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I. INTRODUCTION 

 

 In this section we deal with a particular type of 

connected graphs called trees.  These graphs are important for 

their applications in different fields.  The concept of a tree was 

introduced by Cayley in 1857.  Tree is the simplest graph 

which is convenient to study and to prove any result on graph 

theory. 

 

Definition:  

 

A graph that does not contain any cycle is called an 

acyclic graph. 

 

A connected acyclic graph is called a tree.  Trees 

with 8 vertices are given in fig. 

 

 
 

Note Union of trees is called forest. 

 

Theorem: 

  

Let G be a graph.  The following statements are equivalent 

 

i) G is a tree. 

ii) Every two vertices of G are joined by a 

unique path 

iii) G is connected and 
1q p= −

. 

iv) G is acyclic and 
1q p= −

 

. 

II. SOME PROPERTIES OF TREES 

 

Theorem: If in a graph G there is one and only one path 

between every pair of vertices, G is a tree. 

 

Proof: 

 

Existence of a path between every pair of vertices assume that 

G is connected. 

 

A circuit in a graph (with two or more vertices) 

implies that there is at least one pair of vertices 
,a b

 such that 

there are two distinct paths between a and b. 

 

Since G has one and only one path between every 

pair of vertices, G can have no circuits.  Therefore G is a tree. 

Hence the proof. 

 

Theorem:  

 

A tree with n vertices has 1n−  edges. 

 

Proof: 

 

The theorem will be proved by induction on the 

number of vertices. 

 

It is easy to see that the theorem is true for 
1,2,  and 3n =

 in 

the figure. 

 

 
 

Tree with one, two, three and four vertices 

 

Assume that the theorem holds for all trees with fewer than n 

vertices. 

 

Let us now consider a tree T with n vertices.  In T let ke
 be an 

edge with end vertices 1v
 and 2v

. 
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According to theorem 5.2.1 there is no other path between iv
 

and jv
 except ke

. 

 

Therefore, deletion of  ke
 from T will disconnect the 

graph. 

 

Furthermore, kT e−
 consists of exactly two 

components, and since there were no circuits in T to begin 

with, each of these components is a tree. 

 

Both these trees, 1t  and 2t  have fewer than n 

vertices each and therefore, by the induction hypothesis, each 

contain one less edge than the number of vertices in it. 

 

Thus kT e−
 consists of 2n−  edges (and n 

vertices).  Hence T has exactly 1n−  edges. 

 

Hence the proof. 

 

III. COLOROING THE TREES 

 

First we introduce some notation that will used.  

Suppose p is a positive integer.  Then for any integer t, 
 

p
t

 

denotes the remainder of t upon the division by p, that is 
 

p
t

 

is the unique integer 
0 't p 

 such that 't t−  is a multiple 

of p.  In 
( ),p q

- colorings of graphs, the color set is 

 0,1, , 1pZ p=  −
. 

 

The summation in colors are all modulo p, and any 

integer t for which 
 

p
t i=

 can be used to represent the color 

i. 

 

For example, When we say “color a vertex x with 

color 2p” it means to color x with color 0. 

 

Moreover, the colors are viewed to form a circle, that 

is, the integers 
0,1, , 1p −

 are cyclically ordered. 

 

If 
 , 0,1, 1a b p  −

, then 
 ,

p
a b

 denotes the 

set of cyclically consecutive elements of the set 

 0,1, , 1p   −
 from a to b.  That is, 

      , :
p p p

a b t t a b a= −  −
 

For example, 
   2,5 2,3,4,5

p
=

 and 

   5,2 5,6, , 1,0,1,2
p

p=  −
. 

 

The set 
 ,

p
a b

 is called an interval of colors. For 

convenience, for arbitrary integers 
,a b

 (not necessarily 

between 0 and p). Let 
     , ,

p p p p
a b a b =

 
. The 

intervals 
( ) (   ), , , , ,

p p p
a b a b a b

 are defined similarly.  

The length 
 ( ),

p
l a b

 of an interval 
 ,

p
a b

 is the number of 

integers in the interval and is equal to 
  1

p
b a− +

. 

