Boundary Conformal Volume And First Eigenvalue

Habeeb. I.A. Ibrahim¹ , Mohammed Nour A.Rabih² , Osman Abdalla Adam Osman³ (Email: o.osman@qu.edu.sa)

^{1, 2, 3} Dept of Mathematics

¹Feculty of Education University of Zaligei -Sudan

¹College of Science & Arts in Elmiznab – Qassim University – Saudia Arabia.

 2 College of Science - University of Bakht Er-ruda-Eddwaim –Sudan

^{2, 3}College of Science & Arts in Uglat Asugour – Qassim University – Saudia Arabia.

Abstract- In this paper we give an overview of results about the boundary and relative conformal volume to manifolds \mathcal{E} , *and* we prove that $Vol_{bc}(\Sigma, n, \varphi) \leq 2\pi$ and $Vol_{bc}(\Sigma, n, \varphi) \leq L^2/2A$, where $Vol_{bc}(\Sigma, n, \varphi)$ is a boundary *n-conformal volume of* φ , we also prove $_{that}Vol_{rc}(\Sigma, n) \geq Vol_{rc}(\Sigma, n+\epsilon)$

Keywords- Conformal, Volume, Eigenvalue , Riemannian manifold , Laplacian.

I. INTRODUCTION

Let (Σ^k, g) be a k-dimensional compact Riemannian manifold with boundary $\partial \Sigma \neq \emptyset$, and let B^n be the unit ball in \mathbb{R}^n . Assume that Σ admits a conformal map $\varphi: \Sigma \to B^n$ with $\varphi(\partial \Sigma) \subset \partial B^n$. Let G be the group of conformal diffeomorphisms of B^n . We define the boundary conformal volume to be the Li-Yau $\begin{bmatrix} 2 \end{bmatrix}$ conformal volume of the boundary submanifold $\partial \Sigma$, we give estimates for the first eigenvalue of the Dirichlet-to-Neumann map which are analogs of the estimates of [2] and [5] for the first Neumann eigenvalue of the Laplacian[1].

Definition .1 : Given a map $\varphi \in C^1(\partial \Sigma, \partial B^n)$ that admits a conformal extension $\varphi: \Sigma \to B^n$, define the boundary n . conformal volume of φ by:

$$
\mathrm{Vol}_{bc}(\Sigma, n, \varphi) = \sup_{f \in G} \mathrm{Vol}\left(f(\varphi(\partial \Sigma))\right).
$$

The boundary η -conformal volume of Σ is then defined to be:

$$
\mathrm{Vol}_{bc}(\Sigma,n)=\inf_{\varphi}\mathrm{Vol}_{bc}(\Sigma,n,\varphi).
$$

where the infimum is over all $\varphi \in C^1(\partial \Sigma, \partial B^n)$ that admit conformal extensions $\varphi: \Sigma \to B^n$. It can be shown (see Lemma 7) that $\text{Vol}_{bc}(\Sigma, n) \geq \text{Vol}_{bc}(\Sigma, n + 1)$ The boundary conformal volume of Σ is defined to be:

$$
Vol_{bc}(\Sigma) = \lim_{n \to \infty} Vol_{bc}(\Sigma, n).
$$

Note that: For any k -dimensional manifold Σ with boundary, the boundary η -conformal volume of Σ is bounded below by the volume of the $(k-1)$ -dimensional sphere:

$$
\text{Vol}_{bc}(\Sigma, n) \geq \text{Vol}(\mathbb{S}^{k-1}).
$$

The proof is as in [2]; given a point θ on \mathbb{S}^{n-1} , let $f_{\theta}(t)$ be the one parameter subgroup of the group of conformal diffeomorphisms of the sphere generated by the gradient of the linear functions of \mathbb{R}^n in the direction θ . For all t , $f_{\theta}(t)$ fixes the points θ and $-\theta$, and $\lim_{t\to\infty} f_{\theta}(t)(x) = \theta$ for all $x \in \mathbb{S}^{n-1} \setminus \{-\theta\}$. If $\varphi: \partial \Sigma \to \mathbb{S}^{n-1}$ is a map whose differential has rank $k - 1$ at x , then,

