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Abstract- In almost every scientific field, measurements are 
performed over time. These observations lead to a collection 
of organized data called time series. The purpose of time-
series data mining is to try to extract all meaningful 
knowledge from the shape of data. Even if humans have a 
natural capacity to perform these tasks, it remains a complex 
problem for computers. In this paper we intend to provide a 
survey of the techniques applied for time-series data mining. 
The first part is devoted to an overview of the tasks that have 
captured most of the interest of researchers. Considering that 
in most cases, time-series task relies on the same components 
for implementation, and the study of Regression analysis 
ARIMA models, the relevant literature has been categorized 
for each individual aspects. Finally, the study submits various 
research trends and avenues that can be explored in the near 
future. We hope that this article can provide a broad and deep 
understanding of the time-series data mining research field. 
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I. INTRODUCTION 
 
 Time series analysis is an approach to forecasting 
commonly used in business to produce and improve point 
forecasts where regression falls short (Tsay, 2000). Time 
series forecasting is increasingly in demand due to its ability 
to predict events based solely on previously observed data of 
the given event (Donate et al., 2013, Omar et al., 
2016).Studies have also been done showing that early patterns 
found in web popularity reflect long-term interest in a topic 
(Szabo and Huberman, 2010). In other business studies, search 
engine popularity has been shown to reflect general popularity 
and interest in a specific product (Omar et al., 2016). Our 
models apply this interest assumption, using major sports 
leagues in the United States as our product. 
 

Forecasting has been a growing trend in the world of 
sports, where it has been used in an attempt to predict 
outcomes of games (Spann and Skiera, 2009). Our analysis 
focuses on a separate and more general area within sports, the 
popularity of entire leagues. The average NFL team is worth 

$2.3 billion and the average NBA team is worth $1.25 billion 
(Ozanian, 2016, Baden hausen, 2016). With such large market 
values, even small changes in future popularity could have 
large business implications on marketing, social media 
promotion, and team value. 

 
In order to model sport popularity, we pulled data 

from Google Trends. Google Trends is an analytical tool that 
allows users to compare the popularity of search terms over 
time. Google Trendscan be used to gain insights into 
popularity that may not otherwise be noticed, as shown in the 
recent 2016 presidential election (Rogers, 2016). Data is 
available from 2004 to the present, and we chose to use the 
full range of data available to us. In this study, we filtered the 
data down to popularity only in the United States. Using the 
SAS Time Series Forecasting System, we were able to 
develop adequate models to forecast popularity. 
 

Several application of univariate time series models 
have been conducted since the introduction of the methods. To 
mention some, time series models have been used in 
modeling: airline passengers, chemical process reading, oil 
price, counterfeiting crime data and others (Tularam and 
Saeed , 2016; Anand and Ekata , 2012, and Box et al., 2008). 
However, note that the best model found varies depending on 
the applicability and nature of the data. 
 

The objective of this study is to compare and contrast 
NFL and NBA popularity using univariate time series 
forecasting models in order to efficiently predict the trend 
popularity for and between the two leagues in the Unites 
States. We wanted to make a confident prediction about which 
league is growing faster. We believe sport's popularity is tailor 
made for time series forecasting. Sports have very distinct 
seasons, which allowed us to build a seasonality component 
and trend into our models.  
 
1.1 Data and Description 
 

Our data was sourced from the Google Trends 
website. This data shows how the popularity of a term has 
changed over time in Google searches. We looked at the 
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specific search terms "NFL" and "NBA". To see the scores 
relative to each other, we used the compare feature on the 
website. The data was available from December 2003 onward 
at the monthly level, giving us 153 observations at the time of 
writing. We filtered the data down to searches from only the 
United States. The trends are scored using a relative index of 
0-100, with 100 being the point at which the most popular 
term being compared peaked in popularity. A value of 50 is 
50% as popular as the peak. In model building we held the last 
3 months data: June, July and August 2016 for model 
validation purpose and the remaining 150 to build the model. 
Descriptive statistics and other results are discussed in detail 
in Section 5. 
 
