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I. INTRODUCTION

In this section we deal with a particular type of
connected graphs called trees. These graphs are important for
their applications in different fields. The concept of a tree was
introduced by Cayley in 1857. Tree is the simplest graph
which is convenient to study and to prove any result on graph
theory.

Definition:

A graph that does not contain any cycle is called an
acyclic graph.

A connected acyclic graph is called a tree. Trees
with 8 vertices are given in fig.

Note Union of trees is called forest.
Theorem:
Let G be a graph. The following statements are equivalent

i) Gisatree.
i) Every two vertices of G are joined by a
unique path

iii) G is connected and 9= P 1,
iv) Gisacyclicand 4= P -1

I1. SOME PROPERTIES OF TREES

Theorem: If in a graph G there is one and only one path
between every pair of vertices, G is a tree.
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Proof:

Existence of a path between every pair of vertices assume that
G is connected.

A circuit in a graph (with two or more vertices)

a,b

implies that there is at least one pair of vertices such that

there are two distinct paths between a and b.
Since G has one and only one path between every
pair of vertices, G can have no circuits. Therefore G is a tree.

Hence the proof.

Theorem:

A tree with n vertices has N -1 edges.
Proof:

The theorem will be proved by induction on the
number of vertices.

It is easy to see that the theorem is true for n=12, and3 in

vy |

Tree with one, two, three and four vertices

Assume that the theorem holds for all trees with fewer than n
vertices.

Let us now consider a tree T with n vertices. In T let € be an

. . V
edge with end vertices Vi and 2.
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According to theorem 5.2.1 there is no other path between Vi

V.
and ) except &,

Therefore, deletion of € from T will disconnect the

graph.

Furthermore, T —& consists of exactly two
components, and since there were no circuits in T to begin
with, each of these components is a tree.

Both these trees, 4 and L have fewer than n
vertices each and therefore, by the induction hypothesis, each
contain one less edge than the number of vertices in it.

Thus —& consists of n-2 edges (and n

vertices). Hence T has exactly n-1 edges.
Hence the proof.
I11. COLOROING THE TREES

First we introduce some notation that will used.
[t],
[t],

is the unique integer O<t'<p such that t-t' is a multiple

Suppose p is a positive integer. Then for any integer t,

denotes the remainder of t upon the division by p, that is

of p. In (p’q)— colorings of graphs, the color set is
Z,={01- p-1}

The summation in colors are all modulo p, and any

t] =i
integer t for which [ ]p can be used to represent the color

For example, When we say “color a vertex X with
color 2p” it means to color x with color 0.

Moreover, the colors are viewed to form a circle, that

is, the integers 0L P=1 4 cyclically ordered.

[a,b]
, then P denotes the
elements of the set

i a,be{0,1,---p-1}

set of cyclically consecutive
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{0,1,-'-,p—1} from a to b

[a,b], ={t:[t-a], <[b-a],|

[2.5], =[2.3,4,5]

That is,

For example, and
[5, 2]p = {5,6,---, p-10,1, 2} .
V.
] t2
[2.b]
The set P is called an interval of colors. For

convenience, for arbitrary integers a,b (not necessarily

[a.5], =[[a], .[0], ]
between 0 and p). Let :
(ab), .(ab], [ab),

I([a.b])

The length

The

intervals are defined similarly.

[a,b]

P is the number of
[b-a] +1

p .

P of an interval
integers in the interval and is equal to

If the integer p is clear from the context, then we

write [a'b] for [a’b]p. When considering (p’q)-

colorings of graphs, we say two colors ) are adjacent if
q<fi-jl P=A  For two sets AB

A+B={[a+b] :acAbeB|

of colors, let

Observe that when considering ( P, q)

A+(q,p-
graphs, for a set A of colors, [q P q]p is the set of

colors which is adjacent to at least one color in A.

