List Circular Coloring Of Trees And Cycles

R.Aruna¹, N.R.Jagadeeswary², M.P.Ilayaraja³

^{1, 2, 3} Assistant professor Dept of Mathematics

^{1, 2, 3} CK College of Engineering and Technology, Cuddalore, Tamilnadu, India-607003.

I. INTRODUCTION

In this section we deal with a particular type of connected graphs called trees. These graphs are important for their applications in different fields. The concept of a tree was introduced by Cayley in 1857. Tree is the simplest graph which is convenient to study and to prove any result on graph theory.

Definition:

A graph that does not contain any cycle is called an acyclic graph.

A connected acyclic graph is called a tree. Trees with 8 vertices are given in fig.

Note Union of trees is called forest.

Theorem:

Let G be a graph. The following statements are equivalent

- i) *G* is a tree.
- ii) Every two vertices of G are joined by a unique path
- iii) G is connected and q = p 1.
- iv) G is acyclic and q = p 1

II. SOME PROPERTIES OF TREES

Theorem: If in a graph G there is one and only one path between every pair of vertices, G is a tree.

Proof:

Existence of a path between every pair of vertices assume that G is connected.

A circuit in a graph (with two or more vertices) implies that there is at least one pair of vertices a, b such that there are two distinct paths between a and b.

Since G has one and only one path between every pair of vertices, G can have no circuits. Therefore G is a tree. Hence the proof.

Theorem:

A tree with *n* vertices has n-1 edges.

Proof:

The theorem will be proved by induction on the number of vertices.

It is easy to see that the theorem is true for n = 1, 2, and 3 in the figure.

Tree with one, two, three and four vertices

Assume that the theorem holds for all trees with fewer than n vertices.

Let us now consider a tree *T* with *n* vertices. In *T* let e_k be an edge with end vertices v_1 and v_2 .

According to theorem 5.2.1 there is no other path between V_i and v_j except e_k .

 e_k from T will disconnect the Therefore, deletion of graph.

 $T - e_k$ consists of exactly two Furthermore, components, and since there were no circuits in T to begin with, each of these components is a tree.

Both these trees, t_1 and t_2 have fewer than nvertices each and therefore, by the induction hypothesis, each contain one less edge than the number of vertices in it.

Thus $T - e_k$ consists of n - 2 edges (and nvertices). Hence *T* has exactly n-1 edges.

Hence the proof.

III. COLOROING THE TREES

First we introduce some notation that will used. Suppose p is a positive integer. Then for any integer t. $\begin{bmatrix} t \end{bmatrix}_p$ denotes the remainder of *t* upon the division by *p*, that is $\begin{bmatrix} t \end{bmatrix}_p$ is the unique integer $0 \le t' < p$ such that t - t' is a multiple of p. In $(p,q)_{-}$ colorings of graphs, the color set is $Z_{p} = \{0, 1, \dots, p-1\}$

The summation in colors are all modulo p, and any integer *t* for which $\begin{bmatrix} t \end{bmatrix}_p = i$ can be used to represent the color i.

For example, When we say "color a vertex x with color 2p" it means to color x with color 0.

Moreover, the colors are viewed to form a circle, that is, the integers $0, 1, \dots, p-1$ are cyclically ordered.

If $a, b \in \{0, 1, \dots, p-1\}$, then $[a, b]_p$ denotes the set of cyclically consecutive elements of the set

$$\{0,1,\dots,p-1\} \text{ from } a \text{ to } b. \text{ That is,}$$

$$[a,b]_p = \left\{t:[t-a]_p \le [b-a]_p\right\}$$
For example,
$$[2,5]_p = [2,3,4,5] \text{ and}$$

$$[5,2]_p = \{5,6,\cdots, p-1,0,1,2\}$$

 $\{0, 1, \cdots, \}$

For

The set $[a,b]_{p}^{2}$ is called an interval of colors. For convenience, for arbitrary integers a, b (not necessarily between 0 and p). Let $[a,b]_p = \lfloor [a]_p, [b]_p \rfloor_p$. The intervals $(a,b)_p, (a,b]_p, [a,b)_p$ are defined similarly. The length $l([a,b])_p$ of an interval $[a,b]_p$ is the number of integers in the interval and is equal to $[b-a]_p + 1$

If the integer p is clear from the context, then we write [a,b] for $[a,b]_p$. When considering $(p,q)_$ colorings of graphs, we say two colors i, j are adjacent if $q \leq |i-j| \leq p-q$. For two sets A, B of colors, let $A+B = \left\{ \left[a+b \right]_p : a \in A, b \in B \right\}$

Observe that when considering (p,q)- colorings of graphs, for a set A of colors, $A + [q, p-q]_p$ is the set of colors which is adjacent to at least one color in A.