 

If the integer p is clear from the context, then we 

write 
 ,a b

 for 
 ,

p
a b

.  When considering 
( ),p q

- 

colorings of graphs, we say two colors 
,i j

 are adjacent if 

| |q i j p q −  −
.  For two sets 

,A B
 of colors, let 

  : ,
p

A B a b a A b B+ = +  
. 

 

Observe that when considering 
( ),p q

- colorings of 

graphs, for a set A of colors, 
 ,

p
A q p q+ −

 is the set of 

colors which is adjacent to at least one color in A. 

 

Lemma:  

 

Suppose B is an interval of colors.  For any set A of colors  

 

 | | min | | | | 1,A B A B p+  + −
. 

 

Proof: 

 

Suppos
     1 1 2 2, , ,t tA a b a b a b= 

 and 

 ,B c d
.The intervals 

( ) ( ) ( )1 2 2 3 1, , , , , ,tb a b a b a  
 are the 

“gaps” of A.  It is known (See [8]) that, 

 

jv  

2t  



IJSART - Volume 4 Issue 11 –NOVEMBER 2018                                                                                ISSN [ONLINE]: 2395-1052 

 

Page | 299                                                                                                                                                                     www.ijsart.com 

 

 0,1, , 1A B p+ =  −
 

 

Or 

 

     1 1 2 2, , ,t tA B a c b d a c b d a c b d+ = + + + +  + +

If there is a gap, say 
( )1 2,b a

 of size at least 
 B

, 

then
     1 1 2 2, , , , , ,t ta c b d a c b d a c b d+ + + +  + +

ar

e pair-wise distinct subsets of Therefore, 

 

     1 1 2 2| | , , ,t tA B a c b d a c b d a c b d+  + + + + + + + + +

 

| | | | 1A B= + −
 

 

If each of the gaps of A has size less than B, then it is 

easy to see that 
 0,1, , 1A B p+ =  −

 and hence 

| |A B p+ =
. 

 

Hence the proof. 

 

Theorem:  

 

Suppose T is a tree, 
2p q

 are positive integers 

and 
( )  : 0,1,2, ,l V T p→ 

 is a color-size-list.  Then T 

is 
( ),l p q−

-colorable if and only if for each subtree 'T  of 

T. 

( ) ( )( )
'

2 | ' | 1 1
v T

l V V T q


 − +
. 

 

Proof: 

 

The “only if” part of theorem follows from the 

following lemma. 

 

Lemma: 

 

Suppose l is a color-size-list of a tree 
( ),T V E=

.  

If 

( ) ( )2 | | 1 1
x T

l x V q


 − +
, then there is a color-list L 

such that 
( )L x

 is an interval of colors with 
( ) ( )| |L x l x=

 

for each vertex x and T is not 
( ),L p q

-colorable. 

 

Proof: 

We prove lemma by induction on 
| |V

.  If 
 V u=

 

then the condition says that 
( ) 0l v =

, and hence 
( )L v =

 

for the only vertex v of T.  Then of course T is not 

( ),L p q−
-colorable. 

 

Assume 
| | 2V 

.  Let v be a leaf of T. 

 

Let u be the neighbor of v. 

 

If 
( ) ( ) 2l u l v q+ 

, then 
( ) ( )0, 1

p
L v l v= −  

 

and let 
( ) ( ) ( ) ( ), 1

p
L u l v p q l v p q l u= + − + − + −  

 

and for 
,x u v

. 

 

Let 
( )L x

 be any interval of colors for which 

( ) ( )| |L x l x=
.  Observe that no color in 

( )L u
 is adjacent 

to a color in 
( )L v

. 

 

So T is not 
( ),L p q−

-colorable. 

 

Assume 
( ) ( ) 2 1l u l v q+  +

. 

 

If 
( ) 2l v q

, then let 'l  be the color-size-list of 

T v− , defined as 
( ) ( )'l x l x=

 for all x. 

