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Abstract- In this paper generating frequent itemsets are 
discussed: Apriori and FP-growth algorithm. In apriori 
algorithm candidates are generated and testing is done which 
is easy to implement but candidate generation and support 
counting is very expensive in this because database is checked 
many times. In the fp-growth, there is no candidate generation 
and requires only 2 passes over the database but in this the 
generation of fp-tree become very expansive to built and 
support is counted only when entire dataset is added to fptree. 
The comparison of these algorithms are present as in this 
paper which shows better performance. 
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I. INTRODUCTION 
 
 In recent years amount of data in the database has 
increased rapidly. The increasing size of the database has led 
to growing interest in extraction of useful information from 
the bulk of data. Data mining is a technique useful for 
attaining useful information from vast databases. Implicit 
information within a database can be very useful in tasks such 
as marketing, financial forecast etc. This information has to be 
derived efficiently. Frequent itemset mining discovers 
significant relationships among variables or items in a dataset. 
 

 Association rule mining[3] searches for relationships 
between items in a dataset. It finds association among set of 
items in transactional database. Each transaction is a list of 
items. Association rules[4] is in form A⇒B which means 
customer buys A also tends to buy B. To mine association 
rule, basic concepts of support and confidence are needed. 
Support s is the probability that a transaction contain (X, 
Y).Confidence C is the measure of the strength of the 
association rule, suppose the confidence of the association rule 
x⇒y is 90%, it means that 90% of the transactions that contain 
X also contain Y together. Also minimum support and 
minimum confidence is needed to eliminate the unimportant 
association rules. Such that the association rules is hold when 
it is greater than the minimum support and minimum 
confidence.  

 

Equation for support and confidence: 
Support (A⇒ B) =Probability (A∩B). 
Confidence (A⇒B) =Probability (B/A). 
 

II. APRIORI ALGORITHM 
 
The apriori algorithm[2] is firstly proposed by 

R.Aggarwalfor mining frequent itemset. In data mining, 
Apriori is a classic algorithm for learning association rules. 
Apriori is designed to operate on databases containing 
transactions (for example, collections of items bought by 
customers, or details of a website frequentation).  
Apriori algorithm follows two phases: 
 
 Generate Phase:  
 

In this phase candidate (k+1)-itemset isgenerated 
using k-itemset; this phase creates Ck candidate set.  

 
 Prune Phase:  

 
In this phase candidate set is pruned to generate large 

frequent itemset using “minimum support” as the pruning 
parameter.  
 

This phase creates Lk large itemset Fig 1 shows the 
pseudo code for apriori algorithm : 
 



IJSART - Volume 4 Issue 1 – JANUARY 2018                                                                                 ISSN [ONLINE]: 2395-1052 
 

Page | 226                                                                                                                                                                     www.ijsart.com 
 

 
 

a. Consider a database, D , consisting of 9 transactions.  
b. Suppose min. support count required is 2 (i.e. 

min_sup = 2/9 = 22 % ) 
 

Table 1: Database containing 9 transactions 

 
 
Step 1: Count the number of transactions in which each item 
occurs (Table 2.a)  
Step 2: In this step we remove all the items that are bought 
less than 2 times from the table (Table 2.b) 
 

C1 

 
Table (2.a) 

 

L1 

 
Table(2.b) 

 
Table 2: first scan of Apriori(Scan for count of each 

candidate) 
 
Step 3: Make all the pairs of items by using property JOIN L1 
with L1and count how many times each pair is bought 
together (Table 3.a)  
 
Step 4: Remove all the item pairs with number of  
Transactions less than two(Table3.b) 
 

C2 

 
Table(3.a) 

 
L2 

 
Table(3.b) 

 
Table 3: The second scan of A-priori (Generate C2 and Scan 

D for count of each Candidate). 
 
Step 5: To make the set of three items we need one more rule 
(it’s termed as self-join). 
 

It simply means, from the Item pairs in the above 
table, we find two pairs with the same first Item. 
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C3 

 
Table(4.a) 

 
L3 

 
Table(4.b) 

 
Table 5: The third scan of A-priori (Generate C3 and Scan D 
for count of each Candidate) 
 

 While we are on this, suppose you have sets of 3 
items say ABC, ABD, ACD, ACE, BCD and you 
want to generate item sets of 4 items you look for 
two sets having the same first two alphabets.  

 
ABC and ABD -> ABCD  
ACD and ACE -> ACDE  
 
Step 6: According to above statement I1, I2, I3, I5 is 
generated whose minimum support is less than 2.so this is not 
frequent.  
 
Thus the set of three items that are bought together most 
frequently are I1, I2, I3 and I1, I2, I5 . 
 
ADVANTAGES:  
 

1. Use large itemset. 
2. Easy to implement.  
3. Easily parallelized. 

 
DISDVANTAGE: 
 

1. It may need to generate a huge no of candidate sets.  
2. Assumes transactional database is                     

memory resident. 
3. Support count is expensive because require many 

database scan. 
 