Lemma:

Suppose *B* is an interval of colors. For any set *A* of colors

$$|A + B| \ge \min\{|A| + |B| - 1, p\}$$

Proof:

Suppos
$$A = [a_1, b_1] \cup [a_2, b_2] \cup \cdots \cup [a_t, b_t]$$
 and
 $B[c, d]$. The intervals $(b_1, a_2), (b_2, a_3), \cdots, (b_t, a_1)$ are the
"gaps" of A. It is known (See [8]) that,

$$A + B = \{0, 1, \dots, p-1\}$$

Or

 $A + B = \begin{bmatrix} a_1 + c, b_1 + d \end{bmatrix} \bigcup \begin{bmatrix} a_2 + c, b_2 + d \end{bmatrix} \bigcup \cdots \bigcup \begin{bmatrix} a_t + c, b_t + d \end{bmatrix}$ If there is a gap, say $\begin{pmatrix} b_1, a_2 \end{pmatrix}$ of size at least $\begin{bmatrix} B \end{bmatrix}$, then $\begin{bmatrix} a_1 + c, b_1 + d \end{bmatrix}, \begin{bmatrix} a_2 + c, b_2 + d \end{bmatrix}, \cdots, \begin{bmatrix} a_t + c, b_t + d \end{bmatrix}_{ar}$ e pair-wise distinct subsets of Therefore,

$$|A+B| \ge \left[\left[a_1 + c, b_1 + d \right] \right] + \left[\left[a_2 + c, b_2 + d \right] \right] + \dots + \left[\left[a_t + c, b_t + d \right] \right]$$
$$= |A| + |B| - 1$$

If each of the gaps of A has size less than B, then it is

easy to see that $A + B = \{0, 1, \dots, p-1\}$ and hence |A + B| = p.

Hence the proof.

Theorem:

Suppose *T* is a tree, $p \ge 2q$ are positive integers and $l:V(T) \rightarrow \{0,1,2,\dots,p\}$ is a color-size-list. Then *T* is l - (p,q)-colorable if and only if for each subtree *T*' of $\sum_{v \in T'} l(V) \ge 2(|V(T')| - 1)q + 1$.

Proof:

The "only if" part of theorem follows from the following lemma.

Lemma:

Suppose *l* is a color-size-list of a tree T = (V, E). $\sum_{x \in T} l(x) < 2(|V| - 1)q + 1$ If , then there is a color-list *L* such that L(x) is an interval of colors with |L(x)| = l(x)for each vertex *x* and *T* is not L(p,q)-colorable.

Proof:

Page | 299

We prove lemma by induction on |V|. If $V = \{u\}$ then the condition says that l(v) = 0, and hence $L(v) = \phi$ for the only vertex v of T. Then of course T is not L - (p,q)-colorable.

Assume $|V| \ge 2$. Let *v* be a leaf of *T*.

Let *u* be the neighbor of *v*.

If $l(u)+l(v) \le 2q$, then $L(v) = \lfloor 0, l(v)-1 \rfloor_p$ $L(u) = \lfloor l(v)+p-q, l(v)+p-q+l(u)-1 \rfloor_p$ and let and for $x \ne u, v$.

Let L(x) be any interval of colors for which |L(x)| = l(x). Observe that no color in L(u) is adjacent to a color in L(v).

So *T* is not L - (p,q)-colorable.

Assume
$$l(u)+l(v) \ge 2q+1$$
.

If $l(v) \ge 2q$, then let l' be the color-size-list of T - v, defined as l'(x) = l(x) for all x.

If $l(v) \le 2q - 1$, then l' be the color-size-list of T - v defined as l'(x) = l(x) if $x \ne u$, and l'(u) = l(u) + l(v) - 2q

 $\sum_{x \in T-v} l'(v) \le \sum_{x \in T} l(x) - 2q$ In any case, $x \in T-v$

Therefore l' satisfies the condition of lemma.

By induction hypothesis, there is a color-list L' such that L'(x) is an interval of size l'(x) for each vertex x, and T-v is not L'-(p,q) colorable. Assume www.ijsart.com L'(u) = [c,d]. If $l(v) \ge 2q$, then let *L* be any extension of *L'*. Any L - (p,q)-coloring induces an L' - (p,q)coloring of T - v.