- colorings of

Lemma:

Suppose B is an interval of colors. For any set A of colors

| A+B>min{| A|+|B|-1, p}

Proof:

SupposA:[ai'bl]U[azvbz]U"'U[at,bt]

B[C’d].The intervals (bl’az)’(bz’as)"“’(b“ai)
“gaps” of A. Itis known (See [8]) that,

and

are the
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A+B={0,1--, p-1}
Or

A+B=[a +c,b+d]U[a, +c,b, +d]U--U[a, +¢,b, +d]

If there is a gap, say (bl’az) of size at least [B]
then[a1+c,b1+d],[a2+c,b2+d],---,[a[+c,bt+d]alr

e pair-wise distinct subsets of Therefore,
|A+B > |[a1+c,b1+d]|+|[a2 +¢,b, +d]|+---+|[a[ +c,b, +d]|
= A[+[B|-1

If each of the gaps of A has size less than B, then it is

A+B={01-- p-1}

easy to see that and hence

|A+Bl=p

Hence the proof.

Theorem:

Suppose T is a tree, p=29 are positive integers

I:V(T)—>{01,2, p}

and is a color-size-list. Then T

J1=(p.a)

DV

T. vel’

-colorable if and only if for each subtree T of
)22(IV(T")-1)g+1

Proof:

The “only if” part of theorem follows from the
following lemma.

Lemma:

T=(V.E)

Suppose | is a color-size-list of a tree
)<2(]V]-1)g+1
, then there is a color-list L

> 1(x)

If xeT

such that L(X) is an interval of colors with | L(X) = (X)

L(p,
for each vertex x and T is not ( P q) -colorable.

Proof:
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VIV =1ul

We prove lemma by induction on Cf

=0 L(v)=
, and hence ( ) ¢
Then of course T is not

I(v
then the condition says that ( )
for the only vertex v of T.

_( P, q) -colorable.

IV [>2

Assume . Letvbealeaf of T.

Let u be the neighbor of v.

i I(u)+|(v)£2q’ o L(V):[O,I(v)—ljp
=[1(v)+p=a,l(v)+p-q+I(u)-1]

X#U,V

and let

and for

Let L(X) be any interval of colors for which
| (X)|:I(X). Observe that no color in L(u) is adjacent

to acolor in L(V) .

_( P q) -colorable.

So T is not

I(u)+|(v)22q+1l

Assume

I(v)>2 '
If ( ) q, then let I be the color-size-list of

T =V defined as I (X) =1 (X) for all x.

If I(V)qu_l’ then |" be the color-size-list of
T—V  defined as (%) =1(x) if
I'(u)=1(u)+I(v)-2q
(W)= X100-

In any case, X<T-v xeT

Therefore I satisfies the condition of lemma.

By induction hypothesis, there is a color-list L" such

(X (x
that ( ) is an interval of size ( ) for each vertex x, and

T-v is not L—(p,q) colorable. Assume
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L'(u)z[c,d]' i 1(v)=2q,

then let L be any extension

of L' Any L-=( p’q)-coloring induces an L'~(p.q)
coloring of T —V

Therefore, T is not L _( P, q) -colorable.

it I(v)<2q -1 e "
L(v)=[c—a,c+I(v)-q-1]
L(u)=[d-I(u)+1d]

L(X):[L'(X)] for X#U 'y,

Observe that

L(v)+[a.p—a]=[c.c+I(v)- p—2q—1].

Since | [C’ d ] |: I (u) + (V) B 2q , we conclude that

(L(v)+[a. p-a])UL(v)=[c.d]

Therefore if  is an L_( p’q)
¢(X) © L(X) for all x, then¢(u) < [C’d], that is, the

L'(p.a)

-coloring of T such
that

restriction of ? to T =V isan _coloring of T —V.

Contrary to the assumption that T-v is not

L'(p.a)

-colorable.

L-(p.q)

Therefore T is not -colorable.

Hence the proof.
The “if” part of theorem follows from the lemma.

