
IJSART - Volume 4 Issue 1 – JANUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 150 www.ijsart.com

An Efficient Software Testing By Test Case Reduction,
Prioritization And Parallelization

Mr.Pradeep Udupa1, Dr.S. Nithyanandam2

1, 2Prist University Thanjavur Vallam

Abstract- Software Testing is the process of verifying and
validating system with goal of detecting and eliminating
errors or it involves validating an attribute and to see it
generate expected output and required outputs. here
apfd,prioritization technique, test case rank, test case
reduction used and algorithm is developed to optimize the
testing efficiency &reduce the execution time by reducing no
of test cases, prioritization, fault detection, and further
prioritized parallelization concept is used to maximize
productivity.

Keywords- Test Optimization, Prioritization, Optimization.

I. INTRODUCTION

1.1 TESTING OVERVIEW

SOFTWARE Testing is the technique of detecting,

exploring then correcting errors. It is used to ensure software
quality and completeness. Here the goal is:

 Minimize total test runs. As no of test case increases it
takes more time to test, we try to minimize test cases then
prioritize and optimize.

1.2. PROBLEM DESCRIPTION

A. ISSUE OF INTEREST

As the size of program increases and no of
instructions increases time and expenses also increases so
derived test case should detect and explore maximum faults,
hence developing technique to optimize performance is big
challenge.

B.PROBLEMS INTERESTED

1. Diminish no of possible test cases
This reduces effort, complexity, and validity

2. Prioritize test cases to increase speed
3. Calculate apfd to improve performance & quality
4. Diminish no of runs

By reducing no of possible test cases by proposed
Algorithm

5. Diminish total and average time required to execute
by adopting parallelizing techniques

Steps :=>

1) Take a code segment
2) Generate flow graph
3) Compute cyclometic complexity
4) Find independent paths
5) Use algorithm to reduce test cases
6) Generate test cases for each variable
7) Analyze all independent paths
8) Prioritize test cases
9) Parallelize to reduce time

1.3 MOTIVATION

Testing is a major phase in developing software
product. After completing a software product, software
developers invest more effort in testing it. It includes
designing test case plan, producing test inputs for exploring
program behaviors According to a 2002 NIST report, it is
estimated that over $22 billion of the costs of software errors
could be removed by incorporating better software testing
methods. Current inefficient testing methods often still take up
half or more of a software project’s budget. Out of all those
testing costs, generating test inputs for running a program
takes a huge amount of time. Those include, but are not
limited to, generating inputs for exploring every possible
program behavior, valid inputs, invalid inputs, and generating
performance testing data. To generate these data, software
firms need to hire professionals who know to produce inputs
which are very expensive.3) Simultaneously running and early
exploitation of errors.

Given a large number of existing test cases, our

proposed method reduce and rank them such thatTest cases
can explore more no of faults and program behaviors in a
given time, and reduce overall execution time.

1.4 CONTRIBUTIONS

IJSART - Volume 4 Issue 1 – JANUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 151 www.ijsart.com

The main goal of this dissertation project is to
investigate how we can improve the Efficiency of test case
execution. It is done by

1) Diminish no of test case
2) Ordering test cases based on priority.

1.5 ORGANIZATION

This dissertation is organized as follows. Chapter2

introduces some software testing concepts and techniques used
in the rest of dissertation and summarize some related work.
Chapter3 describes our methodology and experimental results
for test case reduction. Chapter4 presents test case
prioritization and selection methods and experimental results
for them. I conclude this dissertation in Chapter5.

II. BAGROUND STUDY

2.1 CHECK LISTS OR TEST CASE

A test case is designed to test whether system works
properly or not basically it is a one step, or it is a no of steps, it
is used to test the correct behavior/operations and features of
an application. An expected result or expected outcome.

2.2 VALIDATION SUITE

A validation suite is a group of test cases used to
validate system with respect to given constraints or
requirements it used to validate whether system gives
expected output.

2.3 TESTING CONTROL FLOW

Used to test every possible path, It can be used when
no of paths are more and testing more no of paths are complex
and time consuming.

2.4 INDEPENDENT PATHS

It is unique path in the program which is used to test
specific and different criteria and generate test cases.

2.5 CYCLOMATIC COMPLEXITY

It is used to derive no of independent path existing in
program or unique path in control flow graph
 Cyclomatic complexity =no of Edges-nodes+2

2.6. WHY TO LESSEN OVERALL TEST SUITS?

1. Bigger the test cases more the complexity

2. Large the test cases more probable no of errors
3. Error tracing is to be performed
4. Huge no of testers are needed
5. It will take long time

2.7. NEED & SCOPE OF THE STUDY

1) To explore maximum no of errors.
2) To prioritize, reduce test cases, and run time.