1.2 Materials and Methods 
 

A time series is a sequence of observations measured 
at successive points in time. Generally, time series data 
consists of four components. These are trend (T), seasonality 
(S), cyclical (C) and Irregularity (noise) (I). To develop a 
forecasting model understanding these four components is 
crucial as it suggests which models to consider. The flow chart 
in Figure 1 shows the model depends on the time series 
components present in the data. This is similar to the idea that 
the type of data dictates the type of statistical models to be 
used. As is the case in most time series data the focus will be 
on T, S and I. That is, time series values at time t are often 
modeled as a function of these three components and 
depending on the seasonal fluctuation of the series, the model 
can be additive or multiplicative. That is, 
 
Y= T + S + I (Additive Model) -If seasonal fluctuation is 
constant 
Y= T × S × I (Multiplicative Model) -If seasonal fluctuation is 
not constant Y 
 

WhereT,S and I respectively are the trend, 
seasonality and Irregularity at time t. For a detailed discussion 
of time series models see (Box et al., 2008; Bower man et al., 
2005; Box and Jenkins, 1980, and Montgomery et al., 2008). 
In this study three different models are considered, compared 
both theoretically and empirically. These are the time series 
regression model (Regression), Exponential Smoothing (ES) 
method, and seasonal ARIMA(p, d, q)(P, D, Q)m (SARIMA) 
models. The time series plot for monthly NFL and NBA data 
in Figure 2 exhibited trend and seasonality. As a result, in this 
study 3 univariate models will be presented: the Trend plus 
seasonality regression model, Holt-Winter Multiplicative 
Model (HWMM) and the seasonal 
 

ARIMA(p, d, q)(P, D, Q)m (SARIMA) model. 
However, due to the non-constant seasonal variation present in 

the data, natural logarithmic transformation is used to stabilize 
the variation through out the three models. 

Figure 1: Forecasting Models 
 
Model 1: Time series Regression Model 
 
For the time series that exhibits trend and seasonality, the time 
series regression model fits 
Additive Model (AM) Y = T + S + ε - When Seasonal 
fluctuation is constant or 
Multiplicative Model (MM) Y = T × S × ε -When Seasonal 
fluctuation is not constant, whereis the error term (Irregularity 
or Noise term) 
 
Model 2: Holt-Winters Multiplicative Model (HWMM) 
 

Unlike the time series regression models, ES methods 
use weighted average by assigning unequal weights by 
introducing smoothing constants. There are several ES 
methods, for example, for a series that has no trend and 
seasonality, Simple Exponential Smoothing (SES) model is 
used, which is analogous to the average model in time series 
regression, uses a smoothing constant weight that assigns 
unequal weight to the remote and recent observations. For a 
series that has a trend component, the Holt-Trend Corrected 
Exponential Smoothing (HTCES) model is used which is 
analogous to the linear trend model and unequal weight is 
assigned to the remote and recent observations and trend as 
shown in the flow chart. The Holt-Winters (HW) model is an 
ES method for modeling a series that exhibits trend and 
seasonality is a function of three components: the level, trend 
(growth or slope), and seasonality components. The HW 
model may be additive or multiplicative depending on the 
nature of seasonal fluctuation. In this study as our data has an 
increasing seasonal fluctuation only the HWMM model is 
considered. The k step ahead point forecast for HWMM model 
is given by 
 
(t) = F = (L + kT )S 
 

Where L is the level of the series, T is trend and S is 
the seasonality factor at time t and m is 12 for a monthly data. 
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The equations for the estimated level, growth rate (trend) and 
seasonal factor respectively are given below 
 
Model 3: Seasonal ARIMA (SARIMA) MODEL 
 

Box and Jenkins introduced the ARIMA models in 
1970. This type of models encompasses three classes of 
models, the Autoregressive (AR), Moving Average (MA) and 
Autoregressive Moving Average (ARMA) Models. In this 
study the focus is on SARIMA models. The general shorthand 
notation for SARIMA model is ARIMA(p, d, q)(P, D, Q)m 
Where p = order of the non-seasonal AR term, q = order of the 
non-seasonal MA term, d = order of non-seasonal differencing 
P = order of the seasonal AR term, Q = order of the seasonal 
MA term, D = order of seasonal differencing and m = number 
of seasons per year for monthly data m = 12. 
 

ARIMA(p, d, q)(P, D, Q)m (SARIMA) model is a 
function of both the lagged series and the random shocks and 
the equation of the model is given as 
 
Z = ψ + ∑ϕ Z+ ∑Φ Z+ ∑ θ ε+ ∑ Θ ε+ ε 
 

where  ψ is an intercept term and depends if the series 
has a non zero mean or not, ϕ ,, θ , and Θ are the coefficients 
of the non-seasonal AR, the Seasonal AR terms, the non-
seasonal MA, and the Seasonal MA terms respectively. 
 

