List Circular Coloring Of Trees And Cycles

R.Aruna ¹ , N.R.Jagadeeswary ² , M.P.Ilayaraja ³

1, 2, 3 Assistant professor Dept of Mathematics

^{1, 2, 3} CK College of Engineering and Technology, Cuddalore, Tamilnadu, India-607003.

I. INTRODUCTION

In this section we deal with a particular type of connected graphs called trees. These graphs are important for their applications in different fields. The concept of a tree was introduced by Cayley in 1857. Tree is the simplest graph which is convenient to study and to prove any result on graph theory.

Definition:

A graph that does not contain any cycle is called an acyclic graph.

A connected acyclic graph is called a tree. Trees with 8 vertices are given in fig.

Note Union of trees is called forest.

Theorem:

Let *G* be a graph. The following statements are equivalent

i) *G* is a tree.

.

- ii) Every two vertices of *G* are joined by a unique path
- iii) *G* is connected and $q = p 1$.
- iv) *G* is acyclic and $q = p 1$

II. SOME PROPERTIES OF TREES

Theorem: If in a graph *G* there is one and only one path between every pair of vertices, *G* is a tree.

Proof:

Existence of a path between every pair of vertices assume that *G* is connected.

A circuit in a graph (with two or more vertices) implies that there is at least one pair of vertices a,b such that there are two distinct paths between *a* and *b*.

Since *G* has one and only one path between every pair of vertices, *G* can have no circuits. Therefore *G* is a tree. Hence the proof.

Theorem:

A tree with *n* vertices has $n-1$ edges.

Proof:

The theorem will be proved by induction on the number of vertices.

It is easy to see that the theorem is true for $n = 1, 2$, and 3 in the figure.

Tree with one, two, three and four vertices

Assume that the theorem holds for all trees with fewer than *n* vertices.

Let us now consider a tree *T* with *n* vertices. In *T* let e_k be an edge with end vertices v_1 and v_2 .

According to theorem 5.2.1 there is no other path between v_i and v_j except e_k .

Therefore, deletion of e_k from *T* will disconnect the graph.

Furthermore, $T - e_k$ consists of exactly two components, and since there were no circuits in *T* to begin with, each of these components is a tree.

Both these trees, t_1 and t_2 have fewer than *n* vertices each and therefore, by the induction hypothesis, each contain one less edge than the number of vertices in it.

Thus $T - e_k$ consists of $n-2$ edges (and *n* vertices). Hence *T* has exactly $n-1$ edges.

Hence the proof.

III. COLOROING THE TREES

First we introduce some notation that will used. Suppose *p* is a positive integer. Then for any integer *t*, $[t]_p$ denotes the remainder of *t* upon the division by *p*, that is $[t]_p$ is the unique integer $0 \le t' < p$ such that $t - t'$ is a multiple of *p*. In (p,q) colorings of graphs, the color set is $Z_p = \{0, 1, \dots, p-1\}$.

The summation in colors are all modulo *p*, and any integer *t* for which $[t]_p = i$ can be used to represent the color *i*.

For example, When we say "color a vertex *x* with color 2*p*" it means to color *x* with color 0.

Moreover, the colors are viewed to form a circle, that is, the integers $0, 1, \dots, p-1$ are cyclically ordered.

If $a, b \in \{0, 1, \dots p-1\}$, then $[a, b]_p$ denotes the set of cyclically consecutive elements of the set

from a to b. That is,
\n
$$
[a,b]_p = \{t : [t-a]_p \le [b-a]_p\}
$$

\nFor example, $[2,5]_p = [2,3,4,5]$ and
\n $[5,2]_p = \{5,6,\dots,p-1,0,1,2\}$
\n v_j
\nThe set $[a,b]_p^2$ is called an interval of colors. For
\nconvenience, for arbitrary integers a,b (not necessarily
\nbetween 0 and p). Let $[a,b]_p = [[a]_p,[b]_p]_p$. The
\nintervals $(a,b)_p,(a,b]_p,[a,b)_p$ are defined similarly.
\nThe length $l([a,b])_p$ of an interval $[a,b]_p$ is the number of
\nintegers in the interval and is equal to $[b-a]_p + 1$.