$$
\lim_{t\to\infty}\mathrm{Vol}\left(f_{-\varphi(x)}(t)\big(\varphi(\partial\Sigma)\big)\right)=m\mathrm{Vol}(\mathbb{S}^{k-1})
$$

for some $m \in \mathbb{Z}^+$ (here the integer m is the multiplicity of the immersed submanifold $\partial \Sigma$ atthe point $-\theta$).

For $k = 2$ and for a minimal surface Σ that is a solution to the free boundary problem in the unit ball B^n in \mathbb{R}^n , the boundary **n**-conformal volume of Σ is the length of the boundary of Σ ; that is, its boundary length is maximal in its conformal orbit.

Theorem .2 : Let Σ a minimal surface [1] in B^n , with nonempty boundary $\partial \Sigma \subseteq \partial B^n$, and meeting ∂B^n orthogonally along $\partial \Sigma$, given by the isometric immersion $\varphi: \Sigma \to B^n$. Then, $Vol_{bc}(\Sigma, n, \varphi) = L(\partial \Sigma),$

The length of the boundary of Σ .

Proof:

Page | 419 www.ijsart.com The trace-free second fundamental form $\left\|A - \frac{1}{2} (T \gamma_A) g\right\|^2 dV_g$ is conformally invariant for surfaces.

Using the Gauss equation, we have
\n
$$
2 \left\| A - \frac{1}{2} (Tr_g A)g \right\|^2 = H^2 - 4K
$$
\nTherefore, given any $f \in G$,
\n
$$
\int_{\Sigma} (H^2 - 4K) \, da = \int_{f(\Sigma)} (H^2 - 4K) \, d\tilde{a}.
$$

Where $d\tilde{a}$ denotes the induced area element on $f(\Sigma)$. and \overline{R} and \overline{H} denote the Gauss and mean curvatures of $f(\Sigma)$ in \mathbb{R}^n . Since Σ is minimal, $H = 0$, and so we have,

$$
-4\int_{\Sigma} K \, da = \int_{f(\Sigma)} \tilde{H}^2 \, d\tilde{\alpha} - 4 \int_{f(\Sigma)} \tilde{K} \, d\tilde{\alpha}. \, (1)
$$

By the Gauss-Bonnet Theorem,

$$
\int_{\Sigma} K \, da = 2\pi \chi(\Sigma) - \int_{\partial \Sigma} k \, ds
$$

$$
\int_{f(\Sigma)} \tilde{K} \, da = 2\pi \chi(f(\Sigma)) - \int_{\partial f(\Sigma)} \tilde{k} \, ds,
$$

and using this in (1), since $\chi(\Sigma) = \chi(f(\Sigma))$, we obtain

$$
4\int_{\partial \Sigma} k \, ds = \int_{f(\Sigma)} f T^2 \, d\tilde{\alpha} + 4 \int_{\partial f(\Sigma)} \tilde{k} \, d\tilde{s} \, (2)
$$

$$
\geq 4 \int_{\partial f(\Sigma)} \tilde{k} \, d\tilde{s}
$$

If \overline{T} is the oriented unit tangent vector of $\partial \Sigma$ and ν is the inward unit conormal vectoralong $\partial \Sigma$, then.

$$
k = \langle \frac{dT}{ds}, v \rangle = -\langle T, \frac{dv}{ds} \rangle = \langle T, \frac{d\varphi}{ds} \rangle = \langle T, T \rangle = 1,
$$

where in the third to last equality we have used the fact that $v = -\varphi$ since Σ meets ∂B^n orthogonally along $\partial \Sigma$ Since f is conformal, $f(\Sigma)$ also meets ∂B^n orthogonally along $\partial f(\Sigma)$ and so we also have that $\tilde{k} = 1$. Using this in (2) we obtain.

$$
L(\partial \Sigma) \geq L(\partial f(\Sigma)).
$$

This shows that

$$
L(\partial \Sigma) \geq \text{Vol}_{bc}(\Sigma, n, \varphi)
$$

as claimed.

