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Abstract- Various tensor decompositions use different 
arrangements of factors to explain multi-way data. 
Components from different decompositions can vary in the 
number of parameters. Allowing a model to contain 
components from different decompositions results in a 
combinatoric number of possible models.  The correct use of 
model evaluation and model selection techniques is vital in 
academic machine learning research. We consider model 
selection to balance approximation error with the number of 
parameters, but due to the number of possibilities post-hoc 
model selection is infeasible. Instead, we incrementally build a 
model. Estimating the adequate number of components is an 
important yet difficult problem in multi-way modelling. We 
demonstrate how a Bayesian framework for model selection 
based on automatic relevance determination (ARD) can be 
adapted to the Tucker and CandeComp/PARAFAC (CP) 
models. 
 
Keywords- tensor decompositions, multi-way arrays, model 
selection, bayesian information criterion. 
 

I. INTRODUCTION 
 
 Tensor decompositions are in frequent use today in a 
variety of fields including psychometrics,  chemometrics, 
image analysis, web data mining, bio-informatics, 
neuroimaging, and signal processing. Tensors are also known 
as multi-way arrays, multidimensional matrices or 
hypermatrices are generalizations of vectors (first order 
tensors) and matrices (second order tensors). The two most 
commonly used decompositions of tensors are the Tucker 
model and the more restricted canonical decomposition 
(CandeComp) and Parallel Factor Analysis     (PARAFAC) 
model. We will presently denote the CandeComp/PARAFAC 
model as CP. 

 
The Tucker model represents the data spanning the 

nth modality by the vectors (loadings) given by the J n 
columns of A (n) such that the vectors of each modality 
interact with the vectors of all remaining modalities with 
strengths given by a so-called core tensor G. As a result, the 
Tucker model encompasses all possible linear interactions 
between vectors pertaining to the various modalities of the 
data. The CP model is a special case of the Tucker model 

where the size of each modality of the core array G is the same 
while interaction is only between columns of same indices 
such that the only non zero elements are found along the 
diagonal of the core. Thus, the CP model can be expressed as 
a Tucker model with diagonal core.  

 
In particular, by appropriate scaling of each 

component the CP model can be expressed as a Tucker model 
with unit diagonal core. The Tucker model can in turn be 
expressed as the CP model by duplicating components of 
different indices to form additional CP components. Notice, in 
the Tucker model a rotation of a given loading matrix A(n) 
can be compensated by a counter rotation of the core G, . For 
the CP model it is not possible in general to rotate the loading 
and still keep the core diagonal. Thus, the CP model is in 
general unique up to scale and permutation.As the CP model 
corresponds to the Tucker model with diagonal core Tucker 
decompositions in which only some off diagonal elements are 
non-zero can be considered a representational interpolation 
between the Tucker and CP decomposition. Hence, whereas 
the Tucker model encompass all potential interaction between 
the components of each modality through the core array G, the 
CP model only allow for interactions between columns of 
A(n) with same indices. The sparse Tucker model can be 
considered a model between the Tucker and CP model where 
interactions are present within a few of the components across 
the various modalities. Several strategies exist for simplifying 
the Tucker core.  

 
The Tucker solution was rotated such that the Tucker 

core would have as many small loadings as possible. Thus, by 
regularizing the Tucker model excess components can be 
turned off and the Tucker core be simplified. By assigning 
priors for the model parameters and learning the hyper 
parameters of these priors the method is able to turn off excess 
components and simplify the core structure at a computational 
cost of fitting the conventional Tucker/CP model. To 
investigate the impact of the choice of priors we based the 
ARD on both Laplace and Gaussian priors corresponding to 
regularization by the sparsity promoting l1  norm and the 
conventional l2  norm, respectively. While the form of the 
priors had limited effect on the results obtained the ARD 
approach turned out to form a useful, simple, and efficient tool 
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for selecting the adequate number of components of data 
within the Tucker and CP structure.  

