{rc}(\Sigma, n)^{\frac{2}{k}}$$

Now assume that we have equality, $\sigma_1 \operatorname{Vol}(\partial \Sigma) = k V_{rc}(\Sigma, n)^{2/k} V(\Sigma)^{(k-2)/k}$. Choose a sequence of conformal maps $\varphi: \Sigma \to B^n$ with $\varphi_j(\partial \Sigma) \subset \partial B^n$, such that,

$$\lim_{j\to\infty} \operatorname{Vol}_{rc}(\Sigma, n, \varphi_j) = \operatorname{Vol}_{rc}(\Sigma, n)$$

and by composing with a conformal transformation of the ball we may assume:

$$\int_{\partial \Sigma} \varphi_j^i \, ds = 0$$

for all i, j. By changing the order of coordinates, we may assume that:

$$\lim_{j\to\infty}\int_{\Sigma} (\varphi_j^i)^2 da \begin{cases} > 0 & i=1,\dots,N\\ = 0 & i=N+1,\dots,n \end{cases}$$

We have:

$$\sigma_{1} \operatorname{Vol}(\partial \Sigma) = \sigma_{1} \sum_{i=1}^{n} \int_{\partial \Sigma} (\varphi_{i}^{i})^{2} dv_{\partial \Sigma} \leq \sum_{i=1}^{n} \int_{\Sigma} |\nabla \varphi_{i}^{i}|^{2} dv_{\Sigma} \leq \operatorname{Vol}(\Sigma)^{\frac{k-2}{k}} \left[\int_{\Sigma} \left(\sum_{i=1}^{n} |\nabla \varphi_{i}^{i}|^{2} \right)^{\frac{k}{2}} dv_{\Sigma} \right]^{\frac{k}{2}} \leq k \operatorname{Vol}_{re} \left(\Sigma, n, \varphi_{j} \right)^{\frac{k}{k}} \operatorname{Vol}(\Sigma)^{\frac{k-2}{k}}$$

2

Letting $j \to \infty$ and using $\sigma_1 \operatorname{Vol}(\partial \Sigma) = k \operatorname{Vol}_{rc}(\Sigma, n)^{2/k} \operatorname{Vol}(\Sigma)^{(k-2)/k}$ we get:

$$\sigma_{1} \operatorname{Vol}(\partial \Sigma) = \sigma_{1} \lim_{j \to \infty} \sum_{i=1}^{n} \int_{\partial \Sigma} (\varphi_{j}^{i})^{2} dv_{\partial \Sigma} = \lim_{j \to \infty} \sum_{i=1}^{n} \int_{\Sigma} |\nabla \varphi_{j}^{i}|^{2} dv_{\Sigma} = \operatorname{Vol}(\Sigma)^{\frac{k-2}{k}} \lim_{j \to \infty} \left[\int_{\Sigma} \left(\sum_{i=1}^{n} |\nabla \varphi_{j}^{i}|^{2} \right)^{\frac{k}{2}} dv_{\Sigma} \right]^{\frac{k}{2}} = \sigma_{1} \operatorname{Vol}(\partial \Sigma) (5)$$

Therefore, for any fixed $i, \{\varphi_j^i\}$ us a bounded sequence in $W^{1,k}(\Sigma, \mathbb{R})$, and since the inclusion $W^{1,k}(\Sigma, \mathbb{R}) \subset L^2(\Sigma, \mathbb{R})$ is compact, by passing to a subsequence we can assume that $\{\varphi_j^i\}$ converges weakly in $W^{1,k}(\Sigma, \mathbb{R})$, strongly in $L^2(\Sigma, \mathbb{R})$, and point wise a.e., to map $\psi^i: \Sigma \to \mathbb{R}$. Clearly $\sum_{i=1}^n (\psi^i)^2 \leq 1$ a.e. on $\Sigma, \sum_{i=1}^n (\psi^i)^2 = 1$ a.e. on $\partial \Sigma$, and $\psi^i = 0$ for i = N + 1, ..., n. Since for all i.

$$\sigma_1 \int_{\partial \Sigma} (\varphi_j^i)^2 dv_{\partial \Sigma} \leq \int_{\Sigma} |\nabla \varphi_j^i|^2 dv_{\Sigma}.$$

And

$$\sigma_{1} \lim_{j \to \infty} \sum_{i=1}^{n} \int_{\partial \Sigma} (\varphi_{j}^{i})^{2} dv_{\partial \Sigma} = \lim_{j \to \infty} \sum_{i=1}^{n} \int_{\Sigma} |\nabla \varphi_{j}^{i}|^{2} dv_{\Sigma},$$

We have:

$$\lim_{j \to \infty} \int_{\Sigma} \left| \nabla \varphi_{j}^{i} \right|^{2} dv_{\Sigma} = \sigma_{1} \lim_{j \to \infty} \int_{\partial \Sigma} (\varphi_{j}^{i})^{2} dv_{\partial \Sigma} = \sigma_{1} \int_{\partial \Sigma} (\psi^{i})^{2} dv_{\partial \Sigma} \leq \int_{\Sigma} \left| \nabla \varphi^{i} \right|^{2} dv_{\Sigma}.$$
(6)