Lemma:

Assume L is a color-list of T. If for each subtree T '
of T.
DILMW)I=2(V(T))a+1
veT” then T is
colorable.

L-(p.a)_
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Proof:

V(T
We prove lemma by induction on | ( )| Assume
L is a color-list of T such that for each subtree T ' of T .

DIL(v)[z2(IV'|-1)q+1

veT'

|V(T)|:1, then the condition implies that

L(v)#g¢ L-(p.q)_

for the only vertex v of T. Hence T is

V(T2

colorable. Assume . Let v be a leaf of T.

Let u be the neighbor of v. Consider the edge
€=UV which is a subtree of T.

The condition of lemma

|L(u)|+|L(v)|22q+1.

implies

that

L(v)+|q,p—
Similarly, as before ( ) [q P q]p is the set of
colors each of which is adjacent to atleast one color of

L(V) .By lemma (1),

|L(v)+[a, p—q]p = min{|L(v)+p-2q,pl}

L I} - — 1
If | (V)+[q P Q]p| p, then let L' be the

restriction of Lto 1 — V.

(p.a)
(p.a)

L'—
Any -coloring of? of T=V can be
L _

extended to an -coloring of T.

Otherwise,

L —q] L -2
| (V)+[q’p q]pll (V)|+p ql Let L' be the

color-list of 1 =V defined as LI(X) - L(X) for X# U and

L'(u) = L(u)N(L(v)+[a, p-a],)

Then |L'(u) R L(u) ]+ L(v)[-29

Straightforward calculation shows that L' satisfies the
condition of lemma.
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L'-(p.q)

Therefore T —V hasan -coloring ¢.

#(u)eLl'(u)cL(v)+[a.p-a],

As SO

u L(v
¢( ) is adjacent to some color in ( ) Hence ¢ can be

L-(p.q)

extended to an coloring of T.

Hence the proof.

Theorem:

Given a tree T, positive integers p=29 and a
color-size-list | for T, it can be determined in linear time

I-(p.q)

whether or not T is -colorable.
Proof:

Let v be a leaf vertex of T and let u be the unique
neighbor of v.

i I(u)+1(v)<2q
colorable by theorem 5.3.2.

I-(p.q)_

, then T is not

Assume I(u)+|(v)22q+1_
Delete v, and let I'(u):l(u)+|(v)—2q and
() =1(x) ., x=u,v

| —
It follows from theorem (5.3.2) that T is ( P, q) -

I'( p,
colorable if and only if T-v is (p q)-Colorable. By
repeatedly deleting leaf vertices of T, one determines in linear

I-(p.q)

time whether or not T IS colorable.

Hence the proof.
Coloring the Cycles:

We consider list coloring of cycles.

X =(x Xy X ) )

( 0% ”‘1) the vertices are also considered as
cyclically ordered. The additions on the indices of the vertices
of the cycle are modulo n. The intervals
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[ J]" ( J)” [ J)“ ( J]" are defined in the same way
as the intervals of color.
The following result in the main theorem of this section.
Theorem:

X =(Xg, X, X
Let K=1 pe an integer, and ( 0r1 “‘1)

be a cycle of length N=2K+1

1:V (X)—> {01, 2k +1}

Suppose

is a color-size-list for X.

Then X is I_(2k+1’k)

conditions hold.

-colorable if the following

1. For each interval [J'J]” of length m,
> H(x)=2(m-1)k+1
tefi.J],
n-1
I(x)=2nk+1
2. =0

Moreover, condition (1) is necessary for X to be

I—(2k +1,k

( )-colorable, and in case X is an odd cycle,
condition (2) is sharp.
The necessity of condition 1 follows from lemma because if X

(2k+1,k)

|-
is -colorable, then each subtree (which is a

|- (2k+1,k)

path) must be -colorable.

X = (X, X, X .
If ( 0% “‘1) is an odd cycle, then
condition (2) is sharp in the following sense.