 
For the Tucker and CP model the approach performs 

better than heuristics such as the Bayesian information 
criterion (BIC), Akaikes information criterion (AIC), DIFFIT 
and the numerical convex hull (NumConvHull) while 
operating only at the cost of estimating an ordinary CP/Tucker 
model. For the CP model the ARD approach performs almost 
as well as the core consistency diagnostic (CorConDiag). We 
will presently estimate the adequate degree of regularization 
by a Bayesian approach named automatic relevance 
determination (ARD). Two types of regularization will be 
considered; the sparsity promoting l1 regularization as well as 
the more conventionally applied l2 ridge regression 
regularization. The approach readily generalize to the CP 
model and will also here be used to estimate the number of 
components. Choosing the right model is in particular 
challenging in the Tucker model as the number of components 
is specified for each modality separately. This renders 
heuristics such as the DIFFIT, numerical convex hull 
(NumConvHull), Bayesian information criterion (BIC) and 
Akaikes information criterion (AIC) as well as cross-
validation approaches computationally expensive as n models 
have to be evaluated. Furthermore, while model selection for 
the CP model has been guided by heuristics based on the core 
consistency diagnostic (CorConDiag), no such heuristics exist 
for the Tucker model. In two-way analysis it is common to 
evaluate the eigenvalue spectrum and truncate the singular 
value decomposition (SVD). Although this approach does not 
have a straightforward multi-linear counterpart approximate 
approaches have been given forming the fast DIFFIT. 
However, this approach can not account for additional 
constraints such as non-negativity.  

 
In conclusion, no efficient approach for the 

estimation of the number of components in the Tucker model 
is known. Thus, the aim of this paper is to use regularization 
to turn off excess components in the CP and Tucker model and 
thereby select the model order and simplify the core and to 
optimize the amount of regularization from data and to 
achieve these objective at the cost of estimating a conventional 
multi-way mode 

 
II. RELATED WORKS 

 
The greedy approach [1] can estimate a model 

consisting of  combination of tensor decompositions. This 
approach is analogous to sparse coding with a union of 
dictionaries. Linear synthesis models are fundamental to 
multivariate signal processing tasks such as denoising, 
compression, and classification. In this work we explore an 

approach to approximate data arranged in a tensor, or multi-
way array, via a combination of data-dependent bases. The 
bases are chosen from two or more sets each estimated by 
tensor decomposition yielding orthogonal components. 
Truncated singular value decomposition (SVD) finds the 
optimal reduced rank approximations of data stored in 
matrices. In multivariate signal processing, there may be 
multiple ways the signal can be arranged before 
approximation. For instance, if the signal is arranged as a 
tensor, then a large number of decomposition/approximation 
models have been proposed that exploit structure along 
different modes of the data. Tensor decompositions that can be 
written as a summation of component tensors each formed as 
tensor outer products. Decompositions of this nature are of 
interest because orthogonality can be enforced on any of the 
factors of the outer product and the resulting components 
tensors will be orthogonal. 

 
Intristic Bayesian Factor's [3] is completely 

automatic Bayes factors, in that they are based only on the 
data and standard non informative priors. Note, however, that 
issues such as the "optimal" choice of training samples in 
dependent-data situations are yet to be resolved. It also seem 
to correspond to actual Bayes factors for reasonable "intrinsic 
priors," thus attaining a type of "second-order" Bayesian 
correspondence; in contrast, most other default methods 
achieve (at best) a first-order correspondence with Bayesian 
methods, with many having a systematic bias in favour of the 
more complex model. Compared with other "second-order" 
Bayesian methods, such as the method of Jeifreys, IBF's have 
the advantage of being very generally applicable. IBF's apply 
to non nested, as well as nested, model comparisons and can 
be applied to any distributions. IBF's can also be used for 
default Bayesian hypothesis testing. IBF's can be applied in 
situations in which even the usual Bayesian asymptotics (e.g., 
BIC) does not apply.  IBF's can be used for default multiple 
model comparison and prediction. IBF's are invariant to 
univariate transformations of the data. If suitably invariant non 
informative prior distributions are used, they are also invariant 
to choice of the parametrizations of the models. 