If the integer p is clear from the context, then we write $\begin{bmatrix} a,b \end{bmatrix}$ for $\begin{bmatrix} a,b \end{bmatrix}_p$ When considering (p,q) . colorings of graphs, we say two colors i, j are adjacent if $q \leq i - j \leq p - q$ For two sets A, B of colors, let $A + B = \{ [a+b]_p : a \in A, b \in B \}$

Observe that when considering (p,q) colorings of graphs, for a set *A* of colors, $A + [q, p-q]_p$ is the set of colors which is adjacent to at least one color in *A*.

Lemma:

 $\{0,1,\dots, p-1\}$

Suppose *B* is an interval of colors. For any set *A* of colors

$$
|A+B| \ge \min\left\{|A|+|B|-1,p\right\}.
$$

Proof:

Suppos
$$
A = [a_1, b_1] \cup [a_2, b_2] \cup \cdots \cup [a_t, b_t]
$$

\n $B[c, d]$
\nThe intervals $(b_1, a_2), (b_2, a_3), \cdots, (b_t, a_t)$ are the
\n"gaps" of A. It is known (See [8]) that,

Or

$$
A + B = [a_1 + c, b_1 + d] \cup [a_2 + c, b_2 + d] \cup \cdots \cup [a_t + c, b_t + d]
$$

\nIf there is a gap, say (b_1, a_2) of size at least $[B]$,
\nthen $[a_1 + c, b_1 + d]$, $[a_2 + c, b_2 + d]$, \cdots , $[a_t + c, b_t + d]$ are
\ne pair-wise distinct subsets of Therefore,

e par-wise distinct subsets of Therefore,
\n
$$
|A + B| \ge ||a_1 + c, b_1 + d|| + ||a_2 + c, b_2 + d|| + \cdots + ||a_r + c, b_r + d||
$$
\n
$$
= |A| + |B| - 1
$$

If each of the gaps of *A* has size less than *B*, then it is

easy to see that $A + B = \{0, 1, \dots, p-1\}$ and hence $| A + B | = p$

Hence the proof.

Theorem:

Suppose *T* is a tree, $p \ge 2q$ are positive integers and $l: V(T) \rightarrow \{0, 1, 2, \dots, p\}$ is a color-size-list. Then *T* is $l - (p, q)$ -colorable if and only if for each subtree T' of *T*. Exposite it and only if
 $l(V) \ge 2(|V(T')|-1)q+1$ $rac{L}{v \in T}$ $\sum_{v \in T'} l(V) \ge 2(|V(T')|-1)q+1$.

Proof:

The "only if" part of theorem follows from the following lemma.

Lemma:

A - $B = \{0,1,\cdots,p-1\}$

So prove than the condenial specific site $|V| = \{v^2\}$

due the condenial specific site $|V| = \{v^2\}$
 $\{f(v^2) = 0\}$ Suppose *l* is a color-size-list of a tree $T = (V, E)$. If $(x) < 2(|V| - 1)q + 1$ \overline{x} $l(x) < 2(|V| - 1)q$ $\sum_{x \in T} l(x) < 2(|V| - 1)q + 1$, then there is a color-list *L* such that $L(x)$ is an interval of colors with $|L(x)| = l(x)$ for each vertex *x* and *T* is not $L(p,q)$ -colorable.

Proof:

We prove lemma by induction on $|V|$. If $V = \{u\}$ then the condition says that $l(v) = 0$, and hence $L(v) = \phi$ for the only vertex *v* of *T*. Then of course *T* is not $L - (p, q)$ _{-colorable.}

Assume $|V| \ge 2$. Let *v* be a leaf of *T*.

Let u be the neighbor of v .

If $l(u) + l(v) \leq 2q$, then $L(v) = [0, l(v) - 1]_p$ If $l(u) + l(v) \le 2q$, then $L(v) - \lfloor 0, l(v) - 1 \rfloor_p$
and let $L(u) = [l(v) + p - q, l(v) + p - q + l(u) - 1]_p$ and for $x \neq u, v$.