 

III. FP-GROWTH ALGORITHM 
 
The FP-Growth Algorithm[1], proposed by Han in, is 

an efficient and scalable method for mining the complete set 
of frequent patterns by pattern fragment growth, using an 
extended prefix-tree structure for storing compressed and 
crucial information about frequent patterns named frequent 
pattern tree (FP-tree). In his study, Han proved that his method 
outperforms other popular methods for mining frequent 
patterns [1],[3],[9] e.g. the Apriori Algorithm 
 
Major steps in FP-growth is  
 
Step1- It firstly compresses the database showing frequent 
item set in to FP-tree. FP-tree is built using 2 passes over the 
dataset.  
 
Step2: It divides the FP-tree in to a set of conditional database 
and mines each database separately, thus extract frequent item 
sets from FP-tree directly. It consist of one root labeled as 
null, a set of item prefix sub trees as the children of the root, 
and a frequent .item header table. Each node in the item prefix 
sub tree consists of three fields: item-name, count and node 
link where--- item-name registers which item the node 
represents; count registers the number of transactions 
represented by the portion of path reaching this node, node 
link links to the next node in the FP- tree. Each item in the 
header table consists of two fields---item name and head of 
node link, which points to the first node in the FP-tree 
carrying the item name. 
 

IV. 1FP-Tree structure 
 

The frequent-pattern tree (FP-tree)[6] is a compact 
structure that stores quantitative information about frequent 
patterns in a database. Han defines the FP-tree as the tree 
structure defined below: 
 

1. One root labeled as “null” with a set of item-
prefixsubtrees as children, and a frequent-item-
header table: 

 
a. Each node in the item-prefix subtree consists 

of three fields: Item-name: registers which 
item is represented by the node;  

b. Count: the number of transactions 
represented by the portion of the path 
reaching the node; 

c. Node-link: links to the next node in the FP-
tree carrying the same item-name, or null if 
there is none. 
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Each entry in the frequent-item-header table consists of two 
fields: 

a. Item-name: as the same to the node; 
b. Head of node-link: a pointer to the first node 

in the FP-tree carrying the itemname. 
 
The FP- Growth algorithm for mining frequent patterns using 
FP-Tree is follows: 
 

 
 
Let us create the FP-tree for the example from Table 1: 
 

a. First we scan the database and determine the set of 
frequent items (1-itemsets) and their support 
counts(frequencies): 
L={{I2:7},{I1:6},{I3:6},{I4:2},{I5:2}}  

b. Then we create the root of the FP-tree and label it 
with “null”  

c. We take each transaction, sort the items according to 
descending support count, and create a branch for it. 
For example the scan of the first transaction 
“T100:I1, I2, I5”, which contain tree items: I2, I1 and 
I5 in sorted descending, leads to the construction of 
the first branch of the tree: (I2:1), (I1:1), (I5:1).  

d. The second transaction T200 contains the items I2 
and I4. This would result a branch where I2 is 

e. linked to the root and I4 is linked to I2. However this 
branch would share a common prefix, i2, with the 

existing path for T100. Therefore we instead 
increment the count of the 12 node by 1 and create a 
new node (I4:1), which is linked as a child of (I2:2).  
 
In general when considering the branch to be added 

for a transaction, the count of each node along a common 
prefix is incremented by 1 and nodes for the items following 
the prefix are created and linked accordingly.  
 

To facilitate tree traversal, an item header table is 
built so that each item points to its occurrences in the tree via a 
chain of node-links. In this way the problem of mining 
frequent pattern in database is transformed to that of mining 
the FP-tree. 

 
                                           FP-tree 
 

The FP-tree is mined as follows: Start from each 
frequent length-1 pattern, as an initial suffix pattern, construct 
its conditional pattern base, a sub-database, which consists of 
the set of prefix paths in the FP-tree co-occurring with the 
suffix pattern, then construct its conditional FP-tree and 
perform mining recursively on such a tree. The pattern growth 
is achieved by the concatenation of the suffix pattern with the 
frequent patterns generated from a conditional FP-tree. 
 

The following table shows the frequent pattern 
generated for each node: 
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ADVANTAGES: 
 

1. It compresses the database. 
2. Require only 2 pass over database.  
3. There is no candidate generation. 
4. Faster than apriori. 
5. Reduces search cost  

 
DISADVANTAGE: 
 

1. It may not fit in main memory. 
2. FP tree is expensive to build. 

i. takes time to build but once built frequent 
itemset can be obtained easily 

ii. Support can only be calculated once the 
entire dataset is added to fp-tree. 

 
IV. COMPARISON OF APRIORI AND FP- 

GROWTH ALGORITHMS 
 

 
 

V. CONCLUSION 
 
 Frequent itemset mining is an important task in 

association rule mining. It has been found useful in many 
applications like market basket analysis, financial forecasting 
etc. We have discussed about classical algorithm Apriori and 
Fpgrowthusingthses approach ,going to all candidate itemset 
for each level has to be discovered , the length of the frequent 
itemset ,more the number of candidate generation. Projected 
tree method is efficient in terms of speed but utilizes more 
space. These disadvantages can be overcome by using 
techniques like hashing, partitioning etc. In this paper study of 

itemset mining algorithms is done and on the basis of that 
study comparison is given between them. 
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