The proof of Theorem **2** implies that any minimal surface [1], that is a solution to the free boundary problem in the unit ball in \mathbb{R}^n has area greater than or equal to that of a flat equatorial disk solution.

Theorem .3 : Let Σ be a minimal surface in B^n , with (nonempty) boundary $\partial \Sigma \subseteq \partial B^n$, and meeting ∂B ⁿ orthogonally along $\partial \Sigma$. Then,

$$
2A(\Sigma)=L(\partial\Sigma)\geq 2\pi.
$$

Proof: Given $f \in G$, as in the proof Theorem 4, we have,

$$
L(\partial \Sigma) \ge L(\partial f(\Sigma)).\tag{3}
$$

Since \sum is minimal, the coordinate functions are harmonic $\Delta_{\Sigma} x^{i} = 0$, and $\Delta_{\Sigma} |x|^{2} = 4$. Therefore,

$$
4A(\Sigma) = \int_{\Sigma} \Delta_{\Sigma} |x|^2 \, da = \int_{\partial \Sigma} \frac{\partial |x|^2}{\partial v} \, ds = \int_{\partial \Sigma} 2 \, ds = 2L(\partial \Sigma).
$$

Using this in (3) gives,

$$
2A(\Sigma) \geq L(\partial f(\Sigma)).
$$

If $p \in \partial \Sigma$, then,

$$
\lim_{t\to\infty} L\left(f_p(t)(\partial \Sigma)\right) = mL(\mathbb{S}^1) = 2\pi m
$$

For some $m \in \mathbb{Z}^+$, and so, we have the desired conclusion. $2A(\Sigma) = L(\partial \Sigma) \geq 2\pi$.

Corollary .4 :The sharp isoperimetric inequality [3], holds for free boundary minimal surfacesin the ball:

$$
A \leq \frac{L^2}{4\pi}.
$$

Proof: For free boundary minimal surfaces in the ball we have $2A(\Sigma) = L(\partial \Sigma)$, as shown in the proof of Theorem 3. It follows that the inequality $A(\Sigma) \geq \pi$ is equivalent to the sharp isoperimetric inequality $A \leq L^2/4\pi$.

Corollary .5 : Show that

(i)
$$
Vol_{bc}(\Sigma, n, \varphi) \leq 2\pi
$$

(ii)
$$
Vol_{bc}(\Sigma, n, \varphi) \leq L^2/2A
$$

Proof :(i) Theorem **2** and Theorem **3** show that $Vol_{bc}(\Sigma, n, \varphi) \leq 2\pi$

(ii) Since $A \leq \frac{L^2}{4\pi}$ then.

$$
\operatorname{Vol}_{bc}(\Sigma,n,\varphi)\leq 2\pi\leq \frac{L^2}{4\pi}
$$

Definition .6 :Let Σ be a k -dimensional compact Riemannian manifold [5], with boundary that admits a conformal map $\varphi: \Sigma \to B^n$ with $\varphi(\partial \Sigma) \subseteq \partial B^n$ Define the relative n. conformal volume of φ by.

$$
\text{Vol}_{rc}(\Sigma, n, \varphi) = \sup_{f \in G} \text{Vol}\left(\big(f(\varphi(\Sigma)\big)\right).
$$

The relative **n**-conformal volume of Σ is then defined to be:

$$
\text{Vol}_{rc}(\Sigma, n) = \inf_{\varphi} \text{Vol}_{rc}(\Sigma, n, \varphi)
$$

Where the infimum is over all non-degenerate conformal maps $\varphi: \Sigma \to B^n$ with $\varphi(\partial \Sigma) \subset \partial B^2$.