Let $L(x)$ be any interval of colors for which $| L(x) | = l(x)$. Observe that no color in $L(u)$ is adjacent to a color in $L(v)$.

So *T* is not $L - (p,q)$ _{-colorable.}

Assume
$$
l(u) + l(v) \ge 2q + 1
$$
.

If $l(v) \geq 2q$, then let l' be the color-size-list of $T - v$, defined as $l'(x) = l(x)$ for all *x*.

If $l(v) \leq 2q-1$, then l' be the color-size-list of $T - v$ defined as $l'(x) = l(x)$ if $x \neq u$, and $l'(u) = l(u) + l(v) - 2q$

.

In any case, $\mathcal{L}(v) \leq \sum l(x) - 2$ $\overline{x \in T - v}$ $\overline{x \in T}$ $l'(v) \leq \sum l(x) - 2q$ $\sum_{x \in T-v} l'(v) \leq \sum_{x \in T} l(x) - 2q$

Therefore l' satisfies the condition of lemma.

By induction hypothesis, there is a color-list L' such that $L'(x)$ is an interval of size $l'(x)$ for each vertex *x*, and $T - v$ is not $L'-(p,q)$ colorable. Assume

If $l(v) \ge 2q$, then let *L* be any extension of L'. Any $L - (p,q)$ coloring induces an $L - (p,q)$ coloring of $T - v$.

Therefore, *T* is not $L - (p, q)$ -colorable.

$$
L'(u) = [c,d]_{1-\text{Tr}}(v) \geq 2q, \text{ then } \text{let } (P,q) \text{ -coloring in the image.}
$$
\nTherefore, *T* is not $L - (p,q) \text{ -coloring in the image.}$
\n
$$
L(v) = [c-q, c+l(v) - q - 1]_{1-\text{dir}}(v) \geq 2(|V'|-1)q+1
$$
\n
$$
L(v) = [c-q, c+l(v) - q - 1]_{1-\text{dir}}(v) \geq 2(|V'|-1)q+1
$$
\n
$$
L(v) = [c-q, c+l(v) - q - 1]_{1-\text{dir}}(v) \geq 2(|V'|-1)q+1
$$
\n
$$
L(v) = [c-q, c+l(v) - q - 1]_{1-\text{dir}}(v) \geq 2(|V'|-1)q+1
$$
\n
$$
L(v) = [c-d+(u)+1,d]_{1-\text{inf}}(v) \geq 2|U'|-1]_{1-\text{dir}}(v) \geq 2|U'|-1|_{1-\text{dir}}(v) \geq 2|U'|-1|_{1-\
$$

Observe that the contract of t

Observe

$$
L(v) + [q, p-q] = [c, c + l(v) - p - 2q - 1]
$$

Since $\left| [c, d] \right| = l(u) + l(v) - 2q$, we conclude that Since $(L(v) + [q, p - q]) \cup L(v) = [c, d]$

Therefore if ϕ is an $L^-(p,q)$ -coloring of *T* such that $\phi(x) \in L(x)$ for all *x*, then $\phi(u) \in [c, d]$, that is, the restriction of ϕ to $T - v$ is an $L'(p,q)$ -coloring of $T - v$.

Contrary to the assumption that $T - v$ is not $L'(p,q)$ _{-colorable.}

Therefore *T* is not
$$
L-(p,q)
$$
 -colorable.

Hence the proof.

The "if" part of theorem follows from the lemma.

Lemma:

Assume *L* is a color-list of *T*. If for each subtree *T* ' of *T*. $|L(v)| \geq 2(|V(T')|)q+1$ $rac{L}{v \in T}$ $L(v) \geq 2(|V(T')|)q$ $\sum_{v \in T'} |L(v)| \geq 2(|V(T')|)q+1$ then *T* is $L - (p,q)$

colorable.

