
IJSART - Volume 4 Issue 1 – JANUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 225 www.ijsart.com

Comparative Study of Frequent Itemset Mining
Algorithms Apriori and Fp Growth

Dr.A.Banumathi1, M.Dhurga Devi2

1Dept of CS
2Assistant professor

1, 2 Govt Arts College, karur

Abstract- In this paper generating frequent itemsets are
discussed: Apriori and FP-growth algorithm. In apriori
algorithm candidates are generated and testing is done which
is easy to implement but candidate generation and support
counting is very expensive in this because database is checked
many times. In the fp-growth, there is no candidate generation
and requires only 2 passes over the database but in this the
generation of fp-tree become very expansive to built and
support is counted only when entire dataset is added to fptree.
The comparison of these algorithms are present as in this
paper which shows better performance.

Keywords- Frequent itemset mining, Apriori, FP-Growth.

I. INTRODUCTION

 In recent years amount of data in the database has
increased rapidly. The increasing size of the database has led
to growing interest in extraction of useful information from
the bulk of data. Data mining is a technique useful for
attaining useful information from vast databases. Implicit
information within a database can be very useful in tasks such
as marketing, financial forecast etc. This information has to be
derived efficiently. Frequent itemset mining discovers
significant relationships among variables or items in a dataset.

 Association rule mining[3] searches for relationships
between items in a dataset. It finds association among set of
items in transactional database. Each transaction is a list of
items. Association rules[4] is in form A⇒B which means
customer buys A also tends to buy B. To mine association
rule, basic concepts of support and confidence are needed.
Support s is the probability that a transaction contain (X,
Y).Confidence C is the measure of the strength of the
association rule, suppose the confidence of the association rule
x⇒y is 90%, it means that 90% of the transactions that contain
X also contain Y together. Also minimum support and
minimum confidence is needed to eliminate the unimportant
association rules. Such that the association rules is hold when
it is greater than the minimum support and minimum
confidence.

Equation for support and confidence:
Support (A⇒ B) =Probability (A∩B).
Confidence (A⇒B) =Probability (B/A).

II. APRIORI ALGORITHM

The apriori algorithm[2] is firstly proposed by

R.Aggarwalfor mining frequent itemset. In data mining,
Apriori is a classic algorithm for learning association rules.
Apriori is designed to operate on databases containing
transactions (for example, collections of items bought by
customers, or details of a website frequentation).
Apriori algorithm follows two phases:

 Generate Phase:

In this phase candidate (k+1)-itemset isgenerated
using k-itemset; this phase creates Ck candidate set.

 Prune Phase:

In this phase candidate set is pruned to generate large

frequent itemset using “minimum support” as the pruning
parameter.

This phase creates Lk large itemset Fig 1 shows the
pseudo code for apriori algorithm :

IJSART - Volume 4 Issue 1 – JANUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 226 www.ijsart.com

a. Consider a database, D , consisting of 9 transactions.
b. Suppose min. support count required is 2 (i.e.

min_sup = 2/9 = 22 %)

Table 1: Database containing 9 transactions

Step 1: Count the number of transactions in which each item
occurs (Table 2.a)
Step 2: In this step we remove all the items that are bought
less than 2 times from the table (Table 2.b)

C1

Table (2.a)

L1

Table(2.b)

Table 2: first scan of Apriori(Scan for count of each

candidate)

Step 3: Make all the pairs of items by using property JOIN L1
with L1and count how many times each pair is bought
together (Table 3.a)

Step 4: Remove all the item pairs with number of
Transactions less than two(Table3.b)

C2

Table(3.a)

L2

Table(3.b)

Table 3: The second scan of A-priori (Generate C2 and Scan

D for count of each Candidate).

Step 5: To make the set of three items we need one more rule
(it’s termed as self-join).

It simply means, from the Item pairs in the above
table, we find two pairs with the same first Item.