Lemma 7 : If $m \ge n$ then $\text{Vol}_{rc}(\Sigma, n) \ge \text{Vol}_{rc}(\Sigma, m)$.

Proof: To see this, suppose $\varphi: \Sigma \to B^n \subset B^m$ is conformal, with $\varphi(\partial \Sigma) \subset \partial B^n \subset \partial B^m$. Let $A = \varphi(\Sigma) \subset B^n$ and suppose that f is a conformal transformation of B^m . Then $f(A)$ lies in the spherical cap $f(B^n)$ in B^m whose boundary lies in ∂B^m . Let $T \in O(m)$ be an orthogonal transformation that rotates this spherical cap so that its boundary lies in an n -plane parallel to the \mathbf{n} -plane containing the boundary of the original equatorial B^n . Let P be the conformal projection of $T(f(B^n))$ onto B^n , and let $A' = P(T(f(A)))$ Clearly P is volume increasing, and so.

$$
\text{Vol}(A') \geq \text{Vol}(f(A))
$$

But A' is the image of A under some conformal transformation of B^n , therefore,

$$
\sup_{F \in G} \text{Vol}(F(A)) \geq \sup_{f \in G'} \text{Vol}(f(A))
$$

Where ϵ denotes the group of conformal transformations of B^n , and G' denotes the group of conformal transformations of B^m .

The relative conformal volume of Σ is defined to be,

$$
\text{Vol}_{rc}(\Sigma) = \lim_{n \to \infty} \text{Vol}_{rc}(\Sigma, n)
$$

Note that : For any k -dimensional manifold Σ with boundary, the relative \mathbf{n} -conformal volume of Σ is bounded below by the volume of the k -dimensional ball:

$$
\text{Vol}_{rc}(\Sigma, n) \geq \text{Vol}(B^k).
$$

To see this, suppose $\varphi: \Sigma \to B^n$ is a conformal map with $\varphi(\partial \Sigma) \subset \partial B^n$, whose differential has rank k at $x \in \partial \Sigma$. The conformal diffeomorphisms $f_{-\varphi(x)}(t)$ of the sphere, extend to conformal diffeomorphisms of B^n , and,

$$
\lim_{t\to\infty}\mathrm{Vol}\left(f_{-\varphi(x)}(t)\big(\varphi(\Sigma)\big)\right)=m\mathrm{Vol}(B^k)
$$

For some $m \in \mathbb{Z}^+$, the multiplicity of $\varphi(\partial \Sigma)$ at $\varphi(x)$.

Corollary .8 : Show that $\text{Vol}_{rc}(\Sigma, n) \geq \text{Vol}_{rc}(\Sigma, n+\epsilon)$.

Proof:

For $\epsilon > 0$ suppose $\varphi: \Delta \to \rho_j \subset \rho_j$ is conformal, with $\psi(a_1) \subseteq b_j \subseteq ab_j$. Let $A = \psi(a_1) \subseteq b_j$ and suppose that f is a conformal transformation of B_j^{n+1} . Then $\sum_{j=1}^r f(A_j)$ lies in the spherical cap $\sum_{j=1}^{r} f(B_j^n)_{\text{in}} B_j^{n+\epsilon}$, whose boundary lies in $\partial B_j^{n+\epsilon}$. Let $T \in O(m)$ be an orthogonal transformation that rotates this spherical cap so that its boundary lies in an n plane parallel to the $^{\prime\prime}$ -plane containing the boundary of the original equatorial B_j^n . Let P be the conformal projection of onto P_j , and let . Clearly P is volume increasing, and so,

$$
\text{Vol}\left(\sum_{j=1}^r A'_j\right) \ge \text{Vol}\left(\sum_{j=1}^r f(A_j)\right)
$$

But A'_j is the image of A_j under some conformal transformation of B_j^n , Hence,

$$
\sup_{F \in G} \text{Vol}\left(\sum_{j=1}^r f(A_j)\right) \ge \sup_{f \in G'} \text{Vol}\left(\sum_{j=1}^r f(A_j)\right)
$$

Where \boldsymbol{G} is the group of conformal transformations of B_j^n , and G' denotes the group of conformal transformations \int of $B_j^{n+\epsilon}$.

