
IJSART - Volume 4 Issue 1 – JANUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 877 www.ijsart.com

Web Service Testing Using Open Source Maven

Dr. Bharathi P. T1, Jagadish K2

1Assistant Professor, Dept of Master of Computer Applications
2Dept of Master of Computer Applications

1, 2 Siddaganga Institute of Technology, Tumakuru - 572103

Abstract- The Web service testing is a combination of four
open source technologies viz. Arquillian, TestNG, JaCoCo,
and Maven. It is aimed at automating server side testing of all
the java based products along with generations of code
coverage report. The main idea behind any developing a web
service is to be able to test server side components which are
developed using Java Script. The tests will be such that they
will run in the container/application server where the server
side component is deployed. The tests will be able to use all
the real resources provided by the container instead of
mocking them. The next objective is to calculate the amount of
code covered by the test cases i.e. code coverage and display
it on the code level. Code coverage gives an insight of what
has been missed by the test cases and if we are pretty sure that
everything is covered by the test cases then one can ask the
question, “Why there is still a piece of code not getting under
the test radar?”. Is that a junk code?

Keywords- Eclipse, Maven, JaCoCo, Arquillian, TestNG and
Wild Fly.

I. INTRODUCTION

 The Information Technology (IT) industry is moving
towards automating everything it can. The chunk of that
automation includes automating the manual testing so that the
products can be tested thoroughly, compressively, and as fast
as possible. This leads to more frequent software releases with
fewer bugs. Also the client provides the feedback early in the
processing stage. This helps in changing the software sooner
according the clients requirements. The web service focuses
on automating the server side tests of the java based products.
The web service is developed using four open source
technologies viz. Arquillian, TestNG, JaCoCo, and Maven.
Each of the four technologies plays important roles in
achieving the overall objective. TestNG is the test framework
using which the actual test cases are written. Arquillian helps
in running the test cases in the target container e.g. Wild Fly,
so that the tests can also use same resources as the real
application is using e.g. EJB, CDI, etc. JaCoCo is used in
getting the code coverage report. The maven is the glue that
binds all the technologies together. Maven works as
dependency management and also used as a building tool.
Here the authors are using a white box testing in web service,

for all the functionalities that are included. It also helps to test
the server side components as they are automated. All the
products are placed in one place i.e. server side components
and testing side components and all the products are deployed
in the container, the container will provide the results.

II. METHODOLOGY

In any IT industry, the structured design begins by

collecting all the distinguishing inputs and desired yields to
make a graphical portrayal. After developing a graphical
portrayal, the test information is bolstered through the
experiments written in TestNG and each of the parts is
combined all around through their characterized duties. Each
of the parts work in strong way to achieve the general errand
i.e. to convey and run test cases in the holder and get scope
report at same time.

A. Existing System

 In the Existing system, the tester has to use a unit
testing. In unit testing, the testing is been carried out
unit by unit of the product.

 The developers will not be able to check the server
side components in the existing system.

 JavaEE components are tested manually, Unit testing
of these components is difficult, and these
components are to be tested inside the container.

B. Proposed System

It is designed by keeping in mind to eliminate the
drawbacks of the existing system. In order to provide the
solution for the existing problems, the main focus is on:

 Reducing manual test work.
 Finding code coverage using JaCoCo.
 In-Container testing of JavaEE components.

C. Requirements for Zebra test solution at the server side
testing

 The client should have the capacity to compose test

cases, convey and keep running the application in the
server side.

IJSART - Volume 4 Issue 1 – JANUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 878 www.ijsart.com

 The client should have the capacity to produce code
scope report in light of the execution of the
experiments.

 The Quality Analyst (QA) group should be capable in
getting a report saying which of their experiments
have passed or fizzled and furthermore the reason of
disappointment.

Figure 1: An architectural view of the web service testing

including code coverage.