2.8. WHY TO USE PROPOSED TECHNIQUE

Existing techniques such as DDR, basis path test
leads to more number of test cases and inefficient so we

1. Diminish no of test cases

Proposed technique reduces overall test cases, effort
of testing, executing and validating test.

2. Diminish total no of test runs
3. Decrease time required to run test cases
In proposed research we try to reduce no of test cases by
finding (how)

Min, max, and constant values in the entire test cases

though finding no test paths.

Here an efficient algorithm is written to reduce total
no of test cases an analysis is made with other algorithm to
prove proposed algorithm has greater efficiency and takes less
no of test cases to execute and time required to execute and
cost required to execute will be less.

Here first we design a flow graph for algorithm then
find all independent path in program next for each
independent path we design range of test cases and no of test
cases.

2.9. PROPOSED ALGORITHM (HOW)

In this we use following steps to decrease no of test cases

1) Detect criteria’s from begin to end nodes. A criteria
can be (>, >=, <, <=, ==! =)

2) Detect the variables with high and low Values in the
path, then the large variable is given high value and
small variable is given low value.

3) Detect fixed values in the path, and allot to variables
found in path, and then use parallelization technique
to run test cases parallel.

4) Then employ obtained range to derive all test
cases.Next we reduce test case by above algorithm

IJSART - Volume 4 Issue 1 – JANUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 152 www.ijsart.com

then prioritize test case by giving rankings using test
case ranking

III. LITERATURE REVIEW

In last few years there were many publications which
discussed the concept of test case reduction. In this section
different test case reduction methods and related works are
discussed.

(A) Constraint-based test data generation by Richard A.
DeMillo and A. Jefferson Offutt presented an approach to test
data generation that uses control- flow analysis, symbolic
evaluation. it uses control- flow analysis,

Table 1. Contrast among different depletion approach for test

cases.

Symbolic evaluation and reduces no of test cases based on
criteria.

(B) dynamic domain reduction (ddr) by a.jefferson Offutt
zhenyi jin uses get split algorithm which divides domain to
reduce overall domain range and reduce test runs and total
time requred. Achieved more depletion in test cases but it is
less efficient and time consuming and more effort needed.

(C).PING-PONG TECHNIQUE

This technique selects less minimum no of test cases
by arranging differently, works using heuristic method which
wont ensure best result but give good result in given time, by
contrasting the set of values of goal state and set of states of
achieved values and assure domain coverage. But its time
consuming and more expensive technique

(D) TEST CASE REDUCTION USING
PARALLELIZATION

Many techniques are represented previously in
literature but in our technique we used test case reduction
approach, prioritization, fault detection and parallelization
where min, max, constant variable in all path are found and
later more than one test case are made to run in parallel
fashion which has greatest percentage of reduction in terms of
no test cases and execution time required for running
parallelization, debugging.

IV. EXISTING METHODOLOGY

DDR TECHNIQUE

A step follows assume given domain is
i1(0..30),j1(0..50),k1(0..40)

1. detecting all criteria’s from begin to end.
2. Evaluate split point value for range of domain and for

all variable satisfying criteria.

Then as per split vale we segregate into two intervals.
Ma1=0 to 15 and 16 to 30 ma2 into 10 to 30 and 31 to 50
&final interval by using splitting is ma1 0 to 10 and 11 to 30
ma2 31 to 50 ma3 is 10
So total test cases=31*1+31*20=651

V. PROPOSED METHODOLOGY

We first reduce test case by our given algorithm Then
prioritize test case by giving rankings for Test cases then find
APFD which will prove that Ours technique over performed
Then existing Techniques, then parallelize our test cases to
Reduce time and cost involved. Here first we find No test
paths then from each path we find min,Max, and constant

IJSART - Volume 4 Issue 1 – JANUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 153 www.ijsart.com

values and derive our Reduced test cases by using Steps given
below Then further execute them parallel.

Table 2.Derived range of values for variable I1, J1, K1.

VI. RESULT EVALUATION

Here Proposed Techniques is contrasted with the Existing
Technique Get Split with respect to

1) generated total checklists or test cases
2) Total depletion in test cases
3) Comprehensive bugging time
4) Fault detection rate

Figure 1.CONTROL FLOW GRAPH

Table 3. No of faults exposed & time required for each faults.