The relative conformal volume of Σ is defined to be.

$$
\mathrm{Vol}_{rc}(\Sigma) = \lim_{n \to \infty} \mathrm{Vol}_{rc}(\Sigma, n)
$$

Lemma .9 : Let (M, g) be a compact Riemannian manifold, and let φ be an immersion of M into $\mathbb{S}^{n-1} \subset \mathbb{R}^n$. There exists $f \in G$ such that $\psi = f \circ \varphi = (\psi^1, ..., \psi^n)$ satisfies:

$$
\int_M \psi^i\; dv_g = 0
$$

 $F_{\rm O}$ $i = 1, ..., n$

Theorem .10 : Let (Σ, g) be a compact k -dimensional Riemannian manifold [5], with nonempty boundary. Let σ_1 > 0 be the first non-zero eigenvalue of the Dirichlet-to-Neumann map [1], on (Σ, g) . Then,

$$
\sigma_1 \text{Vol}(\partial \Sigma) \text{Vol}(\Sigma)^{\frac{2-k}{k}} \leq k \text{ Vol}_{r_c}(\Sigma, n)^{\frac{2}{k}}
$$

For all $\binom{n}{k}$ for which $\text{Vol}_{re}(\Sigma, n)$ is defined (i.e. such that there exists a conformal mapping $\varphi: \Sigma \to B^n$ with $\varphi(\partial \Sigma) \subset \partial B^n$). Equality implies that there exists a conformal harmonic map $\varphi: \Sigma \to B^n$ which (after rescaling the metric ϑ) is an isometry on $\partial \Sigma$, with $\varphi(\partial \Sigma) \subset \partial B^n$ and such that $\varphi(\Sigma)$ meets ∂B^n orthogonally along $\varphi(\partial \Sigma)$. For $k > 2$ this map is an isometric minimal immersion of Σ to its image. Moreover, the immersion is given by a subspace of the first eigenspace. The following is an immediate consequence of the theorem.

Corollary .11 :Let Σ be a compact surface with nonempty boundary and metric \mathbf{g} . Let $\sigma_1 > 0$ be the first non-zero eigenvalue of the Dirichlet-to-Neumann map on (Σ, g) . Then

$$
\sigma_1 L(\partial \Sigma) \leq 2 \operatorname{Vol}_{rc}(\Sigma, n)
$$

for all **n** for which $Vol_{re}(\Sigma, n)$ is defined. Equality implies that there exists a conformal minimal immersion $\varphi: \Sigma \to B^n$ by first eigenfunctions which (after rescaling the metric) is anisometry on $\partial \Sigma$, with $\varphi(\partial \Sigma) \subset \partial B^n$ and such that $\varphi(\Sigma)$ meets ∂B^n orthogonally along $\varphi(\partial \Sigma)$.

Page | 422 www.ijsart.com **Proof.** Let $\varphi: \Sigma \to B^n$ be a conformal map with $\varphi(\partial \Sigma) \subset \partial B^n$.