 

If 
( ) 2 1,l v q −

 then 'l  be the color-size-list of 

T v−  defined as 
( ) ( )'l x l x=

 if x u , and 

( ) ( ) ( )' 2l u l u l v q= + −
 

 

In any case,

( ) ( )' 2
x T v x T

l v l x q
 − 

 − 
. 

 

Therefore 'l  satisfies the condition of lemma. 

 

By induction hypothesis, there is a color-list 'L  such 

that 
( )'L x

 is an interval of size 
( )'l x

 for each vertex x, and 

T v−  is not 
( )' ,L p q−

 colorable.  Assume 
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( )  ' ,L u c d=
.  If 

( ) 2 ,l v q
 then let L be any extension 

of 'L .  Any 
( ),L p q−

-coloring induces an 
( )' ,L p q−

 

coloring of T v− . 

 

Therefore, T is not 
( ),L p q−

-colorable. 

 

If 
( ) 2 1l v q −

, then let 

( ) ( ), 1L v c q c l v q= − + − −   , 

( ) ( ) 1,L u d l u d= − +    and 

( ) ( )'L x L x=     for x u , v. 

 

Observe that 

( )   ( ), , 2 1L v q p q c c l v p q+ − = + − − −   . 

 

Since 
  ( ) ( )| , | 2c d l u l v q= + −

, we conclude that 

( )  ( ) ( )  , ,L v q p q L v c d+ − =
. 

 

Therefore if 


 is an 
( ),L p q−

-coloring of T such 

that 
( ) ( )x L x 

 for all x, then
( )  ,u c d 

, that is, the 

restriction of 


 to T v−  is an 
( )' ,L p q

-coloring of T v− .   

 

Contrary to the assumption that T v−  is not 

( )' ,L p q
-colorable. 

 

Therefore T is not 
( ),L p q−

-colorable. 

 

Hence the proof. 

 

The “if” part of theorem follows from the lemma. 

 

Lemma: 

 

Assume L is a color-list of T.  If for each subtree 'T  

of T. 

( ) ( )( )
'

| | 2 | ' | 1
v T

L v V T q


 +
  then T is 

( ),L p q−
-

colorable. 

 

Proof: 

 

We prove lemma by induction on 
( )| |V T

.  Assume 

L is a color-list of T such that for each subtree 'T  of T . 

 

( ) ( )
'

| | 2 | ' | 1 1
v T

L v V q


 − +
 

 

If 
( )| | 1V T =

, then the condition implies that 

( )L v 
 for the only vertex v of T. Hence T is 

( ),L p q−
-

colorable. Assume 
( )| | 2V T 

. Let v be a leaf of T. 

 

Let u be the neighbor of v. Consider the edge 

e uv= , which is a subtree of T. 

 

The condition of lemma implies 

that
( ) ( )| | | | 2 1L u L v q+  +

. 

 

Similarly, as before 
( )  ,

p
L v q p q+ −

 is the set of 

colors each of which is adjacent to atleast one color of 

( )L v
.By lemma (1), 

 

( )   ( ) | , | min | 2 , |
p

L v q p q L v p q p+ −  + −
. 

 

If 
( )  | , |

p
L v q p q p+ − =

, then let 'L  be the 

restriction of L to T v− . 

 

Any 
( )' ,L p q−

-coloring of


 of T v−  can be 

extended to an 
( ),L p q−

-coloring of T.  

 

Otherwise,

( )   ( )| , | | | 2
p

L v q p q L v p q+ −  + −
. Let 'L  be the 

color-list of T v−  defined as 
( ) ( )'L x L x=

 for x u  and 

( ) ( ) ( )  ( )' ,
p

L u L u L v q p q= + −
 

 

Then 
( ) ( ) ( )| ' | | | | | 2L u L u L v q + −

. 

Straightforward calculation shows that 'L  satisfies the 

condition of lemma. 
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Therefore T v−  has an 
( )' ,L p q−

-coloring 


. 

 

 

As 
( ) ( ) ( )  ' ,

p
u L u L v q p q   + −

, so 

( )u
 is adjacent to some color in 

( )L v
. Hence 


 can be 

extended to an 
( ),L p q−

 coloring of T. 