Therefore, *T* is not L - (p,q)-colorable.

If
$$l(v) \le 2q - 1$$
, then let
 $L(v) = [c - q, c + l(v) - q - 1]$,
 $L(u) = [d - l(u) + 1, d]$ and
 $L(x) = [L'(x)]$ for $x \ne u$, v.

Observe

$$L(v)+[q, p-q]=[c, c+l(v)-p-2q-1].$$

Since |[c,d]| = l(u) + l(v) - 2q, we conclude that $(L(v) + [q, p-q]) \cup L(v) = [c,d]$.

Therefore if ϕ is an L - (p,q)-coloring of T such that $\phi(x) \in L(x)$ for all x, then $\phi(u) \in [c,d]$, that is, the restriction of ϕ to T - v is an L'(p,q)-coloring of T - v.

Contrary to the assumption that T-v is not $L'(p,q)_{-colorable}$.

Therefore *T* is not
$$L - (p,q)$$
-colorable.

Hence the proof.

The "if" part of theorem follows from the lemma.

Lemma:

Assume *L* is a color-list of *T*. If for each subtree *T*' of *T*. $\sum_{v \in T'} |L(v)| \ge 2(|V(T')|)q + 1$ then *T* is L - (p,q).

colorable.

Proof:

that

We prove lemma by induction on |V(T)|. Assume *L* is a color-list of *T* such that for each subtree *T*' of *T*.

$$\sum_{v \in T'} |L(v)| \ge 2(|V'|-1)q+1$$

If |V(T)|=1, then the condition implies that $L(v) \neq \phi$ for the only vertex v of T. Hence T is L-(p,q). colorable. Assume $|V(T)| \ge 2$. Let v be a leaf of T.

Let *u* be the neighbor of *v*. Consider the edge e = uv, which is a subtree of *T*.

The condition of lemma implies that $|L(u)| + |L(v)| \ge 2q + 1$.

 $L(v) + [q, p-q]_{p}$ Similarly, as before colors each of which is adjacent to atleast one color of L(v).By lemma (1),

$$|L(v)+[q,p-q]_{p} \geq \min\{|L(v)+p-2q,p|\}$$

If
$$|L(v)+[q, p-q]_p| = p$$
, then let L' be the restriction of L to $T-v$.

Any L'-(p,q)-coloring of ϕ of T-v can be extended to an L-(p,q)-coloring of T.

Otherwise, $|L(v) + [q, p-q]_{p} \geq |L(v)| + p - 2q$. Let L' be the color-list of T - v defined as L'(x) = L(x) for $x \neq u$ and $L'(u) = L(u) \cap (L(v) + [q, p-q]_{p})$

 $|L'(u)| \geq |L(u)| + |L(v)| - 2q$

Straightforward calculation shows that L' satisfies the condition of lemma.

Then

Therefore T - v has an L' - (p,q)-coloring ϕ .

$$\phi(u) \in L'(u) \subseteq L(v) + [q, p-q]_p, \text{ so}$$

$$\phi(u) \text{ is adjacent to some color in } L(v). \text{ Hence } \phi \text{ can be}$$

$$L_p(x, y)$$

extended to an $L^{-(p,q)}$ coloring of T.

Hence the proof.

Theorem:

Given a tree T, positive integers $p \ge 2q$ and a color-size-list l for T, it can be determined in linear time whether or not *T* is l - (p, q)-colorable.

Proof:

Let v be a leaf vertex of T and let u be the unique neighbor of v.

If $l(u)+l(v) \le 2q$, then T is not l-(p,q). colorable by theorem 5.3.2.

Assume $l(u)+l(v) \ge 2q+1$

Delete v, and let
$$l'(u) = l(u) + l(v) - 2q$$
 and $l'(x) = l(x)$ for $x \neq u, v$.

It follows from theorem (5.3.2) that *T* is l - (p,q). colorable if and only if T-v is l'(p,q)-colorable. By repeatedly deleting leaf vertices of T, one determines in linear time whether or not *T* IS l - (p,q) colorable.

Hence the proof.

Coloring the Cycles:

We consider list coloring of cycles. Given a cycle $X = (x_0, x_1, \dots, x_{n-1})$ the vertices are also considered as cyclically ordered. The additions on the indices of the vertices of the cycle are modulo n. The intervals Page | 301

 $[i, j]_n, (i, j)_n, [i, j)_n, (i, j]_n$ are defined in the same way as the intervals of color.

The following result in the main theorem of this section.