By Lemma 9 we can assume that $\varphi = (\varphi^1, \dots, \varphi^n)$ satisfies:

$$
\int_{\partial\Sigma}\varphi^i\;ds=0
$$

for $i = 1,...,n$. Let $\hat{\varphi}^i$ be a harmonic extension of $\frac{\varphi^i}{\varphi^i}$

Then,

$$
\sigma_1 \le \frac{\int_{\Sigma} |\nabla \hat{\varphi}^i|^2 dv_{\Sigma}}{\int_{\partial \Sigma} (\varphi^i)^2 dv_{\partial \Sigma}} \le \frac{\int_{\Sigma} |\nabla \varphi^i|^2 dv_{\Sigma}}{\int_{\partial \Sigma} (\varphi^i)^2 dv_{\partial \Sigma}}.
$$
 (4)

By Holder's inequality, and since φ is conformal then,

$$
\int_{\Sigma} \sum_{i=1}^{n} |\nabla \varphi^{i}|^{2} dv_{\Sigma} \le \text{Vol}(\Sigma)^{\frac{k-2}{k}} \left[\int_{\Sigma} \left(|\nabla \varphi^{i}|^{2} \right)^{\frac{k}{2}} dv_{\Sigma} \right]^{\frac{k}{k}} =
$$

$$
\text{Vol}(\Sigma)^{\frac{k-2}{k}} \left[k^{\frac{k}{2}} \text{Vol}(\varphi(\mathbf{T})) \right]^{\frac{2}{k}} \le
$$

$$
k \text{Vol}(\Sigma)^{\frac{k-2}{k}} \text{Vol}_{rc}(\Sigma, n, \varphi)^{\frac{2}{k}}.
$$

On the other hand, since $\varphi(\partial \Sigma) \subset \partial B^n$

$$
\sum_{i=1}^n \int_{\partial \Sigma} (\varphi^i)^2 dv_{\partial \Sigma} = \int_{\partial \Sigma} dv_{\partial \Sigma} = \text{Vol}(\partial \Sigma).
$$

Then by (4) we have,

$$
\sigma_1 \text{Vol}(\partial \Sigma) \text{Vol}(\Sigma)^{\frac{2-k}{k}} \le k \text{Vol}_{rc}(\Sigma, n, \varphi)^{\frac{2}{k}}
$$

 Sine $\operatorname{Vol}_{rc}(\Sigma, n) = \inf_{\phi} \operatorname{Vol}_{rc}(\Sigma, n, \phi)$ we get.

$$
\sigma_1 \text{Vol}(\partial \Sigma) \text{Vol}(\Sigma) \frac{2-k}{k} \le k \text{ Vol}_{rc}(\Sigma, n) \frac{2}{k}.
$$

Now assume that we have equality, . Choose a sequence of conformal maps $\varphi: \Sigma \to B^n$ with $\varphi_j(\partial \Sigma) \subset \partial B^n$, such that,

$$
\lim_{j\to\infty} \mathrm{Vol}_{rc}(\Sigma, n, \varphi_j) = \mathrm{Vol}_{rc}(\Sigma, n)
$$

and by composing with a conformal transformation of the ball we may assume:

$$
\int_{\partial\Sigma}\varphi_j^i\,ds=0
$$

for all $\vec{i} \cdot \vec{j}$. By changing the order of coordinates, we may assume that:

$$
\lim_{j \to \infty} \int_{\Sigma} (\varphi_j^i)^2 da \begin{cases} > 0 & i = 1, \dots, N \\ = 0 & i = N + 1, \dots, n \end{cases}
$$

We have:

$$
\sigma_1 \text{Vol}(\partial \Sigma) = \sigma_1 \sum_{i=1}^n \int_{\partial \Sigma} \big(\varphi_j^i \big)^2 dv_{\partial \Sigma} \leq \sum_{i=1}^n \int_{\Sigma} \big|\nabla \varphi_j^i \big|^2 dv_{\Sigma} \leq \text{Vol}(\Sigma)^{\frac{k-2}{k}} \left[\int_{\Sigma} \bigg(\sum_{i=1}^n \big|\nabla \varphi_j^i \big|^2 \bigg)^{\frac{k}{2}} dv_{\Sigma} \right]^{\frac{2}{k}} \leq k \text{Vol}_{r_c} \big(\Sigma n, \varphi_j \big)^{\frac{2}{k}} \text{Vol}(\Sigma)^{\frac{k-2}{k}}
$$

