
IJSART - Volume 4 Issue 10 –OCTOBR 2018                                                                                      ISSN [ONLINE]: 2395-1052 

 

Page | 489                                                                                                                                                                   www.ijsart.com 

 

 

Modified Finite Element Method for Conductive and 

Convective Heat Transfer Problems Using Python 
 

R.Yuvaraj 1, Dr.D.Senthil Kumar 2 
1Assistant Professor, Mechanical, Sona College of Technology, Salem, Tamilnadu 
2Professor & Head, Mechanical, Sona College of Technology, Salem, Tamilnadu 

 

Abstract- A Modified Finite Element Method (MFEM) for heat 

transfer problems is developed to get the results very close to 

that of exact analytical solution. The reciprocal of thermal 

resistance concept is applied over entire element which results 

in combined form of analytical and Finite Element Method 

(FEM). The finite element model for sphere is also developed 

for conduction through it with convective boundary condition. 

The MFEM coding has been developed for both conduction and 

convection in plane wall, cylinder and sphere. The coding is 

executed and validated in an open source futuristic language 

Python 3.6. The results obtained from Python is discussed and 

compared with FEM and analytical methods. The MFEM gives 

the results exactly equal to that of the exact solutions for plane 

wall and cylinders, in case of sphere, it is very close to exact 

solution and better than the results obtained by FEM which 

gives some approximation and computational errors. 
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I. INTRODUCTION 

 

It is very difficult to model the physical phenomena in 

engineering field. The phenomenon for every field in nature can 

be described by laws of physics or other terms of algebraic, 

differential and integral equations relating to various quantities 

of interest. Heat transfer is one of the important practical 

problems for engineers. The mathematical models are 

developed using assumptions concerning the appropriate laws 

governing the process and they are often characterized by 

complex differential and integral equations posed on 

geometrically complicated domains. For the past three decades, 

computers have been used to simplify and solve the practical 

problems with the help of suitable mathematical models and 

numerical methods. The computational mechanics is exist for a 

new and growing body of knowledge connected with the 

development of mathematical models and use of numerical 

solutions of physical systems [1].    

Finite Element Method (FEM) is one of the important 

method for numerical simulation of physical problems. The 

reasons for using FEM are, to find approximate solution using 

numerical methods for practical problems involve complicated 

domain, loads, nonlinearities that forbid the development of 

analytical solutions, cost effective and saves time and material 

resources compared to physical experiments, and quick process 

of developing the computer program using powerful electronic 

computation. The approximate methods for solving differential 

equations using trial solutions are used by Lord Rayleigh [2], 

Ritz [3] and Gelerkin [4]. The drawback in their approaches, 

compared to the modern finite element method, is that the trial 

functions must apply over the entire domain of the problem. 

Even though Gelerkin method provides very strong basis for 

finite element method, Courant [5] introduced the concept of 

piecewise-continuous function in subdomain. The tem finite 

element was first used by Clough [6] in 1960. The finite element 

method was extended to applications in plate bending, shell 

bending, pressure vessels and elastic structural analysis during 

1960s and 1970s. 

 

Wilson and Nickell [7] are applied the finite element 

approach in heat transfer conduction problems 1966 and Martin 

[8] applied this concept on fluid flow in 1968. The nonlinear 

finite element method was focused by Oden and Reddy [9, 10]. 

The detailed history of finite element method is given by Noor 

[11]. In recent years extensions and modifications of finite 

element method have been proposed. These include the 

Partition of Unity Method (PUM) of Babuska and Melenk [12], 

the h-p cloud method of Durate and Oden [13] and meshless 

methods advanced by Belytschko et al. [14]. 

The present work is focused on developing modified 

finite element method (MFEM) and finite element model for 

sphere in conductive and convective heat transfer problems. 

The modification done on finite element model is presented and 

this modified approach is applied in the field of conductive and 

convective heat transfer through plane wall, cylinder, sphere, 

and composite walls. The comparison of finite element model, 

modified finite element model and exact analytical solutions 

has been done. The modified finite element model is developed 

and coding are created through the computer language Python 

3.6. It is an open source software which can be used for 

simulating the heat transfer problems in easy and quick way. 