Theorem:

Let
$$k \ge 1$$
 be an integer, and $X = (x_0, x_1, \dots, x_{n-1})$
be a cycle of length $n \ge 2k+1$. Suppose $l: V(X) \rightarrow \{0, 1, \dots, 2k+1\}$ is a color-size-list for X .

Then *X* is l - (2k + 1, k)-colorable if the following conditions hold.

1. For each interval
$$[j, j']_n$$
 of length m ,

$$\sum_{t \in [j, j']_n} l(x_t) \ge 2(m-1)k+1$$

$$\sum_{t=0}^{n-1} l(x_t) \ge 2nk+1$$
2.

Moreover, condition (1) is necessary for X to be l - (2k + 1, k)-colorable, and in case X is an odd cycle, condition (2) is sharp.

The necessity of condition 1 follows from lemma because if Xis l - (2k + 1, k)-colorable, then each subtree (which is a

path) must be l - (2k+1,k)-colorable.

If $X = (x_0, x_1, \dots, x_{n-1})$ is an odd cycle, then condition (2) is sharp in the following sense.

> There is a color-size-list l which satisfies condition $\sum_{n=1}^{n-1} I(n) > 1$

(1) and
$$t=0$$

(1) and $t=0$
colorable.
$$l - (2k+1,k)$$

с

For example, if
$$L(x_i) = [1, 2k]$$
 for each *i*, then
 $l(x_i) = |L(x_i)|$ satisfies condition (1) and
 $\sum_{t=0}^{n-1} l(x_t) = 2nk$

However, X is not L - (2k+1,k)-colorable, because an L - (2k+1,k)-coloring ϕ of X is equivalent to a homomorphism from X to $C_{2k+1} - \{0\}$ and $C_{2k+1} - \{0\}$ is a bipartite graph.

However, condition (2) is not a necessary condition. There are color-size-list l which violates condition (2) and yet

$$_{X \text{ is }} l - (2k+1,k)$$
-colorable.

For example, Suppose $X = (x_0, x_1, x_2, x_3, x_4)$ is a 5-cycle, let $l(x_0) = 3$, $l(x_1) = 5$ and let $l(x_i) = 4$ for $i \ge 2$

Then X is l-(5,2)-colorable, although condition (2) is violated.

Theorem:

If
$$(X, F)$$
 is a valid *FCA*, then there is a good $(2k+1, k)_{-\text{coloring for}} (X, F)_{-\text{coloring for}}$.

We shall be only considering
$$\binom{2k+1,k}{-\text{colorings}}$$
 of graphs. For simplicity, we refer a $\binom{2k+1,k}{-\text{coloring}}$ simply as a coloring.

Given a FCA, let

$$\Gamma_{F} = \left\{ \left(i, j\right) : 0 \leq i \leq n-1, \ 0 \leq j \leq 2k, \ j \in F\left(i\right) \right\}$$

Given a coloring ϕ of X, let

$$\Gamma_{\phi} = \left\{ \left(i, j\right) : 0 \le i \le n-1, \ 0 \le j \le 2k, \ j = \phi(x_i) \right\}_{\text{To}}$$

prove theorem we need to find a coloring ϕ such that $\Gamma_{\phi} \cap \Gamma_F = \phi$

It is helpful to have a picture for the understanding of the proof below:

We construct a graph G whose vertex set is partitioned into n coloumns

$$B_i = \{(i, j): 0 \le j \le 2k; \text{ for } i = 0, 1, \dots, n-1\}$$

each vertex (i, j) in B_i is connected to two vertices in B_{i+1} , namely (i+1, j+k) and (i+1, j+k+1), where the summation in the first coordinate is modulo n, and the summation in the second coordinate is modulo 2k+1.

A coloring ϕ corresponds to a cycle of G which intersects each column B_i exactly once.

We call such a cycle of *G* a "coloring cycle". The set Γ_F is the set of forbidden vertices in *G*. We need to find a "coloring cycle" which avoids the forbidden vertices Γ_F . Figure 1 below is an example of the graph *G* with k=3 and n=11.

There are edges between vertices in B_{10} and B_{0} , however, for simplicity, these edges are not shown in the figure.

The thick edges indicates a coloring cycle.

