Geovisualization of Urban Densities Using GIS

Debabrata Nandi¹, Dhurjyoti Ray², Kamalakanta Mohanta³, Kajal Mallik⁴, Pramod Chandra Sahu⁵

^{1, 2, 3, 4} Dept of RS & GIS ⁵Dept of Geology ^{1, 2, 3, 4} North Orissa University ⁵MPC Atonomous College

Abstract- Urban orchestrating is one of the main applications of GIS. Urban planners use GIS both as a spatial database and as an analysis and modelling implements. The applications of GIS vary according to the different stages, levels, sectors, and functions of urban orchestrating. With the incrementation in utilizer-cordiality and functions of GIS software and the marked decrease in the prices of GIS hardware, GIS is an operational and affordable information system for orchestrating. It is increasingly becoming a consequential component of orchestrating support systems. Recent advances in the integration of GIS with orchestrating models, visualisation, and the Internet will make GIS more subsidiary for urban orchestrating. The main constraints in the utilization of GIS in urban orchestrating today are not technical issues, but the availability of data, organisational change, and staffing.

Keywords- Remote sensing, GIS, Demographic, KMDA

I. INTRODUCTION

Structural changes in the landscape alters the functioning of the ecosystem, which touches on the sustenance of natural resources (Orville et al., 2000) and human living (Grove and Burch, 1997). The discrete expansion of urban pockets is referred to as slump and is an urban characteristic feature (Ebrahimpour- Masoumi, 2012). Urban slouch, an effect of the expansion of urban areas under pressure of various factors such as social and economic, etc., is increasingly becoming a foremost issue in many metropolitan areas (Ji et al., 2006; Ramachandra et al., 2012a). Urban sprawl is the growth of small urban settlements in the fringe or the sub-urban areas and these areas are devoid of any basic facilities (Adhvaryu, 2010; Kundu and Roy. 2012;).Urbanization that is regarded as a positive process linked to modernism, industrialization and global integration economically benefitted only a minority of the urban population (Bhatta, 2010; Sharma, 1985). The amount of solid surface in a landscape is a vital index of environmental quality. Impervious surfaces are specified as any surface which water cannot penetrate and which are mainly transportation and building rooftops (Bauer et al., 2007). Accurate and timely data on the extent of urbanization and the pace of increment is necessitated in order to avert the negative impacts on human habitat, which is of extreme concern to urban planners, civil engineers,

Environmentalists, etc. (Mesev et al., 2001: Ramachandra et al., 2012b). This involves reading the kinetics of urban social organization with its functions (Lu et al., 2004;). Planners have to to monitor the patterns of growth to understand and assess the future demand of urban land while balancing other land uses and providing basic amenities. Traditional surveying techniques are expensive, time consuming and inherently biased in sampling that hinders the understanding of urban phenomena. This has led to an increased interest in spatial research using temporal remote sensing data with Geographic Information System (GIS) techniques (Herold et al., 2002; Sudhira et al., 2004; Dewan et al., 2009). Remote sensing with digital image processing techniques helps to detect and monitor urban dynamics (Zhang et al., 2002; Ramachandra et al., 2012a). Temporal remote sensing data aids in understanding the varieties in the landscape using change detection (Tang et al., 2005). Spatial metrics aid in measuring the urban construction and practices of urban growth (Macleod and Congalton, 1998). The spatial metrics are advantageous in capturing the inherent spatial structure of landscape classes based on condition, size, centrality, etc., (Herold et al., 2003; Sudhira et al., 2004; Bharath et al., 2012a). Complexity measures of urban form were placed based on density, proximity, concentration, centrality, nuclearity, clustering and continuity (Galster et al., 2001).

II. STUDY AREA

The study area consists of kolkata municipal' corporation of west Bengal bounded by 22° 38' 24" N to 22° 26 24 N latitude and 88° 14' 24" E to 88° 21' 36" longitude and Cover about 6.48 sq k.m. KMDA Kolkata area constitue of several type Natiolal and International identified surprise things and communicate with other country area through Road way both Railway and truck way .water; transport through boat ship and also through aircraft to national and international country with export .Import and education It contain several bridge .National Mesum,Shipping corporation ,Air port

corporation ,Road truck Authority. Water-supply system are well developed and maintain by Kolkata Municipality, corporate electricity supply .Drainage patterned and Sewage treatment are conduct through municipality .Several National recognize hospital are found except this broad casting like Television Fm, Radio system are well developed.