Figure 1 shows an architectural view of the web
service testing including the code coverage. This fig1 depicts
how the components like Arquillian, TestNG, JaCoCo, and
Maven are combined to fulfill the client prerequisites in the
testing stage. JaCoCo is used for code scope, Arquillian for
sending and running test in the application server side.

The test data is fed through the test cases written in
TestNG and each of the components has well defined
responsibilities. Each of the components operate in cohesive
manner to accomplish the overall task i.e. to deploy and run
test cases in the container and get coverage report at same
time.

MAVEN:- Maven is a tool developed by Apache with a whole
lot of objectives in mind. Here in this proposed project work,
the authors have concentrated mainly on two features like
dependency management and build management. Firstly,
Dependency management helps in downloading all the
required libraries/jars for Arquillian, TestNG and JaCoCo and
makes them available to the project. Secondly, build
management. In case of build management maven has been
used to configure:

 test and application classes that need to be built,
 the container adapter (e.g. wild fly-Arquillian-

container-remote) to use when Arquillian will try to
deploy the application and/or test code in an
application container (e.g. Wild Fly), and

 JaCoCo to include/exclude application source files in
the code coverage report.

1) Adding a dependency in maven:

Any dependency in maven is defined by three

attributes like group id, artifact id, and version. So, to add a
dependency one has to know all the three attributes. Let’s add
a TestNG dependency in our project.

Figure2. Maven lifecycle phases

TestNG: It is a testing framework designed to make simpler a
broad range of testing needs, from unit testing to integration
testing. Writing TestNG tests include three main steps:

1. Writing the logic for the code to be tested
and insert TestNG annotations.

2. Adding information about test case i.e. class
name, groups, etc. in testing.xml file.

3. Run the code as TestNG test.

The important annotations used in TestNG are shown in figure
3:

Figure3. Sample Test annotation of TestNG.

Arquillian: Arquillian is a container-oriented test framework.
It picks up where unit tests leave off, targeting the integration
of application code inside a real runtime environment.

IJSART - Volume 4 Issue 1 – JANUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 879 www.ijsart.com

Arquillian provides a custom test runner for JUnit and TestNG
that turns control of the test execution lifecycle from the unit
testing framework to Arquillian. From there, Arquillian can
delegate to service providers to setup the environment execute
the tests inside or against the container.

Figure4. Infrastructure of Arquillian test

JaCoCo: This Java framework calculates code coverage. The
coverage report was calculated by JaCoCo method which not
only provides ball park view of how much has or has not been
covered by the test cases but also stretch a code level view,
showing the covered code in green color, partially covered
code in yellow color, and missed code in red color.

Figure5. Code coverage report calculated by JaCoCo Method.

 Results and discussion

Figure 6: Snap shot of Code Coverage image

Figure 6 shows the result of Code coverage. The

codes that are green color indicate that the code is covered;
yellow color code indicates they are partially covered and red
color code indicates that they are missed from JaCoCo
method. The image of the Code Coverage has checked the
server side testing. It shows the result on how much
percentage of the method is checked and if at all any method
is missed or not.

III. CONCLUSION

This paper presented the development of Project

defines about generating Test cases and code coverage report.
It can be used both for developer and the quality analysts.
Developers can easily find the junk of code and can easily
remove with the help of code coverage and can also easily test
real resources in the server side.

REFERENCES

[1] Book: Arquillian Testing Guide by John D. Ament
[2] Book: Next Generation Java Testing: TestNG and

Advanced Concepts
[3] Book: Maven: The Definitive Guide by Sonatype

Company
[4] Tutorial guides: http://arquillian.org/guides/
[5] JaCoCo official documentation:

http://www.eclemma.org/jacoco/trunk/doc/
[6] JaCoCo getting started tutorial:

https://www.codeproject.com/articles/832744/getting-
started-with-code-coverage-by-jacoco

[7] Maven official documentation:
https://maven.apache.org/guides/

[8] Maven tutorial:
http://tutorials.jenkov.com/maven/maven-tutorial.html