Proof:

We prove lemma by induction on $|V(T)|$. Assume L is a color-list of T such that for each subtree \overline{T} ' of \overline{T} .

$$
\sum_{v \in T} |L(v)| \ge 2(|V'|-1)q+1
$$

If $|V(T)|=1$, then the condition implies that $L(v) \neq \emptyset$ for the only vertex *v* of *T*. Hence *T* is $L - (p, q)$. colorable. Assume $|V(T)| \ge 2$. Let *v* be a leaf of *T*.

Let u be the neighbor of v . Consider the edge $e = uv$, which is a subtree of *T*.

The condition of lemma implies that $|L(u)| + |L(v)| \ge 2q + 1$. .

Similarly, as before $L(v) + [q, p-q]_p$ is the set of colors each of which is adjacent to atleast one color of $L(v)$ _{.By} lemma (1),

$$
|L(v)+[q, p-q]_{p} \geq \min \{ |L(v)+p-2q, p| \}.
$$

If
$$
|L(v)+[q, p-q]_p| = p
$$
, then let L' be the restriction of L to $T-v$.

Any L^{\prime} -coloring of ϕ of $T-\nu$ can be extended to an $L - (p, q)$ _{-coloring of *T*.}

Otherwise, Otherwise,
 $| L(v)+[q, p-q]_{p} \ge | L(v)|+p-2q$. Let L' be the color-list of $T - v$ defined as $L'(x) = L(x)$ for $x \neq u$ and $L'(u) = L(u) \cap (L(v) + [q, p - q]_{n})$

> $|L'(u)| \geq |L(u)| + |L(v)| - 2q$.

Straightforward calculation shows that *L*' satisfies the condition of lemma.

Then

Therefore $T - v$ has an $L - (p, q)$ -coloring ϕ .

As
$$
\phi(u) \in L'(u) \subseteq L(v) + [q, p-q]_{p}
$$
, so
\n $\phi(u)$ is adjacent to some color in $L(v)$. Hence ϕ can be

extended to an $L - (p, q)$ coloring of *T*.

Hence the proof.

Theorem:

Given a tree *T*, positive integers $p \ge 2q$ and a color-size-list *l* for *T*, it can be determined in linear time whether or not *T* is $l - (p, q)$ -colorable.

Proof:

Let ν be a leaf vertex of T and let μ be the unique neighbor of *v*.

If $l(u)+l(v) \leq 2q$, then *T* is not $l-(p,q)$. colorable by theorem 5.3.2.

Assume $l(u) + l(v) \ge 2q + 1$

Delete *v*, and let
$$
l'(u) = l(u) + l(v) - 2q
$$
 and
 $l'(x) = l(x)$ for $x \neq u, v$.

.

It follows from theorem (5.3.2) that *T* is $l - (p, q)$. colorable if and only if $T - v$ is $\frac{l'(p,q)}{q}$ -colorable. By repeatedly deleting leaf vertices of *T*, one determines in linear time whether or not *T* IS $l - (p, q)$ colorable. Therefore $T = V$ has an $L^{\infty}(P, q)$ columning ϕ .

(*i, f*)_a, *i*, *i, j*_k, *i*, *i*, *j*_k, *i*, *i*, *j*^k, *j*_k, *i*, *j*^k, *j*_k, *i*, *j*_k, *j*^k, *j*^k, *j*^k, *j*^k, *j*^k, *i*_k, *j*^k,

Hence the proof.

Coloring the Cycles:

Page | 301 www.ijsart.com We consider list coloring of cycles. Given a cycle $X = (x_0, x_1, \dots, x_{n-1})$ the vertices are also considered as cyclically ordered. The additions on the indices of the vertices

 $(i, j]_n$, (i, j) _n, (i, j) _n, $(i, j]$ _n are defined in the same way as the intervals of color.

The following result in the main theorem of this section.

Theorem:

Let
$$
k \ge 1
$$
 be an integer, and $X = (x_0, x_1, \dots, x_{n-1})$
be a cycle of length $n \ge 2k + 1$. Suppose
 $l: V(X) \rightarrow \{0, 1, \dots, 2k + 1\}$ is a color-size-list for X.