SARIMA models depend on the pattern of the 
autocorrelation and partial autocorrelation functions and are 
based on 5 steps: stationary, model identification, estimation, 
diagnostics and forecasting. If the original series is not 
stationary, non-stationarity is re-moved by identifying the type 
of differencing and order of differencing required. This can be 
just the non-seasonal difference or seasonal difference or 
mixture of both of order 1 or more until stationary is achieved. 
Forexample, d = 1 is first order non-seasonal difference and is 
calculated as Z = Y − Y , where Y and Y are observations at 
time t and t − 1 respectively, and D=1 is first seasonal 
difference and is calculated by Z = Y − Y . The Augmented 
Dickey Fuller (ADF) test is used for checking stationary 
condition. 
 

II. PROPOSED MODEL 
 
2.1. Prediction  
 

Time series are usually very long and considered 
smooth, that is, subsequent values are within predictable 
ranges of one another [Shasha and Zhu 2004]. The task of 
prediction is aimed at explicitly modeling such variable 
dependencies to forecast the next few values of a series. 

Figure 5 depicts various forecasting scenarios. Definition 3.10. 
Given a time series T = (t1,...tn), predict the k next values 
(tn+1,...,tn+k) that are most likely to occur. Prediction is a 
major area in several fields of research. Concerning time 
series, it is one of the most extensively applied tasks. 
Literature about this is so abundant that dozens of reviews can 
focus on only a specific field of application or family of 
learning methods. Even if it can use time-series 
representations and a notion of similarity to 
 

 
 

 
 
evaluate accuracy, it also relies on several statistical 
components that are out of the scope of this article, for 
example, model selection and statistical learning. This task 
will be mentioned because of its importance but the interested 
reader willing to have further information may consult several 
references on forecasting [Brockwell and Davis 2002, 2009; 
Harris and Sollis 2003; Tsay 2005]. Several methods have 
been applied to this task. A natural option could be AR models 
[Box et al. 1976]. These models have been applied for a long 
time to prediction tasks involving signal denoising or dynamic 
systems modeling. It is, however, possible to use more 
complex approaches such as neural networks [Koskela 2003] 
or cluster function approximation [Sfetsos and Siriopoulos 
2004] to solve this problem. A polynomial architecture has 
been developed to improve a multilayer neural network in 
Yadav et al. [2007] by reducing higherorder terms to a simple 
product of linear functions. 
 

III. IMPLEMENTATION COMPONENTS 
 

In this section, we review the implementation 
components common to most time-series mining tasks. As 
said earlier, the three key aspects when managing time-series 
data are representation methods, similarity measures, and 
indexing techniques. Because of the high dimensionality of 
time series, it is crucial to design low-dimensional 
representations that preserve the fundamental characteristics 
of a series. Given this representation scheme, the distance 
between time series needs to be carefully definedin order to 
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exhibit perceptually relevant aspects of the underlying 
similarity. Finally the indexing scheme must allow to 
efficiently manage and query evergrowing massive datasets. 
4.1. Preprocessing In real-life scenarios, time series usually 
come from live observations [Reeves et al. 2009] or sensors 
[Stiefmeier et al. 2007] which are particularly subject to noise 
and outliers. These problems are usually handled by 
preprocessing the data. Noise filtering can be handled by using 
traditional signal processing techniques like digital filters or 
wavelet thresholding. In Himberg et al. [2001b], Independent 
Component Analysis (ICA) is used to extract the main mode 
of the series. As will be explained in Section 4.2, several 
representations implicitly handle noise as part of the 
transformation. The second issue concerns the scaling 
differences between time series. This problem can be 
overcome by a linear transformation of the amplitudes [Goldin 
and Kanellakis 1995]. Normalizing to a fixed range [Agrawal 
et al. 1995] or first subtracting the mean (known as zero 
mean/unit variance [Keogh et al. 2001a]) may be applied to 
both time series, however, it does not give the optimal match 
of two series under linear transformations [Argyros and 
Ermopoulos 2003]. In Goldin et al. [2004] the transformation 
is sought with optional bounds on the amount of scaling and 
shifting. However, normalization should be handled with care. 
As noted by Vlachos et al. [2002], normalizing an essentially 
flat but noisy series to unit variance will completely modify its 
nature and normalizing sufficiently small subsequences can 
provoke all series to look the same [Lin and Keogh 2005]. 
Finally, resampling (or uniform time warping [Palpanas et al. 
2004a]) can be performed in order to obtain series of the same 
length [Keogh and Kasetty 2003]. Downsampling the longer 
series has been shown to be fast and robust. 