Letting $j \to \infty$ and using we get:

$$
\sigma_1 \text{Vol}(\partial \Sigma) = \sigma_1 \lim_{j \to \infty} \sum_{i=1}^n \int_{\partial \Sigma} \left(\varphi_j^i \right)^2 dv_{\partial \Sigma} = \lim_{j \to \infty} \sum_{i=1}^n \int_{\Sigma} \left| \nabla \varphi_j^i \right|^2 dv_{\Sigma} = \text{Vol}(\Sigma)^{\frac{k-2}{k}} \lim_{j \to \infty} \left[\int_{\Sigma} \left(\sum_{i=1}^n \left| \nabla \varphi_j^i \right|^2 \right)^{\frac{k}{2}} dv_{\Sigma} \right]^{ \frac{1}{k}} = \sigma_1 \text{Vol}(\partial \Sigma) (\mathcal{S})
$$

Therefore, for any fixed $i, {\varphi_j^{i}}$ us a bounded sequence in $W^{1,k}(\Sigma, \mathbb{R})$ and since the inclusion $W^{1,k}(\Sigma, \mathbb{R}) \subset L^2(\Sigma, \mathbb{R})$ is compact, by passing to a subsequence we can assume that $\{\varphi_j^i\}$ converges weakly in $W^{1,k}(\Sigma, \mathbb{R})$, strongly in $L^2(\Sigma, \mathbb{R})$, and point wise a.e., to map $\psi^i\colon \Sigma \to \mathbb{R}$. Clearly $\sum_{i=1}^n (\psi^i)^2 \leq 1$ a.e. on $\Sigma \cdot \sum_{i=1}^n (\psi^i)^2 = 1$ a.e. on $\partial \Sigma$, and $\psi^i = 0$ for $i = N + 1$, ... n Since for all i .

$$
\sigma_1 \int_{\partial \Sigma} (\varphi_j^i)^2 dv_{\partial \Sigma} \leq \int_{\Sigma} |\nabla \varphi_j^i|^2 dv_{\Sigma}.
$$

And

$$
\sigma_1 \lim_{j \to \infty} \sum_{i=1}^n \int_{\partial \Sigma} (\varphi_j^i)^2 dv_{\partial \Sigma} = \lim_{j \to \infty} \sum_{i=1}^n \int_{\Sigma} |\nabla \varphi_j^i|^2 dv_{\Sigma},
$$

We have:

$$
\lim_{j \to \infty} \int_{\Sigma} |\nabla \varphi_j^i|^2 dv_{\Sigma} = \sigma_1 \lim_{j \to \infty} \int_{\partial \Sigma} (\varphi_j^i)^2 dv_{\partial \Sigma} =
$$

$$
\sigma_1 \int_{\partial \Sigma} (\psi^i)^2 dv_{\partial \Sigma} \le \int_{\Sigma} |\nabla \varphi^i|^2 dv_{\Sigma}.
$$
 (6)

On the other hand, $\varphi_j^i \to \psi^i$ weakly in $W^{1,k}(\Sigma, \mathbb{R})$, and so,

$$
\int_{\Sigma}\bigl|\nabla\psi^i\bigr|^2\,dv_{\Sigma}\leq \lim_{j\to\infty}\int_{\Sigma}\bigl|\nabla\varphi_j^i\bigr|^2\,dv_{\Sigma}
$$

$$
\lim_{j \to \infty} \int_{\Sigma} \left| \nabla \varphi_j^i \right|^2 dv_{\Sigma} = \int_{\Sigma} \left| \nabla \psi^i \right|^2 dv_{\Sigma}
$$

which means $\{\varphi_j^i\}_{\text{converges}}$ to ψ strongly in $W^{1,2}(\Sigma, \mathbb{R})$. Moreover,