 
The PARAFAC decomposition is known as one of 

the most commonly used tools in tensor signal/data 
processing. Unfortunately, its classical algorithms barely take 
the potential statistical and/or deterministic prior information 
of the decomposed tensor into consideration, while the modern 
ones are usually problem oriented, which limits their 
applications [4].To fill in this gap, the PARAFAC 
decomposition of a tensor is brought into the framework of 
Bayesian inference.  
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By introducing transition models for the 
loading/factor matrices of a tensor, the PARAFAC 
decomposition can be formulated as an alternating Bayesian 
filter. By means of the flexibility of the Bayesian filter, the 
proposed filtering decomposition approach illustrated can 
cover two commonly used priors – parametric and time 
transition ones. Under the linear Gaussian assumption, the 
proposed in [2] filter can be implemented as an Alternating 
(Matrix) Kalman Filter. Analyses show that the performance 
of the proposed filter is similar to the reported ALS based 
algorithms when priors are unavailable. The results of 
numerical simulations show that our Bayesian approach 
outperforms the reported PARAFAC decomposition 
algorithms in literature, especially for the cases where the 
statistical and/or deterministic priors are offered such as the 
target tracking application of a bi static ULA MIMO radar 
system. 
 

III. INFORMATION CRITERION 
 

Information criteria offer a computationally 
appealing way of estimating the generalization performance of 
the model. In model selection AIC [5] and the BIC [6] have 
traditionally been used as simple approximations to the 
expectation of the negative log likelihood and the model 
evidence respectively . Here, the number of components are 
selected such that the following two quantities are minimized. 

 
AIC= -2 logL + K = S log(SSE/S) + K 

BIC= -2 logL + K logS = S log(SSE/S) + K logS 
 

Where L is the likelihood of the model, K is the 
number of parameters in the model, and S is the number of 
datapoints. For least square estimation this reduces to the 
expressions to the right where SSE is the sum of squared error. 
Thus, the criteria defines a trade off between reduction in 
reconstruction error and complexity of the model. Notice that 
BIC tends to penalize model complexity more heavily than 
AIC, hence, gives a more conservative estimate of what is 
considered the best model. 

 
For the Tucker model the DIFFIT procedure has been 

proposed to estimate the adequate number of components [7]. 
In the DIFFIT procedure, all potential models are evaluated 
and The DIFFIT for the m th model is then calculated as 

 
DIF(m) = ExpVar(m) − ExpVar(m − 1) 

DIFFIT(m) = DIF(m)/DIF(m + 1) 
 

And the model with largest DIFFIT value taken to be 
the most adequate model when disregarding DIFFIT values 
based on too small values of DIF . Hence, the optimal model 

is given by the model that has the largest contribution to the 
explained variance relative to consecutive models 
corresponding to the region of maximal curvature in the graph 
of {m, ExpVar}. An approximate evaluation of DIFFIT 
forming the fastDIFFIT [9] is given by evaluating the 
eigenvectors of X(n) for all n-modes and take the best models 
Rm formed by the higher order singular value decomposition 
(HOSVD) .A refinement of the above approach correcting for 
the number of free (FP) for parameters the pth Tucker model 
form the NumConvHull approach [8] given by 

 
FPDIF(p) = FP(p) − FP(p − 1) 

NumConvHull(p) = ( DIF(p) / FPDIF(p) ) 
( DIF(p + 1) / FP(p + 1) ) 

 
For the CP model the core consistency has been used 

as a heuristic to access the adequate number of components 
[10]. The core consistency measures the degree of cross-talk 
between the components of the CP model by estimating the 
corresponding Tucker model core G given the CP loadings. 

 
Since the Tucker model encompass all potential 

interactions between components of the various modes non-
zero values in the off diagonal of the Tucker core indicate that 
structure in components of different indices over the 
modalities can combine resulting in so-called cross-talk. Too 
many components will result in a strong degree of cross-talk 
across the loadings of the modes thus will yield a low value of 
the CorConDiag. Too few components on the other hand will 
exhibit a low degree of cross-talk. Thus, a heuristic for the 
‘correct’ number of components is taken to be just before a 
major drop-off in the graph of {d, CorConDiag} in [10].ARD 
is a hierarchical Bayesian approach widely used for model 
selection [11].  