Then *X* is $l - (2k + 1, k)$ -colorable if the following conditions hold.

1. For each interval
$$
[j, j']_n
$$
 of length *m*, $\sum_{t \in [j, j']_n} l(x_t) \geq 2(m-1)k+1$

Moreover, condition (1) is necessary for *X* to be $l - (2k + 1, k)$ -colorable, and in case *X* is an odd cycle, condition (2) is sharp.

The necessity of condition 1 follows from lemma because if *X* is $l - (2k + 1, k)$ -colorable, then each subtree (which is a

path) must be $l - (2k + 1, k)$ -colorable.

If $X = (x_0, x_1, \dots, x_{n-1})$ is an odd cycle, then condition (2) is sharp in the following sense.

There is a color-size-list *l* which satisfies condition

(1) and
$$
\sum_{t=0}^{n-1} l(x_t) = 2nk
$$

However *X* is not $l - (2k + 1, k)$

c_o

t

For example, if
$$
L(x_i) = [1, 2k]
$$
 for each *i*, then
\n $l(x_i) = |L(x_i)|$ satisfies condition (1) and

$$
\sum_{t=0}^{n-1} l\left(x_t\right) = 2nk
$$

However, *X* is not $L - (2k+1, k)$ -colorable, because an $L - (2k + 1, k)$ -coloring ϕ of *X* is equivalent to a homomorphism from *X* to $C_{2k+1} - \{0\}$ and $C_{2k+1} - \{0\}$ is a bipartite graph.

However, condition (2) is not a necessary condition. There are color-size-list *l* which violates condition (2) and yet X is $l - (2k + 1, k)$ -colorable.

For example, Suppose $X = (x_0, x_1, x_2, x_3, x_4)$ is a 5-cycle, let $l(x_0) = 3$, $l(x_1) = 5$ and let $l(x_i) = 4$ for $i \geq 2$

Then *X* is $l - (5, 2)$ -colorable, although condition (2) is violated.

Theorem:

If
$$
(X, F)
$$
 is a valid *FCA*, then there is a good
 $(2k+1,k)$ _{-coloring for} (X, F) .

We shall be only considering $(2k+1, k)$ -colorings of graphs. For simplicity, we refer a $(2k+1,k)$ -coloring simply as a coloring.

Given a *FCA* , let

$$
\Gamma_F = \{(i, j) : 0 \le i \le n - 1, \ 0 \le j \le 2k, \ j \in F(i)\}
$$

Given a coloring \oint of *X*, let

$$
\Gamma_{\phi} = \{(i, j) : 0 \le i \le n - 1, 0 \le j \le 2k, j = \phi(x_i)\}
$$

prove theorem we need to find a coloring ϕ such that $\Gamma_{\phi} \cap \Gamma_{F} = \phi$ _.

It is helpful to have a picture for the understanding of the proof below:

We construct a graph *G* whose vertex set is partitioned into *n* coloumns

ed into *n* columns
\n
$$
B_i = \{(i, j): 0 \le j \le 2k; \text{ for } i = 0, 1, \dots, n-1\}
$$

each vertex (i, j) in B_i is connected to two vertices in B_{i+1} , namely $(i+1, j+k)$ and $(i+1, j+k+1)$, where the summation in the first coordinate is modulo *n*, and the summation in the second coordinate is modulo $2k+1$. A coloring ϕ corresponds to a cycle of *G* which intersects

each column B_i exactly once.

We call such a cycle of *G* a "coloring cycle". The set *F* is the set of forbidden vertices in *G*. We need to find a "coloring cycle" which avoids the forbidden vertices Γ_F . Figure 1 below is an example of the graph *G* with $k=3$ and $n = 11$.

There are edges between vertices in B_{10} and B_{0} , however, for simplicity, these edges are not shown in the figure.

The thick edges indicates a coloring cycle.