$$
\sigma_1 \int_{\partial \Sigma} (\psi^i)^2 dv_{\partial \Sigma} = \int_{\Sigma} |\nabla \psi^i|^2 dv_{\Sigma}
$$

and it follows that $\{\psi_i\}_{i=1}^N$ are first eigenfunctions. In particular, ψ^i is harmonic for $i = 1,..., N$ Also, since φ_{j} is conformal and converges strongly in $W^{1,2}$ to Ψ , the map:

$$
\psi: \Sigma \to B^N
$$

$$
x \mapsto (\psi^1(x), \ldots, \psi^N(x))
$$

defines a conformal map. Therefore, $\psi: \Sigma \rightarrow B^{N}$ is conformal and harmonic, with $\Psi(\partial \Sigma) \subseteq \partial B^N$ Since $\psi(\partial \Sigma) \subset \partial B^N$ and

$$
\frac{\partial \psi}{\partial v} = \sigma_1 \psi \tag{7}
$$

on $\partial \Sigma$ since ψ^i are eigenfunctions, it follows that $\psi(\Sigma)$ meets ∂B^N orthogonally along $\psi(\partial \Sigma)$.

By scaling the metric we can assume that $\sigma_1 = 1$. Then by (7), on $\partial \Sigma$ we have:

$$
\left|\frac{\partial\psi}{\partial\nu}\right| = |\psi| = 1
$$

and hence Ψ is an isometry on $\partial \Sigma$. Finally, for $k > 2$ we have from (5)

$$
\lim_{j \to \infty} \sum_{i=1}^{n} \int_{\Sigma} \left| \nabla \varphi_{j}^{i} \right|^{2} dv_{\Sigma} = \sum_{i=1}^{n} \int_{\Sigma} \left| \nabla \psi^{i} \right|^{2} dv_{\Sigma} =
$$

$$
\text{Vol}(\Sigma) \frac{k-2}{k} \lim_{j \to \infty} \left[\int_{\Sigma} \left(\sum_{i=1}^{n} \left| \nabla \varphi_{j}^{i} \right|^{2} \right)^{\frac{k}{2}} dv_{\Sigma} \right]^{\frac{2}{k}}
$$

By lower semicontinuity of the norm under weak convergence this implies

$$
\int_{\Sigma} |\nabla \psi|^2 dv_{\Sigma} = \text{Vol}(\Sigma) \frac{k-2}{k} \left[\int_{\Sigma} \left(\sum_{i=1}^n |\nabla \psi^i|^2 \right)^{\frac{k}{2}} dv_{\Sigma} \right]^{\frac{2}{k}}
$$

Now the Holder inequality implies the opposite inequality and thus we have equality in the Holder inequality, which implies $|\nabla \psi|^2$ is constant on Σ , and this constant must be k by the boundary normalization. Since ψ is conformal this implies that Ψ is an isometry as claimed.

REFERENCES

- [1] A. Fraser, R. Schoen, The first Steklov eigenvalue, Conformal geometry and minimalsurfaces, Adv. Math. 226, no. 5, (4011-4030), 2011.
- [2] P. Li, S.-T. Yau, A new conformal invariant and its applications to the willmore Conjecture and the first eigenvalue of compact surfaces. Invent Math. 69 (1982) 269-291.
- [3] Osman Abdallah A. OS, Mohammed Nour A. Rabih, Muntasir- Suhail D.S. Estimates of an Eigenvalue of Some IsoperimetricInequalities.IJSR, Vol 5 Issue 3, (2016),
- [4] P.Li and S.- T. Yau. A new conformal invariant and its Applicationsto the Willmore conjecture and the first eigenvalue of compact surfaces. Invent.Math., 69(2):269–291, 1982.
- [5] P. C. Yang, S.-T. Yau, Eigenvalues of the Laplacian of Compact Riemann surfaces and minimal submanifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 7, no. 1, (55- 63),1980