 
In ARD hyper parameters explicitly represents the 

relevance of different features by defining the range of 
variation for these features, usually by modelling the width of 
a zero-mean Gaussian prior imposed on the model parameters. 
If the width becomes zero, the corresponding feature cannot 
have any effect on the predictions. Hence, ARD optimizes 
these hyper parameters to discover which features are relevant. 
While ARD based on Gaussian priors can prune excess 
components Gaussian priors do not in general admit sparse 
representation within the active components hence does not 
necessarily favour simple parsimonious representations. The 
reason being that the l 2 -regularization penalizes elements by 
their squares and as such penalizes large values relatively 
more than small values. The Laplace prior on the other hand is 
known to admit sparse representation as it corresponds to a l 1  
regularization thus is the closest convex proxy to minimizing 
for the number of non-zero elements in the model . 
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IV. IMPLEMENTATION 
 
Data Sets Used 
 
1. Synthetic data 

 
A data set with Tucker(3,4,5) structure was randomly 

generated with size 30 × 40 × 50. All the factors as well as the 
core array were drawn from a normal N(0,1)-distribution, i.e. 
with zero mean and variance is 1. Gaussian noise was added to 
the data such that SNR = 0 dB. 
 
2. Flow injection analysis 

 
This data set is given by the absorption spectra over 

time for three different chemical analytes measured in 12 
samples with different concentrations, i.e. 12(samples) × 
100(wavelengths) × 89(times), ideally this dataset form a 
Tucker(3,6,4) model. 
 
3. Amino acid fluorescence 

 
This data set contains the excitation and emission 

spectra of five samples of different amounts of tyrosine, 
tryptophane and phenylalanine forming a 5(samples) × 
51(excitation) × 201(emission) array. Hence the data can be 
described by a three component CP model. 
 
4. Sugar process data 

 
This data set contain emission and excitation spectra 

measurements in 265 samples forming a 265(samples) × 
571(emissions) × 7(excitations) array. The data was modelled 
by a four component CP model where the number of 
components were estimated based on an extensive split half 
analysis. 
 
5. Dorrit fluorescence data  

 
This data set contains the emission and excitation 

spectra of 27 synthetic samples containing different 
concentrations of four chemical analytes forming a 
27(samples) × 551(emissions) × 24(excitations) array . The 
data is adequately modelled by a four component CP model. 
Since the components of the four chemometrics data sets are 
non-negative the estimated models for these data were 
constrained to be non-negative. 
 
TUCKERS ANALYSIS 

 
The impact of the choice of signal to noise ratio SNR 

is visible in the visualization of the models. For the synthetic 

data a clear breakpoint around SNR = 0 dB is found such that 
lower SNR values identify the correct model order for both 
sparse and ridge ARD Tucker whereas higher SNR values 
makes the ARD approach completely fail in identifying the 
correct number of components as the model fit noise. A 
similar behaviour is found for the remaining data sets. Namely 
that high SNR values tend to overestimate the number of 
components whereas low SNR values perform more stable. As 
such, the exact choice of SNR seem to have little impact on 
the model order found as long as SNR is not set too large. 
Thus, when there is no prior information as to the true SNR of 
the data it seems to be better to use low estimates of the SNR 
rather than large SNR values as large SNR values has a 
tendency to use too many components hence overfit the data. 
In the following analysis the SNR is set to SNR = 0 dB. 
 

 
 