The results obtained from the Python after executions are 

compared and conclusions are presented.  

 

II. FINITE ELEMENT METHOD 

 

In finite element method the given domain is divided 

into number of subdomains, called finite element, on each 

element the approximation functions of weighted-residual can 

be constructed for the solution of the problem. The finite 

element method differs from the traditional Ritz, Galerkin, 

Least-squares, Collocation and other weighted-residual 

methods in the manner in which the approximation functions 



IJSART - Volume 4 Issue 10 –OCTOBR 2018                                                                                      ISSN [ONLINE]: 2395-1052 

   

Page | 490                                                                                                                                                                   www.ijsart.com 

 

 

are constructed. The basic steps for finite element analysis is 

given by Reddy [15]. 

A. Governing equation and boundary conditions 

Consider a heat transfer problem, one dimensional 

steady state without heat generation, of finding the function 

𝑇(𝑥) that satisfies the differential equation 

−
𝑑

𝑑𝑥
(𝑘𝐴

𝑑𝑇

𝑑𝑥
) + ℎ𝑃𝑙(𝑇 − 𝑇∞) = 0       for 0 < 𝑥 < 𝐿 (1) 

Take 𝑎 =  𝑘𝐴, 𝑐 =  ℎ𝑃𝑙, and 𝑓 =  ℎ𝑃𝑙𝑇∞ then the equation (1) 

can be written as 

                              

−
𝑑

𝑑𝑥
(𝑎

𝑑𝑇

𝑑𝑥
) + 𝑐𝑇 − 𝑓 = 0       for 0 < 𝑥 < 𝐿 (2) 

the boundary conditions are, 

𝑇(0) = 𝑇0 ,    (𝑎
𝑑𝑇

𝑑𝑥
)
𝑥=𝐿

= 𝑄0 (3) 

where, 

 𝑎 = 𝑎(𝑥), 𝑐 = 𝑐(𝑥), 𝑓 = 𝑓(𝑥) and 𝑇0, and 𝑄0 are the 

known quantities of the problem. 

 

B. Domain discretization 

In finite element method, the domain 𝛺 of the problem 

shown in Fig.1 (a) is divided into number of subdomains called 

finite element.  A typical element AB is denoted as 𝛺𝑒 and it is 

located between the co ordinates 𝑥𝑎 and 𝑥𝑏 with the element 

length 𝑙𝑒. The number of elements for a problem depends 

mainly on the geometry of the domain and accuracy of the 

solution. 

 

 

Figure 1. (a) Whole domain, (b) Finite element discretization 

C. Element equations 

The derivation of finite element equations, i.e., 

algebraic equations among the unknown parameters of the 

finite element approximation, involves forming weak form of 

the differential equation, assuming the form of the 

approximation solution and substituting the approximate 

solution into the weak form. 

 

Figure 2. Typical finite element 1D mesh 

Step 1. Weak form 

 The polynomial approximation of the solution for 

equation (1) over each finite element is given by, 

𝑇𝑒 = ∑  𝑇𝑗
𝑒  𝜓𝑗

𝑒(𝑥)𝑛
𝑗=1  (4) 

where 𝑇𝑗
𝑒 are the values of the solution of 𝑇(𝑥) at the nodes of 

finite element Ωe and 𝜓𝑗
𝑒  are the approximation functions over 

the element. The number of algebraic relations among the 𝑇𝑗
𝑒 

can be obtained by re arranging the equation (2) in a weighted 

integral form 

∫ 𝑤 [−
𝑑

𝑑𝑥
(𝑎

𝑑𝑇

𝑑𝑥
) + 𝑐𝑇 − 𝑓] 𝑑𝑥 = 0

𝑥𝑏
𝑥𝑎

 (5) 

where 𝑤(𝑥) is the weight function and Ωe = (𝑥𝑎 , 𝑥𝑏) is the 

domain of typical element. After multiplying w and integrating 

we obtain 

∫ (𝑎
𝑑𝑤

𝑑𝑥

𝑑𝑇

𝑑𝑥
+ 𝑐𝑤𝑇 − 𝑤𝑓) 𝑑𝑥 − [𝑤𝑎

𝑑𝑇

𝑑𝑥
]
𝑥𝑎

𝑥𝑏
  = 0

𝑥𝑏
𝑥𝑎

 (6) 