III. METHOD AND MEHTODLOGY

GEOREFERENCING OF THE MAP

Before starting Geo-referencing of map ,The map have to scanned in a color scanner with 300 dpi {dot per inch) and the scanned map were save in to tiff format and copied in the working directory. The map are than transfer in to topo map of the definite scale and finally registered the data keeping minimum error. The control point was chosen carefully so that it is distributed uniformly on the image.

COLLECTION OF DATA AND SYNTHESIS OF DATA

Data collection include several sources (a) from topographical mapping on existing land use and their periodic up dating and monitoring, urban morphology and population estimation 'and other physical aspects of the urban environment slum detection, monitoring and updating.

Study of transport system and important aspect both in static and dynamic mode, Urbanization is inevitable when pressure on land is high agriculture income are low and population increases are excessive is the case in most of the developing country of the world. Since satellite based Remote Sensing system have unique capability to provide repetitive coverage for any area on the earths surface this make it most suitable for monitoring and up dating especially for regional planning and analysis. There fore t0 study feasibility of such data product to study the urban expansion and land use, the department of space formulation an urban "SPRAWL" mission to study the urban SPRAW and Ian use The town and country planning were made to concerned development authorities, Kolkata metropolitan development authority. Several map & satellite imagery are given in following paper.

DEMOGRAPHIC DATA

Number of house hold In census a house hold is defined as a ' group of person who commonly live together and take their meals from a common kitchen. This table provides information on the number of house hold (including institutional and house lass house hold) in the town at the time of 1991 and 2001 census.

Women headed households. A house headed by a woman that is who has the primary authority and responsibility for the households affairs, usually as chief economic support. However in most country women are not usually enumerated as head of the house hold unless they are either living along one person house hold or no adult male in the house hold.

Number of occupied residential houses Number of occupied residential houses in respect of each town. A census house is holding or a part of building having a separate main entrance from the road or common country road recognized as separate unit. Population

Total population, male and female population of town as per census 1991 and 2001 is to be furnished

III. SLUMS

All the inhabitants of the areas, which have been notified as slum by state governments under any legal provisions or even recognized by them, are to be accordingly considered as slum population. Besides areas in cities or town, which satisfy the usual criteria for declaring an area as slum have also been included ,As per census of India, 1991, 2001, the slum area broadly consists of:-

(1)All specified area notified as slum by state/local government under UT Administration under any act,

(2)All area recognized as "slum" by state/local government under UT administration which may not have been formally notified as slum under any act, (3)A compact area of at least 300 population or about 60-70 household of poorly built congested tenement, in un-hygienic environment usually with inadequate infrastructure and lacking in proper sanitary and drinking water facility,

Those who have not worked any time at all during the year preceding the date of enumeration are non workers. Non worker include.

- (1) Those engaged in household duties at home
- (2) Students
- (3) Dependents
- (4) Retired person
- (5) Beggars
- (6) Inmates of institutions
- (7) Other non worker