(The two ends should meet, i.e. the vertex 6 in column B_{10} is adjacent to the vertex 3 in column B_{0}) circled vertices indicate vertices in *F*, that is,

$$
F_0 = \{1, 2, 3\}, F_2 = \{3\}, F_3 = \{5\}, F_5 = \{5, 6\},
$$

$$
F_7 = \{6\}, F_8 = \{2\}, F_9 = \{6\}, F_1 = F_4 = F_6 = F_{10} = \emptyset
$$

Observe that the coloring cycle indicated by the thick edge in figure 1 intersects the "forbidden vertices". So this coloring is not a good coloring.

We need to define some notations so that we can talk about the "shape" of the set of forbidden vertices.

Suppose
$$
(X, F)
$$
 is a valid *FCA*, where
\n $X = (x_0, x_1, \dots, x_{n-1})$ we say a column B_i is infected if B_i
\ncontains at least one forbidden vertex, that is $F(i) \neq \phi$.

We say a column B_i is seriously infected if B_i contains at least two forbidden vertices, that is, $|F(i)| \geq 2$.

Let J_F be the set of indices of the infected columns, and let I_F be the set of indices of the seriously infected columns, that $J_F = \{0 \le i \le n-1; F(i) \ne \phi\}$ $I_F = \{ i : |F(i)| \geq 2 \}$ Let (i) 2 $\mathbf{0}$ $| F \models \sum^{2k} | F(i) |$ *i* $F \models \sum |F(i)$ $=\sum_{i=0}^{\infty}$.

For $i \in J_F$, let q_i^F be the smallest positive integer such that $i + q_i^F \in J_F$. For $i \in I_F$, let P_i^F be the smallest positive integer such that $i + P_i^F \in I_F$.

We shall prove that for a counter example, $I_F \neq \phi$ (lemma 5.4.7) Assume $i \in I_F$ and $\begin{bmatrix} i, i + p_i^F \end{bmatrix} \bigcap J_F = \left\{ \beta_0^i, \beta_1^i, \dots, \beta_{t_i}^i \right\}$.

Where

$$
\beta_0^i = i, \beta_{t_i}^i = i + p_i^F \text{ and for } 1 \le j \le t_i - 1
$$

$$
\beta_j^i \in (\beta_{j-1}^i, \beta_{j-1}^i)_n
$$

$$
S_i^F = \sum_{j=0}^{t_j - 1} j \times l \left(\left[\beta_j^t, \beta_{j+1}^t \right]_n \right)
$$

Let,

For the example in figure 1, the corresponding parameters for this *FCA* are

$$
J_F = \{0, 2, 3, 5, 7, 8, 9\}, I_F = \{0, 5\}
$$

$$
q_0^F = 2, q_2^F = q_3^F = 1, q_5^F = 2, q_7^F = q_8^F = 1, q_9^F = 2, p_0^F = 5, p_5^F = 6,
$$

$$
\beta_0^0 = 0, \beta_1^0 = 2, \beta_2^0 = 3, \beta_3^0 = 5, \beta_0^5 = 5, \beta_1^5 = 7, \beta_2^5 = 8, \beta_3^5 = 9, \beta_4^5 = 0
$$

$$
S_0^F = 0 \times 2 + 1 \times 1 + 2 \times 2 = 5, \ S_5^F = 0 \times 2 + 1 \times 1 + 2 \times 1 + 3 \times 2 = 9
$$

Definition:

Suppose (X, F) and (X', F') are two FCA , s. If the existence of a good coloring for (X', F') implies the existence of a good coloring for (X, F) , then we say (X', F') dominates (X, F) .

Lemma: If $n = 2k + 2$ then the conclusion of theorem holds. **Proof:**

Without loss of generality, we assume that $0 \notin F(0)$ and $1 \in F(0)$.

Let ϕ be the coloring defined as $\phi(x_i) = 1$ if *i* is even and $\phi(x_i) = k + 1$ if *i* is odd. If $\Gamma_F \cap \Gamma_{\phi} = \{(0,1)\},\$ then let $\phi'(x_i) = \phi(x_i)$ for $i \neq 0$ and $\phi'(x_0) = 0$.