𝑄1 = (−𝑎
𝑑𝑇

𝑑𝑥
)
𝑥𝑎
, 𝑄2 = (𝑎

𝑑𝑇

𝑑𝑥
)
𝑥𝑏

 (7) 

After substituting 𝑄1 and 𝑄2 in equation (6) the weak form 

becomes  

∫ (𝑎
𝑑𝑤

𝑑𝑥

𝑑𝑇

𝑑𝑥
+ 𝑐𝑤𝑇 − 𝑤𝑓) 𝑑𝑥 − 𝑤(𝑥𝑎)𝑄1 −   𝑤(𝑥𝑏)𝑄2 = 0

𝑥𝑏
𝑥𝑎

 (8) 

Step 2. Approximate solution 

For minimum polynomial order of 𝑇𝑒 is linear for the 

weak form approximation, 

𝑇𝑒(𝑥) = 𝑐1
𝑒 + 𝑐2

𝑒𝑥 (9) 

{
𝑇1
𝑒

𝑇2
𝑒} = [

1 𝑥𝑎
1 𝑥𝑏

 ] {
𝑐1
𝑒

𝑐2
𝑒} (10) 

∑  𝜓𝑖
𝑒(𝑥)𝑛

𝑖=1 = 1 (11) 

The element approximation in terms of coordinate �̅� is given by 



IJSART - Volume 4 Issue 10 –OCTOBR 2018                                                                                      ISSN [ONLINE]: 2395-1052 

   

Page | 491                                                                                                                                                                   www.ijsart.com 

 

 

𝜓1
𝑒(�̅�) = 1 −

�̅�

𝑙𝑒
 , 𝜓2

𝑒(�̅�) =
�̅�

𝑙𝑒
 (12) 

 

Step 3. Finite element model 

The weak form development of an element with 

interior nodes is carried out by intervals (𝑥1
𝑒 , 𝑥2

𝑒),
(𝑥2

𝑒, 𝑥3
𝑒), … . . , (𝑥𝑛−1

𝑒 , 𝑥𝑛
𝑒) 

 

∑  𝐾𝑖𝑗
𝑒  𝑇𝑗

𝑒 − 𝑓𝑖 − 𝑄𝑖 = 0 
𝑛
𝑗=1      (𝑖 = 1, 2, … , 𝑛)

 (13) 

𝐾𝑖𝑗
𝑒 = ∫ (𝑎

𝑑𝜓𝑖
𝑒

𝑑𝑥

𝑑𝜓𝑗
𝑒

𝑑𝑥
+ 𝑐𝜓𝑖

𝑒𝜓𝑗
𝑒) 𝑑𝑥

𝑥𝑏
𝑥𝑎

  (14) 

𝑓𝑖
𝑒 = ∫ 𝑓𝜓𝑖

𝑒𝑑𝑥
𝑥𝑏
𝑥𝑎

  (15) 

∑  𝜓𝑖
𝑒(𝑥𝑗

𝑒)𝑄𝑗
𝑒𝑛

𝑗=1 = 𝑄𝑖
𝑒  (16) 

 