NAME	Ponul	Ponul	0-6	Sche	Sche	Liter	Illite	Tota	Non
OF	alian	a ti opui	Popul	dule	dule	ate i	mate	1	-
District	allon	ation	otion	Cast	Trib	I	rate	Wor	Wor
Baidyab	Male	Femal	Perso	°erso	Pers	Pers	Pers	,	Pers
Bally	56394	51835	8943	1011	595	8446	2376	2	
Bansber	14960	11130	24224	9110	1406	1938	6704	9355	
	55389	49023		2	3030	7478	2962	3237	
Barasal	13255	11820	20826	•	5 TO	'	4657	8953	
Barrack	11837	11314	23251	3285	1555	1764	5504	7651	
Bamipur	76299	68092	12343	9373	1150	1142	3015	4905	
Bhadres	23025	21888	3829	1116	209	3672	8184	1418	
	58t)40	48031	11531	1462	380	7784	2823	0!	
Bidhan	24315	19922	43330	5490	2561	3148	1275	04:	
Budge	83220	81001	14738	2046	2318	1265	3763	6288	
Champd	41165	34366	7395	6577	63	5230	2322	2373	
Chanda	57842	45404	13101	9334	290	6828	3496	3212	
Dum	84181	78006	13515	2298	889	125B	3634	5613	
Garulia	52890	48406	8602	7469	616	8283	1846	3415	
Gayespu		37376	7863	1442	257	5747	2244	2344	
Halisaha	28207	26841	4725	1098	877	4372	1131	1610	
Hugli-		57359	12458	2259	227	9284		3914	
Haora	86788	83418	13799	2885	1297	1366		5694	
Kalyani	54706	46046	94330	48759)	7666		3469	
Kamarh		40169	8064	37787	7	5797	2415	2657	
Kanchra	16855	14595	29886	8598	6551	23B0		9928	
	65264	60927	10242	2277	962	1009	2520	3596	
Kolkata	61214	55256	9277	3816	760	9615	2031	3591	
Konnag		20728	39028	2748	9810	3382		1717	
	37901	34276	6211	4846	246	5755	1461	2474	
	79728	75723	16167	1715		1168	3862	5307	
Naihati	20230	18296	45529	5696	2131	2611		1196	
New	11377	10152	21350	2612	808:	1578	5742	6769	
North	41813	41379	6518	2321	94	7235	1083	2732	
North	63796	59872	9757	1817	1473	1030	2063	3851	
	11303	10700	19828	3106	1	1798	4019	7632	
Pujali	18030	16813	29869	1622	2481	2851	6327	1208	
Rajarhat	17665	16193	4418	5936	509	2055	1330	1117	2268
Rishra	14021	13159	28888	5063	1178	2048	6699	9400	
Seramp	62585	50720	12516	4021	127	8287	3043	3550	
Rajpur	10541	92442	17530	6391	262	1507	4715	6357	

South	17414	16256	32529	7751	2358	2596	7708	1137	
Titagarh	20029	19214	33314	3255	1071	3223	7011	1453	
Uluberia	70705	53508	12546	1297	443	8193	4227	4054	
Ultarpar	10584	96292	26313	2803	508	1281	7402	6066	
Baidyab	78808	71555	12994	1078	1735	1187	3159	5333	

			1								
	TO										
	ΓA		D			D D	D D			C1	
			Ро	D	n n	Pr.P	Pr.P			Slu	T.
	W		pu	Pop	Pr.P	opu	opu	P.Dc	P.De	m,	10
	AK		19	u20	opu	202	202	n.199	n.20	Pock	Slum
NAME	D	ΕA	91 52	01	2011	I	5	1	01	et	Popu
GANEGD			52 1 5		1700	5 40	7 60				
GAYESP	10	20	15	550	4700	540	560	1700	1004	10	1 4 2 0 1
UR	18	30	8	48	0	00	00	1738	1334	18	14281
			10								
kANCHA		9.0	01	126	1160	133	140	1104	1391		
RAPARA	24	7	94	191	00	000	000	6	3	388	14223
			10								
BARASA		31.	26	231	2140	245	258				
Т	30	41	60	521	00	000	000	3268	7370	20	39000
MADHA			10								
YAMGR		21.	70	255	1430	1G5	173				
AM	23	32	00	451	00	000	000	5018	7291	40	4959
NEW			63								
DARRAC		17.	79	831	7600	880	920		484		
KPUR	19	17	5	92	0	00	00	3715	S	26	15809
NORTH			14								
DUMDU		26	99	220	2030	232	244				
Μ	30	45	65	042	00	000	000	5669	8319	25	2662
			40								
DUMDU		8.8	96	101	9300	107	122		1149		
М	22	1	1	296	0	000	000	4649	7	20	19638
RAJARH											
AT			17								
GOPALP		34	20	271	2500	287	302				
UR	27	97	00	811	00	000	000	4918	7772	13	24817
			37								
DARUIP		9.0	65	449	4200	490	520				
UR	17	7	9	13	0	00	00	4152	4951	5	4560
SONARP			60								
UR		55	17	336	3170	363	388				
RAJPUR	33	3	5	707	00	000	000	1088	6088	72	0
SOUTH			23								
DUMDU		13	$\frac{1}{2S}$	392	3610	414	436	1719	2898		
M	35	54	$\frac{-5}{11}$	444	00	000	000	4	4	64	97579
-	~~	<u> </u>	15	202		194			-		
UIUBERI		33	51	113	1700	0C	204		S99		11946
A	28	23. 72	72	5	00	0	000	4601	4	77	8
^	20	12	12	5	00	J	000	1001	T	<i>4</i> I	U