As $0 \notin F(0)$, ϕ' is a good coloring. Assume $|\Gamma_F \cap \Gamma_{\phi}| \geq 2$, for $i = 0, 1, \dots, 2k$ let ϕ_i be the coloring of *X* defined as $\phi_i(x) = \phi(x) + i$. Since $|\Gamma_F \cap \Gamma_{\phi}| \ge 2$ and $|\Gamma_F| \leq 2k+1$, there is an index *i*, such that, $\Gamma_{\phi} \cap \Gamma_F = \phi$

Lemma:

Suppose for some index *i*, $F(i) = \{u\}$ and $F(i+1) = \{v\}$. Assume that *u* and *v* are not adjacent. Let $X' = \{x_0, x_1, \dots, x_{n-3}\}\)$ be a cycle of length $n-2$, and let F' be a *FCA* for *X*^{*'*} defined as $F'(j) = F(\tau(j))$, $\begin{aligned} P & \text{be a } T \subset A \text{ for } A \text{ defined as} \end{aligned}$
where $\tau: \{0, 1, \dots, n-3\} \rightarrow \{0, 1, \dots, n-1\}$ is defined as,

$$
\tau(j) = \begin{cases} j & \text{if } j \leq i - 1 \\ j + 2 & \text{if } j \geq i \end{cases}
$$

Then (X', F') is a valid *FCA* and dominates (X, F) .

Proof:

First we show that (X', F') is valid.

Consider an interval $[j, j']_{n-2}$ of length *m*. If $i \notin [j, j']_{n-2}$ or $i-1 \notin [j, j']_{n-2}$ then $\lfloor \tau(j), \tau(j') \rfloor_n$ also has length *m* and (S) $|j,j'|$ (S) $\sum_{j,i,j=2}^{\infty}$ $\frac{1}{I}$ (b) $j = \sum_{S \in [\tau(j),\tau(j)]}$ has length
 $| F'(S) | = \sum_{n=1}^{\lfloor n \rfloor} | F(S) |$ $S \in [j,j']_{n-2}$ $\begin{bmatrix} I & (D'') \end{bmatrix}$ $\begin{bmatrix} I & (D'') \end{bmatrix}$ has length
 $F'(S)| = \sum_{n=1}^{\infty} |F(S)|$ $\sum_{\substack{e \in [j,j']_{n-2}}}$ $|F'(S)| = \sum_{S \in [\tau(j), \tau(j')]_n}$ $|F'(S)| = \sum_{S \in [\tau(j), \tau(j')]_n}$.

If
$$
i-1
$$
, $i \in [j, j^{\prime}]_{n-2}$, then $[\tau(j), \tau(j^{\prime})]_{n}$ has

length $m+2$ and

length
$$
m+2
$$
 and
\n
$$
\sum_{S \in [j,j']_{n-2}} |F'(S)| = \sum_{S \in [\tau(j),\tau(j')]_n} |F(S)| - 2
$$
\n
$$
\leq 2k + m + 2 - 1 - 2
$$
\n
$$
= 2k + m - 1
$$

$$
\sum_{\text{Moreover, } S=0}^{n-3} |F'(S)| = \sum_{S=0}^{n-1} |F(S)| - 2
$$

$$
\leq n-1-2 = n-3
$$

Therefore (X', F') is valid. Next, we show that (X', F') dominates (X, F) .

Let ϕ' be a good coloring for (X', F') .

Recall that $F(i) = \{u\}$ and $F(i+1) = \{v\}$ As *u* is not adjacent to *v*, and $\phi'(x_{i-1})$ is adjacent to $\phi'(x_i)$.

.