 Equations (13) can be written in terms of the 

coefficients 𝐾𝑖𝑗
𝑒 , 𝑓𝑖

𝑒 , and 𝑄𝑖
𝑒  as 

𝐾11
𝑒  𝑇1

𝑒 + 𝐾12
𝑒  𝑇2

𝑒 + ⋯ + 𝐾1𝑛
𝑒  𝑇𝑛

𝑒  =  𝑓1
𝑒 + 𝑄1

𝑒  

𝐾21
𝑒  𝑇1

𝑒 + 𝐾22
𝑒  𝑇2

𝑒 + ⋯ + 𝐾2𝑛
𝑒  𝑇𝑛

𝑒  =  𝑓2
𝑒 + 𝑄2

𝑒 

 ⋮ (17) 

𝐾𝑛1
𝑒  𝑇1

𝑒 + 𝐾𝑛2
𝑒  𝑇2

𝑒 + ⋯ + 𝐾𝑛𝑛
𝑒  𝑇𝑛

𝑒  =  𝑓𝑛
𝑒 + 𝑄𝑛

𝑒  

In matrix form the algebraic equations (17) can be 

written as  

 

[𝐾𝑒]{𝑇𝑒} = {𝑓𝑒} + {𝑄𝑒} (18) 

where [𝐾𝑒] is called coefficient matrix, the column vector {𝑓𝑒} 
is the source vector, (𝑇1

𝑒 , 𝑇2
𝑒 , … . , 𝑇𝑛

𝑒) is primary variables and 

𝑄1
𝑒 , 𝑄2

𝑒 , … . , 𝑄𝑛
𝑒) are the secondary variables. 

 

For linear element, 

[𝐾𝑒] =
𝑎𝑒

𝑙𝑒
[
1 −1
−1 1

] +
𝑐𝑒𝑙𝑒

6
[
2 1
1 2

],   {𝑓𝑒} =
𝑓𝑒𝑙𝑒

2
{
1
1
} (19) 

Substitute equation (19) in equation (18) we obtain 

 

(
𝑎𝑒

𝑙𝑒
[
1 −1
−1 1

] +
𝑐𝑒𝑙𝑒

6
[
2 1
1 2

]) {
𝑇1
𝑒

𝑇2
𝑒} =

𝑓𝑒𝑙𝑒

2
{
1
1
} + {

𝑄1
𝑒

𝑄2
𝑒} (20) 

Equation (20) is called as finite element model for 

linear element. 

 

Connectivity of elements 

 The equation (20) can be used for eth element. 

Similarly we can express n number of individual elements and 

finally connect as per the order of their positions. For example 

of three elements, the matrix form can be written as  

[
 
 
 
 
𝐾11
1 𝐾12

1 0 0

𝐾21
1 𝐾22

1 + 𝐾11
2 𝐾12

2 0

0 𝐾21
2 𝐾22

2 + 𝐾11
3 𝐾12

3

0 0 𝐾12
3 𝐾22

3 + 𝐾11
4 ]
 
 
 
 

{

𝑇1
𝑇2
𝑇3
𝑇4

} =

{
 
 

 
 𝑓1

1

𝑓2
1 + 𝑓1

2

𝑓2
2 + 𝑓1

3

𝑓2
3

}
 
 

 
 

+

{
 
 

 
 𝑄1

1

𝑄2
1 + 𝑄1

2

𝑄2
2 + 𝑄1

3

𝑄2
3

}
 
 

 
 

 (21) 

 

D. Plane wall 

 

 

Figure 3. Heat transfer through plane wall 

 

 The temperature  𝑇0 at one end of a plane wall is 

maintained constant and another end is exposed to a fluid at 

temperature 𝑇∞ with heat transfer coefficient ℎ. The heat is flow 

from either 𝑇0 to 𝑇∞ or 𝑇∞ to 𝑇0 based on the temperature 

according to second law of thermodynamics. The plane wall is 

divided into three number of elements with four number of 

nodal temperatures 𝑇1, 𝑇2, 𝑇3 and 𝑇4 as shown in Fig.3. The 

finite element model for this heat transfer problem without heat 

generation can be expressed as,  

(
𝑎𝑒

𝑙𝑒
 [

1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

]){

𝑇1
𝑇2
𝑇3
𝑇4

} = {

𝑄1
1

0
0
𝑄2
3

} (22) 
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E. Composite wall 

 