 
Time series are essentially high-dimensional data. 

Defining algorithms that work directly on the raw time series 
would therefore be computationally too expensive. The main 
motivation of representations is thus to emphasize the 
essential characteristics of the data in a concise way. 
Additional benefits gained are efficient storage, speedup of 
processing, as well as implicit noise removal. These basic 
properties lead to the following requirements for any 
representation: —significant reduction of the data 
dimensionality; —emphasis on fundamental shape 
characteristics on both local and global scales; —low 
computational cost for computing the representation; —good 
reconstruction quality from the reduced representation; —
insensitivity to noise or implicit noise handling. Many 
representation techniques have been investigated, each of 
them offering different trade-offs between the properties listed 
before. It is, however, possible to classify these approaches 
according to the kind of transformations applied. In order to 
perform such classification, we follow the taxonomy of Keogh 

et al. [2004] by dividing representations into three categories, 
namely nondata adaptive, data adaptive, and model based. 
4.2.1. Nondata Adaptive. In nondata-adaptive representations, 
the parameters of the transformation remain the same for 
every time series regardless of its nature.  
 

IV. RESEARCH TRENDS AND ISSUES 
 

Time-series data mining has been an ever growing 
and stimulating field of study that has continuously raised 
challenges and research issues over the past decade. We 
discuss in the following open research issues and trends in 
time-series data mining for the next decade. 
 
Stream analysis. The last years of research in hardware and 
network research have witnessed an explosion of streaming 
technologies with the continuous advances of bandwidth 
capabilities. Streams are seen as continuously generated 
measurements that have to be processed in massive and 
fluctuating data rates. Analyzing and mining such data flows 
are computationally extreme tasks. Several papers review 
research issues for data streams mining [Gaber et al. 2005] or 
management [Golab and Ozsu 2003]. Algorithms designed for 
static datasets have usually not been sufficiently optimized to 
be capable of handling such continuous volumes of data. 
Many models have already been extended to control data 
streams, such as clustering [Domingos and Hulten 2000], 
classification [Hulten et al. 2001], segmentation [Keogh et al. 
2003a], or anomaly detection [Chuah and Fu 2007]. Novel 
techniques will be required and they should be designed 
specifically to cope with the ever flowing data streams. 
 
Convergence and hybrid approaches: A lot of new tasks can 
be derived through a relatively easy combination of the 
already existing tasks. For instance, Lian and Chen [2007] 
proposed three approaches, polynomial, DFT, and 
probabilistic, to predict the unknown values that have not fed 
into the system and answer queries based on forecast data. 
This approach is a combination of prediction (refer to Section 
3.5) and query by content (refer to Section 3.1) over data 
streams. This work shows that future research has to rely on 
the convergence of several tasks. This could potentially lead to 
powerful hybrid approaches. 
 
Data mining theory and formalization. A formalization of 
data mining would drastically enhance potential reasoning on 
design and development of algorithms through the use of a 
solid mathematical foundation. Faloutsos and 
Megalooikonomou [2007] examined the possibility of a more 
general theory of data mining that could be as useful as 
relational algebra is for database theory. They studied the link 
between data mining and Kolmogorov complexity by showing 
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their close relatedness. They conclude from the undesirability 
of the latter that data mining will never be automated, and 
therefore stating that “data mining will always be an art”. 
However, a mathematical formalization could lead to global 
improvements of both reasoning and the evaluation of future 
research in this topic. 
 

V. CONCLUSION 
 

After almost two decades of research in time-series 
data mining, an incredible wealth of systems and algorithms 
has been proposed. The ubiquitous nature of time series led to 
an extension of the scope of applications simultaneously with 
the development of more mature and efficient solutions to deal 
with problems of increasing computational complexity. Time-
series data mining techniques are currently applied to an 
incredible diversity of fields ranging from economy, medical 
surveillance, climate forecasting to biology, hydrology, 
genetics, or musical querying. Numerous facets of complexity 
emerge with the analysis of time series, due to the high 
dimensionality of such data, in combination with the difficulty 
to define an adequate similarity measure based on human 
perception. 
 

As for most scientific research, trying to find the 
solution to a problem often leads to raising more questions 
than finding answers. We have thus outlined several trends 
and research directions as well as open issues for the near 
future. The topic oftime-series data mining still raises a set of 
open questions and the interest of such research sometimes 
lies more in the open questions than the answers that could be 
provided. 
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