We conclude that either
$$
\phi'(x_{i-1}) \neq v_{\text{or}} \phi'(x_i) = u
$$

If
$$
\phi'(x_{i-1}) \neq v
$$
 then let
\n $t \in \{\phi'(x_{i-1}) + k, \phi'(x_{i-1}) + k + 1/\{u\}\}$ and let

$$
\phi(x_j) = \begin{cases} \phi'(x_j) & \text{if } j \leq i-1 \\ t & \text{if } j = 1 \\ \phi'(x_{j-2}), & \text{if } j \geq i+1 \end{cases}
$$

Then ϕ is a good coloring for *F*.

$$
\tau(j) = \begin{cases}\n j & \text{if } j \neq 1 \\
 j & \text{if } j \neq 2\n\end{cases}
$$
\nThen (X',F') is a valid *FCA* and dominates (X',F) .
\nProof:
\nProof:
\n
$$
\text{First we show that } (X',F') \text{ is valid.}
$$
\n
$$
\text{First we have that } (X',F') \text{ is valid.}
$$
\n
$$
\text{First we have that } \begin{cases}\n j & \text{if } j \geq i+1 \\
 j & \text{if } j \geq i+1\n\end{cases}
$$
\n
$$
\text{First we have that } \begin{cases}\n j & \text{if } j \geq i+1 \\
 j & \text{if } j \geq i+1\n\end{cases}
$$
\n
$$
\text{First we have that } \begin{cases}\n j & \text{if } j \geq i+1 \\
 j & \text{if } j \geq i+1\n\end{cases}
$$
\n
$$
\text{First we have that } \begin{cases}\n j & \text{if } j \geq i+1 \\
 j & \text{if } j \geq i+1\n\end{cases}
$$
\n
$$
\text{First we have that } \begin{cases}\n j & \text{if } j \geq i+1 \\
 j & \text{if } j \geq i+1\n\end{cases}
$$
\n
$$
\text{First we have that } \begin{cases}\n j & \text{if } j \geq i+1 \\
 j & \text{if } j \geq i+1\n\end{cases}
$$
\n
$$
\text{First we have that } \begin{cases}\n j & \text{if } j \geq i+1 \\
 j & \text{if } j \geq i+1\n\end{cases}
$$
\n
$$
\text{First we have that } \begin{cases}\n j & \text{if } j \geq i+1 \\
 j & \text{if } j \geq i+1\n\end{cases}
$$
\n
$$
\text{First we have that } \begin{cases}\n j & \text{if } j \geq i+1 \\
 j & \text{if } j \geq i+1\n\end{cases}
$$
\n
$$
\text{First we have that } \begin{cases}\n j & \text{if } j \geq i+1 \\
 j & \text{if } j \geq i+1\n\end{cases}
$$
\n
$$
\text{First, } \begin{cases}\n j & \text{if } j \geq i+1 \\
 j & \text{if } j \
$$

Then ϕ is a good coloring for *F*.

REFERENCES

- [1] A.Vince Star Chromatic number J.Graph theory 12(4):551-559, 1988.
- [2] D.R.Guichard, Acyclic graph coloring and the complexity of the Star Chromatic Number, J.Graph theory 17 (1993), 129-134.
- [3] H.L.Abott and B.Zhou, The Star Chromatic number of a graph, J.Graph theory 17 (1993), 349-360.
- [4] X.Zhu, Star Chromatic numbers and products of graphs, J.Graph Theory 16 (1992), 557-569
- [5] T.N.Cusick and C.Pomerance, view-obstruction problems111, J.Number theory 19 (1984), 131-139.
- [6] XudingZhu.Circular Chromatic Number: a Survey Discrete Math, 229 (1-3) 371-410.
- [7] J.A.Bondy and P.Hell, A note on the Star Chromaticnumber, J.Graph theory 14 (1990) 479 482.
- [8] Z.Pan and X.Zhu, Density of the Circular chromatic number of Series-Parallel graphs, J. Graphs Theory 46 (2004), 57-68.
- [9] O.V.Borodin, S.J.Kim, A.V.Kostahka and B.D.West Homomorphism from sparse graph with large girth, manuscript.
- [10]B.Mohar, Choosability for the circular chromatic number.http://www.fmf.unilj.si/~mohar/problems/p0201/ choosabilitycircular.html, 2003.
- [11]L.A.Goddyn, M.Tarsi and C.Q.Zhang, on (*k*,*d*)-colorings and fractional nowhere-zero flows, J.Graph theory to appear.
- [12]W.Deuber and X.Zhu, Circular coloring of weighted graphs, manuscript, 1994.