Figure 4. Heat transfer through composite wall 

The composite wall consist of three different material 

with thermal conductivities 𝑘1, 𝑘2 and 𝑘3 with wall thickness 

𝐿1, 𝐿2 and 𝐿3 maintained at temperature 𝑇0 at one and exposed 

another end to a fluid at temperature 𝑇∞ and heat transfer 

coefficient ℎ is shown in Fig.4. Here the nodal temperatures 

𝑇1, 𝑇2, 𝑇3 and 𝑇4 are fixed and will not change. The interior 

nodal points can be varying with n number of each elements. 

The finite element model for this heat transfer problem can be 

expressed as, 

[𝐾1] =
𝑎1

𝑙1
[
1 −1
−1 1

] +
𝑐1𝑙1

6
[
2 1
1 2

]  

[𝐾2] =
𝑎2

𝑙2
[
1 −1
−1 1

] +
𝑐2𝑙2

6
[
2 1
1 2

] (23) 

[𝐾3] =
𝑎3

𝑙3
[
1 −1
−1 1

] +
𝑐3𝑙3

6
[
2 1
1 2

]  

After assembling the equations (23) can be obtained in 

the form of (22). 

F. Cylinder 

The cylinder of inner radius 𝑟1 and outer radius 𝑟𝑛+1, where n 

is number of element, thermal conductivity 𝑘 and length 𝐿 is 

maintained at temperature 𝑇0 at inner surface and exposed to a 

fluid at temperature 𝑇∞ and heat transfer coefficient ℎ is shown 

in Fig.5. 

 

Figure 5. Heat transfer through cylinder 

Here 𝑇1, 𝑇2, 𝑇3 and 𝑇4 are nodal temperatures, and 

𝑟1, 𝑟2, 𝑟3 an`d 𝑟4 are radius corresponding to 𝑛 + 1 number of 

nodal points. The finite element model for this heat transfer 

problem without heat generation can be expressed as, 

 

(
2𝜋𝑘

𝑙𝑒
 (𝑟𝑎 +

ℎ𝑒

2
) [

1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

]){

𝑇1
𝑇2
𝑇3
𝑇4

} = {

𝑄1
1

0
0
𝑄2
3

} (24) 

 

G. Composite cylinder 

 

Figure 6. Heat transfer through composite cylinder 

 

The composite cylinder consist of three different 

material with thermal conductivities 𝑘1, 𝑘2 and 𝑘3 with radius 

𝑟1, 𝑟2, 𝑟3 and 𝑟4 maintained at temperature 𝑇0 at inner side and 

exposed to a fluid at temperature 𝑇∞ and heat transfer 

coefficient ℎ is shown in Fig.6. Here the nodal temperatures 

𝑇1, 𝑇2, 𝑇3 and 𝑇4 are fixed and will not change. The interior 

nodal points can be varying with n number of each elements. 

The finite element model for this heat transfer problem can be 

expressed as, 

 

[𝐾1] =
2𝜋𝑘1

𝑙1
 (𝑟𝑎 +

𝑙1

2
) [

1 −1
−1 1

]  

 

[𝐾2] =
2𝜋𝑘2

𝑙2
 (𝑟𝑎 +

𝑙2

2
) [

1 −1
−1 1

] (25) 

 

[𝐾3] =
2𝜋𝑘3

𝑙3
 (𝑟𝑎 +

𝑙3

2
) [

1 −1
−1 1

]  

After assembling the equations (25) can be obtained in 

the form of (24). 
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H. Sphere 

 

Figure 7. Heat transfer through sphere 

The sphere of inner radius 𝑟1 and outer radius 𝑟𝑛+1, 

where n is number of element, thermal conductivity 𝑘 is 

maintained at temperature 𝑇0 at inner surface and exposed to a 

fluid at temperature 𝑇∞ and heat transfer coefficient ℎ is shown 

in Fig.7. Here 𝑇1, 𝑇2, 𝑇3 and 𝑇4 are nodal temperatures, and 

𝑟1, 𝑟2, 𝑟3 and 𝑟4 are radius corresponding to 𝑛 + 1 number of 

nodal points. The finite element model for this heat transfer 

problem without heat generation can be expressed as, 

(
4𝜋𝑘𝑒

3𝑙𝑒
 ((2𝑟𝑎 + 𝑙𝑒)