CP ANALYSIS 

 
The estimated number of components for the three 

data sets can be found using the CorConDiag, 
DIFFIT/NumConvHull, BIC, AIC and sparse as well as ridge 
ARD CP. Notice how both BIC and AIC as for the Tucker 
analysis fail in estimating the adequate number of 
components. This is because the Tucker model and in 
particular the CP model are highly restricted models using 
only a few parameters to model a large amount of data. Thus, 
the complexity terms in BIC and AIC grows in general more 
slowly than the improvement in log(SSE) thus they tend to 
favour too complex models. The CorConDiag correctly 
identifies 3 components in the amino acid fluorescence data, 
3–4 components in the sugar process data and 4 components 
in the Dorrit fluorescence data. The DIFFIT and 
NumConvHull correctly indicates a 3 component model for 
the amino acid fluorescence data but wrongfully a 1 
component model for the Sugar process and a 1,3 or 6 
component model for the Dorrit data. Both the sparse and 
ridge ARD methods correctly identified 3 components in the 
amino acid fluorescence data, for the sugar process the sparse 
ARD indicate a 2 or 3 component model whereas the ridge 
ARD correctly identifies a 4 component model. For the Dorrit 
data both sparse and ridge ARD indicate a 6 component 
model. 
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Thus, while the proposed ARD approach here 
perform better than heuristics such as DIFFIT/NumConvHull, 
BIC and AIC the CorConDiag seem to work somewhat better 
in estimating the number of components in the CP model. 
While the ARD approach outperforms heuristics such as 
DIFFIT, NumConvHull, AIC and BIC when estimating the 
number of components in the Tucker and CP model its found 
that the CorConDiag performed slightly better in estimating 
the adequate number of components in the CP model. The 
modelling inadequacies encountered for the ARD CP and 
Tucker is probably due to incorrect estimates of the SNR, 
deviation from Gaussianity in the noise, deviation from 
Gaussian and Laplace distributed components, the fact that the 
parameters were based on simple MAP estimates and finally 
due to limited amount of data for the identification of the 
model order. The reason why no approach correctly 
established the Tucker(3, 6, 4) structure of the flow injection 
analysis data and Tucker(4, 4, 4) of the sugar process data is 
because models with less components almost perfectly 
accounts for all data (VarExp > 0.99). On the other hand, for 
the Dorrit data the sparse ARD and ridge ARD failed in 
correctly identifying 4 components as excess components 
were able to model substantial parts of the data. Despite the 
different nature of the Gaussian and Laplace priors the results 
found based on the two priors were similar. This is because 
the ARD framework first and foremost turn off excess 
components while components that remain active are little 
influenced by the prior if their parameters are large.  

 
Hence, if the d th component of the nth mode is 

important then its corresponding alpha will be small rendering 
the prior non informative and as a result give little effect in the 
estimation of that component. Thus, while the ARD 
framework effectively can turn off excess components the 
choice of prior seems to only have a limited effect on the 
components identified. Rather than estimating Sigma 2 from 
data where Sigma 2 is defined from a user given signal to noise 
ratio (SNR). The results obtained was only to a small degree 
sensitive to the defined SNR as long as the SNR was not set to 
high causing the model to over fit the data. Hence, although 

this parameter is user defined the actual choice of the 
parameter only has a limited impact on the models obtained. 
 

VI. FUTURE SCOPE 
 

Model selection is perhaps one of the most 
challenging problems in unsupervised learning. Its 
demonstrated how a simple Bayesian framework based on 
ARD could be adapted to multi-way models such as the 
Tucker and CP models.  

 
Presently, each component of each mode was given 

its own prior and the priors were either solely Laplace or 
Gaussian, however, it’s noted that other parametrizations of 
the priors are conceivable. Furthermore, only the most simple 
framework considered where loadings and hyper parameters 
were based on MAP estimation. Within the proposed Bayesian 
framework more involved methods based on sampling 
approaches to estimate model parameters as well as 
expectation propagation for the evaluation of predictive 
performance can be employed to further improve the model 
order estimation. This should be investigated in future work. 
Finally, the ARD approach can only shrink models, i.e. 
remove components. Thus, once a component has been 
removed it can no longer be brought back. In particular this 
requires that Jn be chosen large enough to encompass all 
potential models. Future research should investigate methods 
that can adapt the ARD approach to grow if initialized by a 
model order that is too small. 
 

VII. CONCLUSION 
 

This Bayesian approach is computationally 
inexpensive as the method automatically removes excess 
components when estimating the model contrary to existing 
heuristics that requires the estimation and evaluation of all 
potential models. The proposed ARD framework forms an 
efficient tool forthe automatic estimation of components in the 
Tucker models and in the analysis of both synthetic and real 
data the method indeed effectively extracted reasonable 
number of components. 

 
While the ARD approach outperforms heuristics such 

as DIFFIT, NumConvHull, AIC and BIC when estimating the 
number of components in the Tucker and CP model we found 
that the CorConDiag performed slightly better in estimating 
the adequate number of components in the CP model. The 
modeling inadequacies encountered for the ARD CP and 
Tucker is probably due to incorrect estimates of the SNR, 
deviation from Gaussianity in the noise, deviation from 
Gaussian and Laplace distributed components, the fact that the 
parameters were based on simple MAP estimates and finally 



IJSART - Volume 4 Issue 10 – OCTOBER 2018                                                                               ISSN [ONLINE]: 2395-1052 
 

Page | 320                                                                                                                                                                     www.ijsart.com 
 

due to limited amount of data for the identification of the 
model order. 
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