IJSART - Volume 4 Issue 1 – JANUARY 2018

			18								
		11.	44	260	2180	250	263	1562	2209		
BALLY	29	81	74	906	00	000	000	0	1	229	70073
			15								
UTTARP		16.	03	175	1600	184	1 S 9		1076		
ARA	24	34	63	859	00	000	000	9202	2	26	0
			62								
KONNAG		4.4	20	721	7700	880	910	1407	1632		
AR	19	2	0	77	0	00	00	2	9	11	11026
			13		-						
SERAMP		14.	70	197	2130	243	250		1364		
UR	28	5	28	857	00	000	000	9150	5	341	61219
en		-	<u>_</u> 0	007	00	000	000	2100	-	511	0121)
		75)0 05	108	1150	132	136	11/1	1371		
RATI	$\gamma\gamma$	0	0 <i>3</i> 1	200	00	000	000	7	1371 7	40	0
DATI		,	1	229	00	000	000	/	/	40	0
		<i>с</i> 1	10 10	102	1100	126	120	1560	1505		7850
	22	0.4	10 67	0103	00	120	130	0	1393 7	120	1000
AINI	22	/	07	240	00	000	000	V	/	129	S
			12	100	1120	120	124	1110	1020		
BHAOIS	20	6.4	47	106	1130	130	134	1118	1636	~	
WAK	20	8	4	0/1	00	000	003	4	S	0	26285
10000			1S		1051		a				
HOOGHL	A .5	17.	10	170	1820	208	213	0=		o.:	1 = 2 = 1
Y	30	23	6	206	00	000	000	8790	9355	91	17921
			93								
CHINSUR		9.0	52	104	1110	127	132	1031	1151		
A	22	7	0	412	00	000	000	0	1	60	18232
			30								
BANSBE		8.4	00	338	3200	370	390				
R1A	15	9	0	58	0	00	00	3S33	3937	20	6823
			72								
		9.0	9S	755	7100	810	860		S33		
PUJAll	20	6	1	31	0	00	00	8051	6	22	26486
			30								
BUDGU		44	60	385	3670	419	448				
BUDGE	35	18	00	266	00	000	0C0	6971	8720	30	48403
MAHESH	33	7 1	22	250	2310	265	279	3157	3522	13	55937
TAIA	55	2	48	768	00	000	000	5	0	10	55751
		Ĩ	$\frac{10}{21}$, 50		000	500	Ĩ	Ĩ		
		-	21								
BARANA		10	20 66	314	2800	231	3/10	2425	2860		
GAP	35	10. QK	00 80	507	2090 00	000	00	1	2009	8	3607
	55 25	10	27	240	2200	267	207	1 4 2 2	2 1702	0	0255
	55	19.	27	245 120	5200 00	207	58/ 000	1422 c	1/96		73334
ΠΑΠ		4	59	438	00	000	000	0	U	0.2	
DANY :	0.0		90	1.2 -	1 4 4 5	101	100	0.55	2225	82	000.5
PAN 1	23	3	11	124	1140	131	133	3521	3333	23	9806
HAT 1		2*.	40	213	00	000	000	1	7		2
			85								
TITAGAR	24		13	144	1320	152		12S6	1450	37	4459
Н		10.	32	391	00	000	160	0	3		
		61	65				000				