 

Hence the proof. 

 

Theorem:  

 

Given a tree T, positive integers 
2p q

 and a 

color-size-list l for T, it can be determined in linear time 

whether or not T is 
( ),l p q−

-colorable. 

 

Proof: 

 

Let v be a leaf vertex of T and let u be the unique 

neighbor of v. 

 

If 
( ) ( ) 2l u l v q+ 

, then T is not 
( ),l p q−

-

colorable by theorem 5.3.2. 

 

Assume 
( ) ( ) 2 1l u l v q+  +

. 

 

Delete v, and let 
( ) ( ) ( )' 2l u l u l v q= + −

 and 

( ) ( )'l x l x=
 for 

,x u v
. 

 

It follows from theorem (5.3.2) that T is 
( ),l p q−

-

colorable if and only if T v−  is 
( )' ,l p q

-colorable.  By 

repeatedly deleting leaf vertices of T, one determines in linear 

time whether or not T IS 
( ),l p q−

 colorable. 

 

Hence the proof. 

 

Coloring the Cycles:  

 

We consider list coloring of cycles.  Given a cycle 

( )0 1 1, , , nX x x x −= 
 the vertices are also considered as 

cyclically ordered.  The additions on the indices of the vertices 

of the cycle are modulo n.  The intervals 

  ( )  ) ( , , , , , , ,
nn n n

i j i j i j i j
 are defined in the same way 

as the intervals of color. 

 

The following result in the main theorem of this section. 

 

Theorem:  

 

Let 1k   be an integer, and 
( )0 1 1, , , nX x x x −= 

 

be a cycle of length 2 1n k + .  Suppose 

( )  : 0,1, , 2 1l V X k→  +
 is a color-size-list for X.  

 

 Then X is 
( )2 1,l k k− +

-colorable if the following 

conditions hold. 

 

1. For each interval 
 , '

n
j j

 of length m, 

( )
 

( )
, '

2 1 1

n

t

t j j

l x m k


 − +
. 

2. 

( )
1

0

2 1
n

t

t

l x nk
−

=

 +
. 

 

Moreover, condition (1) is necessary for X to be  

( )2 1,l k k− +
-colorable, and in case X is an odd cycle, 

condition (2) is sharp. 

The necessity of condition 1 follows from lemma because if X 

is 
( )2 1,l k k− +

-colorable, then each subtree (which is a 

path) must be 
( )2 1,l k k− +

-colorable. 

 

If 
( )0 1 1, , , nX x x x −= 

 is an odd cycle, then 

condition (2) is sharp in the following sense. 

 

There is a color-size-list l which satisfies condition 

(1) and 

( )
1

0

2
n

t

t

l x nk
−

=

=
  However X is not 

( )2 1,l k k− +
-

colorable. 

 

For example, if 
( )  1, 2iL x k=

 for each i, then 

( ) ( )| |i il x L x=
 satisfies condition (1) and 

( )
1

0

2
n

t

t

l x nk
−

=

=
. 
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However, X is not 
( )2 1,L k k− +

-colorable, 

because an 
( )2 1,L k k− +

-coloring 


 of X is equivalent to 

a homomorphism from X to 
 2 1 0kC + −

 and 
 2 1 0kC + −

 is 

a bipartite graph. 

 

However, condition (2) is not a necessary condition.  

There are color-size-list l which violates condition (2) and yet 

X is 
( )2 1,l k k− +

-colorable. 

 

For example, Suppose 
( )0 1 2 3 4, , , ,X x x x x x=

 is a 

5-cycle, let 
( ) ( )0 13,  5 and letl x l x= =

 
( ) 4il x =

 for 

2i  . 

Then X is 
( )5, 2l −

-colorable, although condition 

(2) is violated. 

 

Theorem:  

 

If 
( ),X F

 is a valid FCA , then there is a good 

( )2 1,k k+
–coloring for 

( ),X F
. 