There is a color-size-list | which satisfies condition

n-1

> 1(x) =2nk
(1) and t=0
colorable.

| -(2k +1,k)

However X is not

L(x)=[12k

satisfies

For example, if ] for each i, then

1(x)=/L(x)]
lel(xt):an

condition (1) and
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—(2k +1,k)

However, X is not
—(2k +1,k)

-colorable,

because an -coloring ¢ of X is equivalent to

a homomorphism from X to Cora ~ {0} and Coxn = {O} is
a bipartite graph.

However, condition (2) is not a necessary condition.
There are color-size-list | which violates condition (2) and yet

X is 1= (Zk +1, k) -colorable.

=(XO,X1,X2,X3,X4) :

For example, Suppose isa
1(x,)=3, | =5andlet I(x)=4
5-cycle, let ( 0) 3 (Xl) dandle ( ') for
i>2
I—(5,2
Then X is ( )—colorable, although condition

(2) is violated.

Theorem:

If (X'F) is a valid FCA, then there is a good

(2k L k) —coloring for (X ' F) .

2k +1,k
We shall be only considering ( )—colorings

1k
of graphs. For simplicity, we refer a ( )-coloring

simply as a coloring.
Given a FCA, let

T ={(i,j):0<i<n-1 0<j<2k jeF(i)}

Given a coloring ¢ of X, let
T, ={(i.§):0<i<n-1 0<j<2k j=¢(x)}

prove theorem we need to find a coloring ¢ such that

rqﬁmrF :¢_

It is helpful to have a picture for the understanding of
the proof below:
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We construct a graph G whose vertex set is
partitioned into n coloumns

={(i,j): 0<j<2k; fori=0,1,-,n-1}

each vertex (I’ J) in B, is connected to two vertices in B”l,
namely (i+1, j+k) (i+1 j+k+1)

summation

and , Where the
in the first coordinate is modulo n, and the

summation in the second coordinate is modulo 2k +1.

A coloring ¢ corresponds to a cycle of G which intersects

Bi
each column ' exactly once.

We call such a cycle of G a “coloring cycle”. The set

I is the set of forbidden vertices in G. We need to find a

“coloring cycle” which avoids the forbidden vertices e .

Figure 1 below is an example of the graph G with k=3 and
n=11

... B
There are edges between vertices in 19 and BO,

however, for simplicity, these edges are not shown in the
figure.

The thick edges indicates a coloring cycle.

P B e o
.VuWuWuwﬁﬁ'A:-
PR T e
,b\ Aw f e i !'"v o
il S HH"WV“.’
S S oo vié‘;'v'i‘ta

By By B, B3 By Bj B6 B7 Bg By

€

Bio

(The two ends should meet, i.e. the vertex 6 in

column By is adjacent to the vertex 3 in column BO) circled
vertices indicate vertices in F, that is,
F :{1 2 3}’ F,= {3}’ F, :{5}’ Fy :{5’6}’
F7:{6} {2}'F9:{6 R=F=FK=FR=¢

Observe that the coloring cycle indicated by the thick
edge in figure 1 intersects the “forbidden vertices”. So this

coloring is not a good coloring.
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We need to define some notations so that we can talk
about the “shape” of the set of forbidden vertices.

Suppose (X F) is a valid FCA, where

X = (X X0 % 1)

B, is infected if

F(i)¢¢.

we say a column

contains at least one forbidden vertex, that is

B, is seriously infected if B, contains at

[F(i)2

We say a column

least two forbidden vertices, that is,

Let JF be the set of indices of the infected columns,

e be the set of indices of the seriously infected

Jo={o<isn-L F(i)=g¢}

and let

columns, that is,

i=0

F Z{i:|F(i)|22} LetlFl_ZlF

: F
For tele , let G be the smallest positive integer
- F - F
such that I+ e Je . For Ie IF, let R be the smallest
; F
positive integer such that' Rele
- #¢
We shall prove that for a counter example,
(lemma 5.4.7) Assume lele and
- - F 1 1 1
['1"" P; :|ﬂ‘JF ={ﬂ(l)’ﬁ1|"ﬂtl,}
Where