8APPAC		0 /	10	123	1140	131	138	1C6	1307	15	13774
VDODE		74	10	125	00	000	130	24	1307	15	13774
KPORE	~~		00	008	00	000	000	54	Z		
	22		06								
NORTH			40	101	9300	107		4649	1149		19638
BARRAC		8.8	96	29c	С	00C	112		7		
KPORE	22	1	1				000			20	
GARULI	35	30.	30	442	40S0	467	493	1002	14S	34	10758
А		41	49	335	0C	00C	000	4	42		1
			52								
ВНАТРА	2f	11.	13	215	198	227	239	1148	1S6	23	19923
RA		55	27	303	COC	000	000	9	40		
		55	$\tilde{\mathbf{n}}$	505	000	000	000	_	10		
NATIATI	02	0	11	124	1140	121	120	1277	1502	22	10722
ΝΑJΠΑΤΙ	23	0	11	124 510	00	131	133	1377	1303 7	52	10/33
		2!	40	510	UC	000	000	1	/		
			26								
HALISAH	IS	21.	55	821	6900	750	840	2536	3743		39429
AR		91	57	35	0	00	00				
			S							16	
KALYAN	SC	51.	1	100	1317	1 S 1	15S	1836	1947		11323
I		7.	9S	753	00C	100	1CC	9	2		6
			04	3		С	С				
			3!							0	
			12							~	
HOWRA		22	03	162	1730	100	104				
	22	22. 0	71	102	06	000	000	5101	7250	41	12001
	33	U	1:	10	1520	740	705	2270	1332	41	42094
CHAN	14]		43	457	1530	/45	/85	2378	2471		
DAN			99	287	00	S00	600	2	8		
NAGAR		18	81	!		С	0				
		1	!							0	0
1C0LKAT	23	64	5	113	1210	139	142	1856	174		53755
А			10	30!	CC	00C	00C	6	S5		
			28								
			1							11	
RiShRA		67		116	1070	122	129		1695	4	24303
			88	470	CC	00C	000		2	-	
			35	170		300	300	1286	-		
	01							1200			
11 11	21	22	10	1.6.1	1000	177	107	1	4	0	40170
khardaha	23	33.	10	164	1580	177	187	2936	4	U	49173
		!	00	223	0C	000	000				
			4!								
L			•								

IV. BASE MAP OF KOLKATA METROPOLITAN AREA

The study area of Kolkata Metropolitan Area of West Bengal is bounded by 23° 3" N to 22° 21" N & 38° 00" E to 3SC 35"E It contains-mainly municipality area Canal, River, Railway truck rc&c way and KMA boundary.River.-The River passes through Pujali, Budgebudge .r/shishta, DumDum, aranagar, Kamarhati, Bally, Uttarpara, Konnagar.Risnra hardtia, Titagarh, Serampur, Barrackpur, Bidyabati.North Barrackpur, Bhadreswar, Garulia, Chandannagar, Chinsura, and finally re=sC; >

Kalyani, so the river covers all most municipal area. Municipality location:-The study area of Kolkata municipality or .ves. Bengal-is bounded by 23° 00" N to 22° 27" N & 88° E to 50 contain Olberia. Pujali. 18 \geq Gudgebudge.Mahishtala.HMC.kmc.Sonarpur Rajpur' Bidban nagar.South DumDum, Komarhati. Baily.Uiiarpara. NewBarr£ckpore, Madhyamgram,Barasat, Rishra, titagarh, Seramp, Bidyabati, Nortbarrackpur, Champandi, Garulia Bhatapsr, 'Chartdannagar. Chanseria, Kanchanpara Gayeshpur and Kalyani.

V. POPULATION DENSITY MAP OF KOLKATA METROPOLITAN AREA

According to a population density map of the Kolkata metropolitan area during 1991 to 2001 area where population density in a certain range these are given below.

Kalyani,Gasypur,Barsat,Rajarhatgopalpur,Sonarajpur ,Baripur,Uluberi South DumDdum .Bidhan nagar, Pujali are re abb at 5,000 density per sq km, Where the population increase highly in Halisahar,Hooghly,Chansura,Chand NagarSerampur, Uttapara,DumDum, Madhamgram Mahistala are lies population density from 5000 to 10000,sin^'arly in Kanchan para Mahati.Bhatpara .Bhadreswar.Garulia, Champadani. North barrackpurKonnagar.Panihati reach from 10,000 to 20,000 population per sq km likely Uttarpara, Bally, Howrah , Kolkata reach the population density at 20,000 to 30,000 and only Baranagar rank at top above 30,000 population density during last decade from 1991 to2001. According to 1991and 2001 population density map population density highly increase in Rajpur Sonnarpur Uluberia.SouthDumDum, Bally, Uttarpara,Barsat, Serampur population reach very high, so population are increase in a Geomertric progression.

Slum population

A run down area of city or town inhabitant by very poor people, building unfit to be lived .uncomfortable condition at low social labour.According to slum population data of a given area. The r statistics of maximum 1,000,00 population are found inhabitant Howrah, Kolkata.and Uluberia and 50,000 to 100,000 slum population are found in Bhadraswar, Srirampur.Titagarh, Panihati, Baranagar, bally etc and 30,000 to 50,000 slum population are found in Kalyani.Barasat, slum population 15,000 to 30,000 are found in Bansaberia, Kanchanpara, Hoogoly, Chansura, Naihati, Garulia, Khardha.Rajahat Gopalpur, Budge Budge and below 15,000 slum populatin are in Pujali Sonarajpur. Komarhati, North Dum Dum, Madhyam gram, Gayespur, Konnagar, Kanchanpara are found.