 

We shall be only considering 
( )2 1,k k+

-colorings 

of graphs.  For simplicity, we refer a 
( )2 1,k k+

-coloring 

simply as a coloring. 

 

Given a FCA , let 

 

( ) ( ) , : 0 1,  0 2 ,  F i j i n j k j F i =   −   
 

 

Given a coloring 


 of X, let 

 

( ) ( ) , : 0 1,  0 2 ,  ii j i n j k j x  =   −   =
To 

prove theorem we need to find a coloring 


 such that 

F   =
. 

 

It is helpful to have a picture for the understanding of 

the proof below: 

 

We construct a graph G whose vertex set is 

partitioned into n coloumns  

( ) , :  0 2 ;  for 0,1, , 1iB i j j k i n=   =  −
 

each vertex 
( ),i j

 in iB
 is connected to two vertices in 1iB + , 

namely 
( )1,i j k+ +

 and 
( )1, 1i j k+ + +

, where the 

summation in the first coordinate is modulo n, and the 

summation in the second coordinate is modulo 2 1k + . 

A coloring 


 corresponds to a cycle of G which intersects 

each column iB
 exactly once. 

 

We call such a cycle of G a “coloring cycle”.  The set 

F  is the set of forbidden vertices in G. We need to find a 

“coloring cycle” which avoids the forbidden vertices F .  

Figure 1 below is an example of the graph G with 3k =  and 

11n = . 

 

There are edges between vertices in 10B
 and 0B

, 

however, for simplicity, these edges are not shown in the 

figure. 

 

The thick edges indicates a coloring cycle. 

 

 
 

(The two ends should meet, i.e. the vertex 6 in 

column 10B
 is adjacent to the vertex 3 in column 0B

) circled 

vertices indicate vertices in F, that is, 

 

       0 2 3 51,2,3 ,  3 ,  5 ,  5,6 ,F F F F= = = =
 

     7 8 9 1 4 6 106 ,  2 ,  6 ,  F F F F F F F = = = = = = =
 

 

Observe that the coloring cycle indicated by the thick 

edge in figure 1 intersects the “forbidden vertices”.  So this 

coloring is not a good coloring. 
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We need to define some notations so that we can talk 

about the “shape” of the set of forbidden vertices. 

 

Suppose 
( ),X F

 is a valid FCA , where 

( )0 1 1, , , nX x x x −= 
 we say a column iB

 is infected if iB
 

contains at least one forbidden vertex, that is 
( )F i 

. 

 

We say a column iB
 is seriously infected if iB

 contains at 

least two forbidden vertices, that is, 
( )| | 2F i 

. 

 

Let FJ
 be the set of indices of the infected columns, 

and let FI
 be the set of indices of the seriously infected 

columns, that is,
( ) 0 1;  FJ i n F i =   − 

. 

( ) :| | 2FI i F i= 
 Let 

( )
2

0

| | | |
k

i

F F i
=

=
. 

 

For Fi J
, let 

F

iq
 be the smallest positive integer 

such that 
F

i Fi q J+ 
.  For Fi I

, let 
F

iP
 be the smallest 

positive integer such that
F

i Fi P I+ 
. 

 

We shall prove that for a counter example, FI 
 

(lemma 5.4.7) Assume Fi I
 and 

 0 1, , , ,
i

F i i i

i F ti i p J    + =   . 

 

Where  

 

0 ,  and for 1 1
i

i i F

t i ii i p j t = = +   −

( )1 1,i i i

j j j n
  − −

 

Let, 

( )
1

1

0

,
jt

F t t

i j j n
j

S j l  
−

+

=

 =   
 

 

For the example in figure 1, the corresponding parameters for 

this FCA  are 

 

   0,2,3,5,7,8,9 ,  0,5F FJ I= =
 

0 2 3 5 7 8 9 0 52, 1, 2, 1, 2, 5, 6,F F F F F F F F Fq q q q q q q p p= = = = = = = = =
 

0 0 0 0 5 5 5 5 5

0 1 2 3 0 1 2 3 40, 2, 3, 5, 5, 7, 8, 9, 0        = = = = = = = = =

 

0 50 2 1 1 2 2 5,  0 2 1 1 2 1 3 2 9F FS S=  +  +  = =  +  +  +  =

 

 

Definition:  

 

Suppose 
( ),X F

 and 
( )', 'X F

 are two FCA ’s.  