(The two ends should meet, i.e. the vertex 6 in column B_{10} is adjacent to the vertex 3 in column B_0) circled vertices indicate vertices in *F*, that is,

$$F_0 = \{1, 2, 3\}, F_2 = \{3\}, F_3 = \{5\}, F_5 = \{5, 6\},$$

$$F_7 = \{6\}, F_8 = \{2\}, F_9 = \{6\}, F_1 = F_4 = F_6 = F_{10} = \phi$$

Observe that the coloring cycle indicated by the thick edge in figure 1 intersects the "forbidden vertices". So this coloring is not a good coloring. We need to define some notations so that we can talk about the "shape" of the set of forbidden vertices.

Suppose
$$(X, F)$$
 is a valid *FCA*, where
 $X = (x_0, x_1, \dots, x_{n-1})$ we say a column B_i is infected if B_i
contains at least one forbidden vertex, that is $F(i) \neq \phi$.

We say a column B_i is seriously infected if B_i contains at least two forbidden vertices, that is, $|F(i)| \ge 2$.

Let J_F be the set of indices of the infected columns, and let I_F be the set of indices of the seriously infected columns, that is, $J_F = \{0 \le i \le n-1; F(i) \ne \phi\}$. $I_F = \{i : | F(i) | \ge 2\}$ Let $|F| = \sum_{i=0}^{2k} |F(i)|$.

For $i \in J_F$, let q_i^F be the smallest positive integer such that $i + q_i^F \in J_F$. For $i \in I_F$, let P_i^F be the smallest positive integer such that $i + P_i^F \in I_F$.

We shall prove that for a counter example, $I_F \neq \phi$ (lemma 5.4.7) Assume $i \in I_F$ and $[i, i + p_i^F] \cap J_F = \{\beta_0^i, \beta_1^i, \dots, \beta_{i_i}^i\}$.

Where

$$\beta_0^i = i, \beta_{t_i}^i = i + p_i^F \text{ and for } 1 \le j \le t_i - 1$$

$$\beta_j^i \in \left(\beta_{j-1}^i, \beta_{j-1}^i\right)_n$$

$$S_i^F = \sum_{j=0}^{t_j-1} j \times l\left(\left[\beta_j^t, \beta_{j+1}^t\right]_n\right)$$

Let,

For the example in figure 1, the corresponding parameters for this FCA are

$$J_F = \{0, 2, 3, 5, 7, 8, 9\}, \ I_F = \{0, 5\}$$
$$q_0^F = 2, q_2^F = q_3^F = 1, q_5^F = 2, q_7^F = q_8^F = 1, q_9^F = 2, p_0^F = 5, p_5^F = 6,$$

$$\beta_0^0 = 0, \beta_1^0 = 2, \beta_2^0 = 3, \beta_3^0 = 5, \beta_0^5 = 5, \beta_1^5 = 7, \beta_2^5 = 8, \beta_3^5 = 9, \beta_4^5 = 0$$

$$S_0^F = 0 \times 2 + 1 \times 1 + 2 \times 2 = 5, \ S_5^F = 0 \times 2 + 1 \times 1 + 2 \times 1 + 3 \times 2 = 9$$

Definition:

Suppose (X, F) and (X', F') are two FCA's. If the existence of a good coloring for (X', F') implies the existence of a good coloring for (X, F), then we say (X', F') dominates (X, F).

Lemma: If n = 2k + 2 then the conclusion of theorem holds. **Proof:**

Without loss of generality, we assume that $0 \notin F(0)$ and $1 \in F(0)$.

Let ϕ be the coloring defined as $\phi(x_i) = 1$ even and $\phi(x_i) = k + 1$ if *i* is odd. If $\Gamma_F \cap \Gamma_{\phi} = \{(0,1)\}$, then let $\phi'(x_i) = \phi(x_i)$ for $i \neq 0$ and $\phi'(x_0) = 0$.

As $0 \notin F(0)$, ϕ' is a good coloring. Assume $|\Gamma_F \cap \Gamma_{\phi}| \ge 2$, for $i = 0, 1, \dots, 2k$ let ϕ_i be the coloring of X defined as $\phi_i(x) = \phi(x) + i$. Since $|\Gamma_F \cap \Gamma_{\phi}| \ge 2$ and $|\Gamma_F| \le 2k+1$, there is an index *i*, such that, $\Gamma_{\phi} \cap \Gamma_F = \phi$

Lemma:

Suppose for some index *i*, $F(i) = \{u\}$ and $F(i+1) = \{v\}$. Assume that *u* and *v* are not adjacent. Let $X' = \{x'_0, x'_1, \dots, x'_{n-3}\}$ be a cycle of length n-2, and let F' be a *FCA* for X' defined as $F'(j) = F(\tau(j))$, where $\tau : \{0, 1, \dots, n-3\} \rightarrow \{0, 1, \dots, n-1\}$ is defined as,

$$\tau(j) = \begin{cases} j & \text{if } j \le i-1\\ j+2 & \text{if } j \ge i \end{cases}$$

Then $(X', F')_{\text{ is a valid }} FCA_{\text{ and dominates}} (X, F)_{\text{.}}$

Proof:

First we show that (X', F') is valid.