POPULATION STATUS

According to the pie-chart of population status the total number of population are 8000,000 among them 5000,000 are male and 25,00,000 are female and 500000 are children are found in Kolkata metropolitan area and their area of KMDA out of them 62. 5% is about male 31.25% is female and 6.25% are children.

According to Pie-chart showing the schedule ast and schedule tribe Total number of schedule cast and schedu tribe is 290,000 and145,000 are found 290,000 schedule tribe e widely distributed all through the kolkata and adjacent areas. Among these p-ea Budge Budge.New Barrackpur, Konnagar.Rishrs, are only schedule cast are found and schedule tribe is not found.

All these f..'ie-chart show that number of schedule cast are maximum and '?hedule tribe are very less among them in every ward the percenuge of schedule cast is about 83.3% and schedule tribe is about 16.6% are furnish.

VI. WORKING DETAILS

According to KM DA data total working person is 1717734 and n Workino person is 2855142 which is highest except Kolkata area Hov.rah.The total working person is 346984 and non working parson is £60546 which is less than Kolkata area, Maheshtala South DumD'jm.Panihati & Sonarapur Rajpur.Goppalpur working person is 11S554 & non working person is 265612 but in South DumDum Working person is 145337 & non working person is 247107 in Panihati working person is 120833 & non working person is 227605*in Ragopalpur working person is 94001 & non working Person is 177810 respectively.

Only afcove written area working & non working person is very high in Comparison with other area. Among these area Kolkata & Howrah lYjno \pounds^* non working percentage reach very high,

VII. SUMMARY AND CONCLUSION

Spatial data describe the location of spatial features which may be discrete or continuous .discrete include point, line and area and continuous features are elevation and precipitation, GIS represent these spatial features on the earth surface as a map features on a plane surface these transformation involved to main'issue.

- 1. Spatial reference system
- 2. Data model

The location of spatial features on the earth surface are based on a Geographic co-ordinate system with latitude/longitude value, where location of map feature are based on plane co-ordinate system with (x,y) co-ordinate, projection is the process that can transform the earth spherical surface to a plane surface map layer must based on some coordinate system

A data model define how spatial features are represent in a GIS, vector data model uses point and there (x,y) co-ordinate to construct spatial feature of point line and area .Raster data model uses a grid and grid cell to represent the spatial variation of feature.

The two data models differ in concept vector data are ideal for representing continuous feature, they also differ in data structure the raster data model used a simple data structure, row & column pixel cell location, the vector data model may be geo- relational based or may not involve topology & may include simple or composite feature. Arc-GIS is a power-full mapping and geographic analysis application in location intelligence, Design to easily visualize the relationship between data and geography, map info professional help business analyst .planner, GIS professional even non GIS user gain new insight into their market, show information rich map and graphics and improve strategic marketing,

Arc-GIS manage location based asserted people and property, optimize service and sale territories for greater efficiency.Deploy net work, Infrastructure and map resources, plane logistics and prepare for emergency with map info professional multiple data sources are accessed directly and combine in to a single view .customer data competitive municipal data or commercially provided data such as high way are looked in a big picture , if any of data change map info automatically up date to give analyst and co-worker access to give very same data So after all map info professional provides us best service for ever- to GIS analyst.

REFERENCES

- Orville, R.E., et al. (2000) Enhancement of Cloud-to-Ground Lightning over Houston, Texas, Geographys. Res. Lett. No.28, pp. 2597–2560.
- [2] Grove, J.M., Burch, W.R. (1997) A Social Ecology Approach and Applications of Urban Ecosystem and Landscape Analyses: A Case Study of Baltimore, Maryland, Urban Ecosyst. No. 1, pp. 259–275.
- [3] Ebrahimpour-Masoumi, H. (2012) Urban Sprawl in Iranian Cities and Its Differences with the Western sprawl, SPATIUM, No. 27, pp.12-18.
- [4] Ji W., Ma, J., Twibell, R.W., Underhill, K. (2006) Characterizing Urban Sprawl Using Multi-stage Remote Sensing Images and Landscape Metrics, Comput Environ Urban No. 30, pp. 868-879.
- [5] Ramachandra, T.V., Bharath, A.H., Durgappa, D.S. (2012a) Insights to Urban Dynamics through Landscape Spatial Pattern Analysis, Int. J Applied Earth Observation and Geoinformation, No. 18, pp. 329-343.
- [6] Adhvaryu, B. (2010) Enhancing Urban Planning Using Simplified Models: SIMPLAN for Ahmedabad, India, Progress in Planning, No. 73, pp. 113–207.
- [7] Kundu, S., Roy, S.D. (2012) Urbanisation and Desanitation: A De-compositional Analysis by Taking a Case Study of Few Indian Cities, Procedia - Social and Behavioral Sciences, pp. 427 – 436.