On the other hand, $\varphi_j^i \to \psi^i$ weakly in $W^{1,k}(\Sigma, \mathbb{R})$, and so,

$$\int_{\Sigma} \left| \nabla \psi^{i} \right|^{2} dv_{\Sigma} \leq \lim_{j \to \infty} \int_{\Sigma} \left| \nabla \varphi^{i}_{j} \right|^{2} dv_{\Sigma}$$

Therefore, we must have equality in (6), and so,

$$\lim_{j\to\infty}\int_{\Sigma}\left|\nabla\varphi_{j}^{i}\right|^{2}dv_{\Sigma}=\int_{\Sigma}\left|\nabla\psi^{i}\right|^{2}dv_{\Sigma}$$

which means $\{\varphi_j^i\}_{\text{converges to }}\psi_{\text{strongly in }} W^{1,2}(\Sigma, \mathbb{R})$. Moreover,

$$\sigma_{1} \int_{\partial \Sigma} (\psi^{i})^{2} dv_{\partial \Sigma} = \int_{\Sigma} \left| \nabla \psi^{i} \right|^{2} dv_{\Sigma}$$

and it follows that $\{\psi_i\}_{i=1}^N$ are first eigenfunctions. In particular, ψ^i is harmonic for i = 1, ..., N. Also, since φ_j is conformal and converges strongly in $W^{1,2}$ to ψ , the map:

$$\psi: \Sigma \to B^N$$

$$x \mapsto (\psi^1(x), \dots, \psi^N(x))$$

defines a conformal map. Therefore, $\psi : \Sigma \to B^{N}_{is}$ conformal and harmonic, with $\psi(\partial \Sigma) \subset \partial B^{N}_{.}$. Since $\psi(\partial \Sigma) \subset \partial B^{N}_{.}$ and

$$\frac{\partial \psi}{\partial v} = \sigma_1 \psi$$
 (7)

on $\partial \Sigma$ since Ψ^i are eigenfunctions, it follows that $\Psi(\Sigma)$ meets ∂B^N orthogonally along $\Psi(\partial \Sigma)$.

By scaling the metric we can assume that $\sigma_1 = 1$. Then by (7), on $\partial \Sigma$ we have:

$$\left|\frac{\partial \psi}{\partial v}\right| = |\psi| = 1$$

and hence Ψ is an isometry on $\partial \Sigma$. Finally, for k > 2 we have from (5)

$$\lim_{j \to \infty} \sum_{i=1}^{n} \int_{\Sigma} \left| \nabla \varphi_{j}^{i} \right|^{2} dv_{\Sigma} = \sum_{i=1}^{n} \int_{\Sigma} \left| \nabla \psi^{i} \right|^{2} dv_{\Sigma} = Vol(\Sigma)^{\frac{k-2}{k}} \lim_{j \to \infty} \left[\int_{\Sigma} \left(\sum_{i=1}^{n} \left| \nabla \varphi_{j}^{i} \right|^{2} \right)^{\frac{k}{2}} dv_{\Sigma} \right]^{\frac{2}{k}}$$

By lower semicontinuity of the norm under weak convergence this implies

$$\int_{\Sigma} |\nabla \psi|^2 d\nu_{\Sigma} = \operatorname{Vol}(\Sigma)^{\frac{k-2}{k}} \left[\int_{\Sigma} \left(\sum_{i=1}^n |\nabla \psi^i|^2 \right)^{\frac{k}{2}} d\nu_{\Sigma} \right]^{\frac{2}{k}}$$

Now the Holder inequality implies the opposite inequality and thus we have equality in the Holder inequality, which implies $|\nabla \psi|^2$ is constant on Σ , and this constant must be k by the boundary normalization. Since ψ is conformal this implies that ψ is an isometry as claimed.

REFERENCES

- A. Fraser, R. Schoen, The first Steklov eigenvalue, Conformal geometry and minimalsurfaces, Adv. Math. 226, no. 5, (4011-4030), 2011.
- [2] P. Li, S.-T. Yau, A new conformal invariant and its applications to the willmore Conjecture and the first eigenvalue of compact surfaces. Invent Math. 69 (1982) 269-291.
- [3] Osman Abdallah A. OS, Mohammed Nour A. Rabih, Muntasir- Suhail D.S. Estimates of an Eigenvalue of Some IsoperimetricInequalities.IJSR, Vol 5 Issue 3, (2016),
- [4] P.Li and S.- T. Yau. A new conformal invariant and its Applicationsto the Willmore conjecture and the first eigenvalue of compact surfaces. Invent.Math., 69(2):269–291, 1982.
- [5] P. C. Yang, S.-T. Yau, Eigenvalues of the Laplacian of Compact Riemann surfaces and minimal submanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7, no. 1, (55-63),1980