If the existence of a good coloring for 
( )', 'X F

 implies the 

existence of a good coloring for 
( ),X F

, then we say 

( )', 'X F
 dominates 

( ),X F
. 

 

Lemma: If 2 2n k= +  then the conclusion of theorem holds. 

 

Proof: 

 

Without loss of generality, we assume that 

( )0 0F
 and 

( )1 0F
. 

 

Let 


 be the coloring defined as 
( ) 1ix =

 if i is 

even and 
( ) 1ix k = +

 if i is odd. If 
( ) 0,1F   =

, 

then let 
( )' ix ( )ix=

 for 0i   and 
( )0' 0x =

. 

 

As 
( )0 0F

, 
'
 is a good coloring. Assume 

| | 2F   
, for 

0,1, ,2i k= 
 let i  be the coloring of 

X defined as 
( ) ( )i x x i = +

. Since 
| | 2F   

 and 

| | 2 1F k  +
, there is an index i, such that, i F   =

 

 

Lemma:  

 

Suppose for some index i, 
( )  F i u=

 and 

( )  1F i v+ =
.  Assume that u and v are not adjacent.  Let 

 ' ' '

0 1 3' , , , nX x x x −= 
 be a cycle of length 2n− , and let 

'F  be a FCA  for 'X  defined as 
( ) ( )( )'F j F j=

, 

where 
   : 0,1, , 3 0,1, 1n n  − →  −

 is defined as, 
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( )
       if 1

2  if 

j j i
j

j j i


 −
= 

+   

Then 
( )', 'X F

 is a valid FCA  and dominates 
( ),X F

. 

 

Proof: 

 

First we show that 
( )', 'X F

 is valid. 

 

Consider an interval 
 

2
, '

n
j j

−  of length m.  If 

 
2

, '
n

i j j
−


 or 

 
2

1 , '
n

i j j
−

− 
 then 

( ) ( ), '
n

j j     

also has length m and 

( )
 

( )
( ) ( )2

, ' , '

| ' | | |

n n
S j j S j j

F S F S
 

−
   

= 
. 

 

If 1i − , 
 

2
, '

n
i j j

−


, then 
( ) ( ), '

n
j j     has 

length 2m+  and 

( )
 

( )
( ) ( )2

, ' , '

| ' | | | 2

n n
S j j S j j

F S F S
 

−
   

= − 
 

2 2 1 2k m + + − −  

2 1k m= + −  
 

Moreover, 

( ) ( )
3 1

0 0

| ' | | | 2
n n

S S

F S F S
− −

= =

= − 
 

1 2n − −  3n= −  
 

Therefore 
( )', 'X F

 is valid. Next, we show that 

( )', 'X F
 dominates 

( ),X F
. 

 

Let 
'
 be a good coloring for 

( )', 'X F
. 

 

Recall that 
( )  F i u=

 and 
( )  1F i v+ =

 

As u is not adjacent to v, and 
( )'

1' ix −
 is adjacent to 

( )'' ix
.  

 

We conclude that either 
( )'

1' ix v − 
 or 

( )'' ix u =
. 

 

If 
( )'

1' ix v − 
 then let 

( ) ( )   ' '

1 1' , ' 1/i it x k x k u − − + + +
and let 

( )
( )

( )

'

'

2

'  , if 1

            , if 1

' ,   if 1

j

j

j

x j i

x t j

x j i





 −

  −


= =


 +  
 

Then 


 is a good coloring for F. 

 

If 
( )' ix u 

, then let 

( ) ( )   ' '' ,  ' 1 /i it x k x k v  + + +
 and let 

( )
( )

( )

'

'

2

'    , if  

             , if  1

'  , if  2

j

j

j

x j i

x t j i

x j i





 −

 


= = +


 +  

Then 


 is a good coloring for F. 
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