- [8] Bhatta, B., 2010. Analysis of Urban Growth and Sprawl from RemoteSensing Data. Adv. Geog. Inf. Sci. http://dx.doi.org/10.1007/978-3-642-05299-6_2.
- [9] Sharma, K.D., 1985. Urban Development in the Metropolitan Shadow: ACase Study from Haryana. Inter-India Publication, New Delhi, India.
- [10] Bauer Marvin, E., Loeffelholz, Brian C., Wilson, Bruce, 2007. Estimatingand mapping impervious surface area by regression analysis of landsatimagery. In: Weng, Qihao (Ed.), Preprint of chapter in Remote Sensing of Impervious Surfaces. CRC Press, Boca Raton, FL.
- [11] Mesev, V., Gorte, B., Longley, P.A. (2001) Modified Maximum-Likelihood Classification Algorithms and Their Application to UrbanRemote Sensing, in Donnay, J., Barnsley, M.J.,Longley, P.A. (eds.), Remote Sensing and
- [12] Urban Analysis. New York: Taylor & Francis Inc,pp. 69– 86.
- [13] Ramachandra, T.V., Bharath, H.A. (2012c) Spatio-Temporal Pattern of Landscape Dynamics inShimoga, Tier II City, Karnataka State, India, International Journal of Emerging Technology and Advanced Engineering, No. 2(9), pp. 563-576.
- [14] Lu, D., Mausel, P., Brondízio, E., Moran, E.(2004) Change Detection Techniques.International Journal of Remote Sensing, No.25(12), pp. 2365-2401.
- [15] Herold, M., Clarke, K., Scepan, J. (2002) TheUse of Remote Sensing and Landscape Metricsto Describe Structures and Changes in UrbanLand Uses, Environment and Planning, No. 34, pp. 1443-1458.
- [16] Sudhira, H.S., Ramachandra, T.V., Jagdish, K.S.(2004) Urban Sprawl: Metrics, Dynamics andModelling Using GIS, International Journal ofApplied Earth Observation and Geoinformation, No. 5(1), pp. 29-39.
- [17] Dewan, A.M., Yamaguchi, Y. (2009) UsingRemote Sensing and GIS to Detect andMonitor Land Use and Land Cover Change in Dhaka Metropolitan of Bangladesh during1960-2005, Environ. Monit. Assess. No. 150,pp. 237-249.
- [18] Zhang, Q., Wang, J., Peng, X., Gong, P., Shi. P.(2002) Urban Built-up Land Change Detectionwith Road Density and Spectral Informationfrom Multi-Temporal Landsat TM Data, Int. J.Remote Sens. No.23, pp. 3057–3078.
- [19] Tang, J., Wang, L., Zhang, S. (2005 Investigating Landscape Pattern and itsDynamics in Daqing, China, Int. J. Remote Sens, No. 26, pp. 2259–2280.
- [20] Macleod, R.D., Congalton, R.G. (1998) A Quantitative Comparison of Change-DetectionAlgorithms for Monitoring Eelgrass from Remotely Sensed Data, Photogramm. Eng.Rem. Sens. No. 64, pp. 207–216.
- [21] Herold, M., Goldstein, N. C., Clarke, K. C. (2003) The Spatiotemporal Form of Urban Growth:Measurement,

Analysis and Modeling, Remote Sens. Environ., No. 86, pp. 286-302.

[22] Galster, G., Hanson, R., Ratcliffe, M. R., Wolman, H., Coleman, S., Freihage. J. (2001)Wrestling Sprawl to the Ground: Defining andMeasuring an Elusive Concept, Housing Policy Debate, No. 12(4), pp. 681 – 717.