IJSART - Volume 4 Issue 1 – JANUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 227 www.ijsart.com

C3

Table(4.a)

L3

Table(4.b)

Table 5: The third scan of A-priori (Generate C3 and Scan D
for count of each Candidate)

 While we are on this, suppose you have sets of 3
items say ABC, ABD, ACD, ACE, BCD and you
want to generate item sets of 4 items you look for
two sets having the same first two alphabets.

ABC and ABD -> ABCD
ACD and ACE -> ACDE

Step 6: According to above statement I1, I2, I3, I5 is
generated whose minimum support is less than 2.so this is not
frequent.

Thus the set of three items that are bought together most
frequently are I1, I2, I3 and I1, I2, I5 .

ADVANTAGES:

1. Use large itemset.
2. Easy to implement.
3. Easily parallelized.

DISDVANTAGE:

1. It may need to generate a huge no of candidate sets.
2. Assumes transactional database is

memory resident.
3. Support count is expensive because require many

database scan.

III. FP-GROWTH ALGORITHM

The FP-Growth Algorithm[1], proposed by Han in, is

an efficient and scalable method for mining the complete set
of frequent patterns by pattern fragment growth, using an
extended prefix-tree structure for storing compressed and
crucial information about frequent patterns named frequent
pattern tree (FP-tree). In his study, Han proved that his method
outperforms other popular methods for mining frequent
patterns [1],[3],[9] e.g. the Apriori Algorithm

Major steps in FP-growth is

Step1- It firstly compresses the database showing frequent
item set in to FP-tree. FP-tree is built using 2 passes over the
dataset.

Step2: It divides the FP-tree in to a set of conditional database
and mines each database separately, thus extract frequent item
sets from FP-tree directly. It consist of one root labeled as
null, a set of item prefix sub trees as the children of the root,
and a frequent .item header table. Each node in the item prefix
sub tree consists of three fields: item-name, count and node
link where--- item-name registers which item the node
represents; count registers the number of transactions
represented by the portion of path reaching this node, node
link links to the next node in the FP- tree. Each item in the
header table consists of two fields---item name and head of
node link, which points to the first node in the FP-tree
carrying the item name.

IV. 1FP-Tree structure

The frequent-pattern tree (FP-tree)[6] is a compact
structure that stores quantitative information about frequent
patterns in a database. Han defines the FP-tree as the tree
structure defined below:

1. One root labeled as “null” with a set of item-
prefixsubtrees as children, and a frequent-item-
header table:

a. Each node in the item-prefix subtree consists

of three fields: Item-name: registers which
item is represented by the node;

b. Count: the number of transactions
represented by the portion of the path
reaching the node;

c. Node-link: links to the next node in the FP-
tree carrying the same item-name, or null if
there is none.

IJSART - Volume 4 Issue 1 – JANUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 228 www.ijsart.com

Each entry in the frequent-item-header table consists of two
fields:

a. Item-name: as the same to the node;
b. Head of node-link: a pointer to the first node

in the FP-tree carrying the itemname.

The FP- Growth algorithm for mining frequent patterns using
FP-Tree is follows:

Let us create the FP-tree for the example from Table 1:

a. First we scan the database and determine the set of
frequent items (1-itemsets) and their support
counts(frequencies):
L={{I2:7},{I1:6},{I3:6},{I4:2},{I5:2}}

b. Then we create the root of the FP-tree and label it
with “null”

c. We take each transaction, sort the items according to
descending support count, and create a branch for it.
For example the scan of the first transaction
“T100:I1, I2, I5”, which contain tree items: I2, I1 and
I5 in sorted descending, leads to the construction of
the first branch of the tree: (I2:1), (I1:1), (I5:1).

d. The second transaction T200 contains the items I2
and I4. This would result a branch where I2 is

e. linked to the root and I4 is linked to I2. However this
branch would share a common prefix, i2, with the

existing path for T100. Therefore we instead
increment the count of the 12 node by 1 and create a
new node (I4:1), which is linked as a child of (I2:2).