Then for faults in table 3 severity given which is mentioned in
Table3.

RFT=Nj/TIMEj*10 as in Table5.
PFD=NJ/total no of faults*10
RDA=NJ*SJ/TJ
TCR=RFD+PFD+RDA as in Table4

Table 4. Evaluated test case ranking value.

Table 5. Fault rate,PFD,RDA and test case rank.

Table 6.Test case execution order of different ranking
Approaches.

APFD=1-(TF1+TF2+…TFM)/M*N+1/2*N
For no order apfd=1-(4+4+1+1+3+2)/6*4+1/2*4=1-
.625+.125=50% For reverse order apfd=1-
(1+1+4+4+2+1)/6*4+1/2*4=1-.3125+.125=54%
For proposed order apfd=1-(1+1+1+1+3+4)/
6*4+1/2*4=1-.4583+.125=58% 2 as in

Table 7.Calculated apfd values of different tRanking
approaches.

IJSART - Volume 4 Issue 1 – JANUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 154 www.ijsart.com

NEXT we parallelize test cases by referring Test
table given above Now variable I used in 3 paths so range
=total no of interval/3 Now variable j used in 4 paths so
range =total no of interval/4 Since c is constant we not divide
c So range of I spitted into 3 parts i1) 0…..10 i2)11…..20
i3)21….30 similarly range of j spitted into 4 parts j1)
10…..20 j2)21…..30 j3)31….40 j4)41…50 Now when we
execute them parallel fashion we have Total no test
cases=[31*51*41]*4=259284.

Reduced test cases=[31*20*1+10*41*1+21*31*1+1*51*1]
=[620+410+651+51]=1732,Assume each test case take .5
second then Without parallelization execution time is
1732*.5=866 So total no of test cases 259284, execution
time129642.Reduced test case for sequential execution no of
test case1732, execution time 866 But with PRIORITIZED
parallel execution test cases=1732 and execution time=433
and fault detection rate is more, and time required to detect
THE FAULTS WILL BE considerably low because test cases
are exposed in prioritized order as mentioned in Table6.

VII. CONCLUSION

Each algorithm has its own significance as well as
drawbacks ddr works on specific domain & split points, Ping
pong and other existing techniques results in more no of test
cases, compilation, time, effort, cost but proposed technique
over performed by reducing no of test cases, prioritizing,
revealing more faults by assigng test case rankings, apfd
calculation and finally prioritized reduced test cases as in
Figure 2,and by giving test case rankings to achieve optimized
performance and parallelized and prioritized test cases to
reduce overall running time and cost.

VIII. LIMITATION

This executes serially and each and every path is to
be examined so it will take more time and memory to store the
result, it is effective when the variables are there with constant
and fixed values it works well for parallel execution where we
can save memory and increase speed of execution.

REFERENCES

[1] R. Wang, B. Qu, Y. Lu.(2015).“Empirical study of the

effects of different profiles on regression test case
reduction”. IET Softw, 9(2), pp.29–38.

[2] B. Boehm and L. Huang.(2003).“Value -Based Software

Engineering: A Case Study” .IEEE Computer, 36(1),
2003, pp.33-41.

[3] Arnicane, V.(2009).“Complexity of Equivalence Class
and Boundary Value Testing Methods”. International
Journal of Computer Science and Information
Technology,751(3), pp.80-101.

[4] Abhijit, A., Sawant1, P. H. Bari2 & P. M.
Chawan3.(2012).” Software Testing Techniques and
Strategies”.IJER 2(3), pp. 980-986.

[5] Jeng B., Weyuker E. J..(1994).“A Simplified Domain -
Testing Strategy”. ACM Trans. Softw. Eng.
Methodol.3(3), pp.254–270.

[6] T.Gyim ́othy, A. Besz ́edes, and I. Forg ́acs.(1999). “An
efficient relevant slicing ́ method for
debugging”.SIGSOFT Softw. Eng. Notes, 24(6),pp. 303–
321.

[7] S. Biswas and R. Mall.(2011).”Regression test selection
techniques: A survey”. Informatica 35(2),pp. 289–321.

AUTHOR’S BIBLIOGRAPHY

MR.PRADEEP UDUPA completed
his MTECH (CSE), MCA MPHIL &
PERSUING PHD (CSE) his field of
interest includes software
engineering, testing, operating
system, simulation, dbms, wireless
communication, adbms,
Oops currently working as assistant
professor in mes eng Kerala.