Consider an interval $[j, j']_{n-2}$ of length m. If $i \notin [j, j']_{n-2}$ or $i-1 \notin [j, j']_{n-2}$ then $[\tau(j), \tau(j')]_n$ also has length m and $\sum_{S \in [j, j']_{n-2}} |F'(S)| = \sum_{S \in [\tau(j), \tau(j')]_n} |F(S)|$

If
$$i-1$$
, $i \in [j, j']_{n-2}$, then $[\tau(j), \tau(j')]_{n-2}$ has

length m+2 and

$$\sum_{S \in [j,j']_{n-2}} |F'(S)| = \sum_{S \in [\tau(j),\tau(j')]_n} |F(S)| -2$$

$$\leq 2k + m + 2 - 1 - 2$$

$$= 2k + m - 1$$

$$\sum_{S=0}^{n-3} |F'(S)| = \sum_{S=0}^{n-1} |F(S)| - 2$$

Moreover, $S=0$

Therefore (X', F') is valid. Next, we show that $(X', F')_{\text{dominates}} (X, F)_{.}$

Let ϕ' be a good coloring for (X', F').

Recall that $F(i) = \{u\}$ and $F(i+1) = \{v\}$ As *u* is not adjacent to *v*, and $\phi'(x_{i-1})$ is adjacent to $\phi'(x_i)$.

We conclude that either
$$\phi'(x_{i-1}) \neq v$$
 or $\phi'(x_i) = u$

If
$$\phi'(x_{i-1}) \neq v$$

then let
 $t \in \left\{ \phi'(x_{i-1}) + k, \phi'(x_{i-1}) + k + 1/\{u\} \right\}$ and let

$$\phi(x_j) = \begin{cases} \phi'(x_j) , \text{ if } j \le i-1 \\ t , \text{ if } j = 1 \\ \phi'(x_{j-2}), \text{ if } j \ge i+1 \end{cases}$$

Then ϕ is a good coloring for *F*.

If
$$\phi'(x_i) \neq u$$
, then let
 $t \in \{\phi'(x_i) + k, \phi'(x_i) + k + 1\} / \{v\}$ and let
 $\phi(x_j) = \begin{cases} \phi'(x_j) & \text{, if } j \leq i \\ t & \text{, if } j = i + 1 \\ \phi'(x_{j-2}) & \text{, if } j \geq i + 2 \end{cases}$

Then ϕ is a good coloring for *F*.

REFERENCES

- [1] A.Vince Star Chromatic number J.Graph theory 12(4):551-559, 1988.
- [2] D.R.Guichard, Acyclic graph coloring and the complexity of the Star Chromatic Number, J.Graph theory 17 (1993), 129-134.
- [3] H.L.Abott and B.Zhou, The Star Chromatic number of a graph, J.Graph theory 17 (1993), 349-360.
- [4] X.Zhu, Star Chromatic numbers and products of graphs, J.Graph Theory 16 (1992), 557-569
- [5] T.N.Cusick and C.Pomerance, view-obstruction problems111, J.Number theory 19 (1984), 131-139.
- [6] XudingZhu.Circular Chromatic Number: a Survey Discrete Math, 229 (1-3) 371-410.
- [7] J.A.Bondy and P.Hell, A note on the Star Chromaticnumber, J.Graph theory 14 (1990) 479 482.
- [8] Z.Pan and X.Zhu, Density of the Circular chromatic number of Series-Parallel graphs, J. Graphs Theory 46 (2004), 57-68.
- [9] O.V.Borodin, S.J.Kim, A.V.Kostahka and B.D.West Homomorphism from sparse graph with large girth, manuscript.
- [10] B.Mohar, Choosability for the circular chromatic number.http://www.fmf.unilj.si/~mohar/problems/p0201/ choosabilitycircular.html, 2003.
- [11]L.A.Goddyn, M.Tarsi and C.Q.Zhang, on (*k*,*d*)-colorings and fractional nowhere-zero flows, J.Graph theory to appear.
- [12] W.Deuber and X.Zhu, Circular coloring of weighted graphs, manuscript, 1994.

Page | 304