In general when considering the branch to be added

for a transaction, the count of each node along a common
prefix is incremented by 1 and nodes for the items following
the prefix are created and linked accordingly.

To facilitate tree traversal, an item header table is
built so that each item points to its occurrences in the tree via a
chain of node-links. In this way the problem of mining
frequent pattern in database is transformed to that of mining
the FP-tree.

 FP-tree

The FP-tree is mined as follows: Start from each
frequent length-1 pattern, as an initial suffix pattern, construct
its conditional pattern base, a sub-database, which consists of
the set of prefix paths in the FP-tree co-occurring with the
suffix pattern, then construct its conditional FP-tree and
perform mining recursively on such a tree. The pattern growth
is achieved by the concatenation of the suffix pattern with the
frequent patterns generated from a conditional FP-tree.

The following table shows the frequent pattern
generated for each node:

IJSART - Volume 4 Issue 1 – JANUARY 2018 ISSN [ONLINE]: 2395-1052

Page | 229 www.ijsart.com

ADVANTAGES:

1. It compresses the database.
2. Require only 2 pass over database.
3. There is no candidate generation.
4. Faster than apriori.
5. Reduces search cost

DISADVANTAGE:

1. It may not fit in main memory.
2. FP tree is expensive to build.

i. takes time to build but once built frequent
itemset can be obtained easily

ii. Support can only be calculated once the
entire dataset is added to fp-tree.

IV. COMPARISON OF APRIORI AND FP-

GROWTH ALGORITHMS

V. CONCLUSION

 Frequent itemset mining is an important task in

association rule mining. It has been found useful in many
applications like market basket analysis, financial forecasting
etc. We have discussed about classical algorithm Apriori and
Fpgrowthusingthses approach ,going to all candidate itemset
for each level has to be discovered , the length of the frequent
itemset ,more the number of candidate generation. Projected
tree method is efficient in terms of speed but utilizes more
space. These disadvantages can be overcome by using
techniques like hashing, partitioning etc. In this paper study of

itemset mining algorithms is done and on the basis of that
study comparison is given between them.

REFERENCES

[1] J. Han, M. Kamber, “Data Mining Concepts and
Techniques”, Morgan Kaufmann Publishers, San
Francisco, USA, 2001, ISBN 1558604898.

[2] Agarwal, R., Aggarwal, C., and Prasad, V.V.V. 2001. A
tree projection algorithm for generation of frequent
itemsets. Journal of Parallel and Distributed Computing,
61:350–371.

[3] Ritu gang, Preethigulia, Comparative study of Frequent
Itemset mining algorithms Apriori and FP-Growth,
International journal of computer application(0975-8887).

[4] Aimammoyaidsaid,Dr.P.D.DDominic,Dr.Azween B
Abdullah. Comparative study if
FP.GrowthVariations,IJCSNS,Vol9,May 2009.

[5] Cornelia Gyorödi and Robert Gyorödi. A Comparative
Study of Association Rules Mining Algorithms.

[6] Rajesh,k.Ahir, A Comparative Study of Algorithms for
Mining Frequent Patterns, International Journal of
Computer and Communication Engineering Vol 2, issue
12, Dec 2013.

[7] M.Kavitha, S.T.Tamilselvi,Comparative Study on Aprio
Algorithms And Fp Growth Algorithm With Pros and
Cons.

[8] B.Santhosh Kumar and K.V.Rukmani. Implementation of
Web Usage Mining Using APRIORI and FP Growth
Algorithms.IJCSNS.

[9] JagratiMalviya,AnjuSigh,BuBhopa, An FP tree based
approach for extracting frequent parrern from large
database by applying parallel and partition
projection,IJCA(0975-8887) Vol 144-no.18,Mar 2015.

[10] Jeff Heaton, Ft-lauderdale ,Comparing dataset
characterset that apriori and Fp-Growth Frquent.