By =i, =i+pf andforl<j<t -1
By e(BaBis),
t,-1
F :ijl(liﬂ}’ﬂ}ﬂl])
Let, i=0

For the example in figure 1, the corresponding parameters for
this FCA are

J. ={0,2,3,5,7,8,9}, |
O =2,0; =0; =105 =2,0;

F :{0’5}

=0; =10; =2,p; =5,p{ =6,
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By =080 =2p =3 =5f =58 =15 =85 =95 =

Sy =0x2+1x1+2x2=5, 8 =0x2+1x1+2x1+3x2=9

Definition:

X,F X F'
Suppose ( ’ ) and ( ' ) are two FCA .
_ C(XNEY
If the existence of a good coloring for implies the
X,F
existence of a good coloring for ( ’ ) then we say

(X "FI) dominates (X'F).

Lemma: If N= 2k +2 then the conclusion of theorem holds.
Proof:

Without loss of generality, that

0¢F(0)  1cF(0)

we assume

) 1|f||s

#(x
nr, ={(0.1)}
0)=0

Let ¢ be the coloring defined as

even and ¢( i): 1 if i is odd. If
X

then let ¢ ( i) :¢(Xi) for 1#0 and (

As O¢ F(O), 2 is a good coloring. Assume
ITe AT, 2 2, for 1701 2K gy ¢ be the coloring of
X defined as gbi(x)=¢(x)+|. Since [T AT, 22

IT, [< 2k +1

and
Fqﬁ, ﬂrF :¢

, there is an index i, such that,

Lemma:

i, F(i):{u} and

F(i+1)=1{v
( ) { } Assume that u and v are not adjacent. Let
X 'Z{X0|X11”"Xn—3

Suppose for some index

} be a cycle of length N—=2 and let
F' bea FCA for X' defined as F|(J):F(T(J)),
7:{0,1,--,n-3} > {0,1,----n—

where } is defined as,
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(i ifj<i-l
T(J)_{Hz ifj>i

Then (X +F ) is avalid FCA and dominates (X’F).
Proof:
First we show that ( ’ ) is valid.
Consider an interval [j’jl]"—Z of length m. If
i %[], J I]n—2 or |—1¢[J, J ']n—Z then [T(j)’r(j'):ln
also has length m and
2 IF(S)I= > IF(s)I
Seli. i, Se[r(j),r(j')]n
If i_l, Ie[j’jl]ﬂ-Z, then [T(j)'r(j'):ln has
length M+2 and
> IR (S)I= X IF(8)I-2
SEFN A sez(i)2(i")],
<2k+m+2-1-2
=2k+m-1

n-3
2IF(S
Moreover, S=0 $=0

<n-1-2 =n-3

X 1
Therefore ( ) is valid. Next, we show that

(X "FI) dominates (X'F).

1 x l’ F 1
Let ¢ be a good coloring for ( ) .

F(i)={u} ond F(i+1)={v}

s notadi (%) g ag (x)
As u is not adjacent to v, and is adjacent to .

Recall that

¢'(xi'_1)¢v ¢'(x;)=u |

We conclude that either

If ¢I(Xi"1) #V then let
te{p(x.)+kg(x.)+k+1/{u}}

Page | 304

and let

ISSN [ONLINE]: 2395-1052

¢'(x))  ifj<i-1
#(x;)=1t Jifj=1
(X)), ifjzi+l

Then ¢ is a good coloring for F.

If 4 ( ) , then let
+k, k+1
{ ( ) ( )+ " }/{ }andlet
'(x;) Lif j<i
#(x;)=1t Jif j=i+l
#'(x,)  if j2i+2
Then ¢ is a good coloring for F.
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