2 − (𝑟𝑎
2 +

𝑟𝑎𝑙𝑒)) [

1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

]){

𝑇1
𝑇2
𝑇3
𝑇4

} = {

𝑄1
1

0
0
𝑄2
3

} (24) 

I. Composite sphere 

The composite sphere consist of three different 

material with thermal conductivities 𝑘1, 𝑘2 and 𝑘3 with radius 

𝑟1, 𝑟2, 𝑟3 and 𝑟4 maintained at temperature 𝑇0 at inner side and 

exposed to a fluid at temperature 𝑇∞ and heat transfer 

coefficient ℎ is shown in Fig.8. 

 

Figure 8. Heat transfer through composite cylinder 

Here the nodal temperatures 𝑇1, 𝑇2, 𝑇3 and 𝑇4 are fixed 

and will not change. The interior nodal points can be varying 

with n number of each elements. The finite element model for 

this heat transfer problem can be expressed as, 

[𝐾1] =
4𝜋𝑘1

3𝑙1
 ((2𝑟𝑎 + 𝑙1)

2 − (𝑟𝑎
2 + 𝑟𝑎𝑙1)) [

1 −1
−1 1

]  

[𝐾2] =
4𝜋𝑘2

3𝑙2
 ((2𝑟𝑎 + 𝑙2)

2 − (𝑟𝑎
2 + 𝑟𝑎𝑙2)) [

1 −1
−1 1

] (25) 

[𝐾3] =
4𝜋𝑘3

3𝑙3
 ((2𝑟𝑎 + 𝑙3)

2 − (𝑟𝑎
2 + 𝑟𝑎𝑙3)) [

1 −1
−1 1

]  

After assembling the equations (25) can be obtained in 

the form of (24). 

 

III. MODIFIED FINITE ELEMENT METHOD 

 

  In modified finite element method, the coefficient of 

stiffness matrix is replaced with the reciprocal of thermal 

resistance offered against heat flow over each element. The 

thermal resistance for plane wall, cylinder and sphere are, 

A. Plane wall 

𝑅 =
𝐿

𝑘𝐴
  (26) 

where,  

𝑅 = Thermal resistance (
𝐾

𝑊
) 

 𝐿= Thickness of the wall (𝑚) 

 𝑘 = Thermal conductivity of the material (
𝑊

𝑚𝐾
) 

 𝐴 = Area normal to the heat flow (𝑚2) 
 

B. Cylinder 

𝑅 =
ln(

𝑟2
𝑟1
)

2𝜋𝐿𝑘
  (27) 

where,  

𝑅 = Thermal resistance (
𝐾

𝑊
) 

 𝑟1 = Inner radius (𝑚) 
 𝑟2 = Outer radius (𝑚) 

 𝑘 = Thermal conductivity of the material (
𝑊

𝑚𝐾
) 

 𝐿 = Length of the cylinder (𝑚) 
 

C. Sphere 

𝑅 =
(𝑟2−𝑟1)

4𝜋𝑘𝑟1𝑟2
   (28) 

where,  

𝑅 = Thermal resistance (
𝐾

𝑊
) 

 𝑟1 = Inner radius (𝑚) 
 𝑟2 = Outer radius (𝑚) 

 𝑘 = Thermal conductivity of the material (
𝑊

𝑚𝐾
) 

 

Take 𝑀 = 1/𝑅 and the modified finite element model for plane 

wall without heat generation can be written as, 
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[

𝑀 −𝑀 0 0
−𝑀 2𝑀 −𝑀 0
0 −𝑀 2𝑀 −𝑀
0 0 −𝑀 𝑀

]{

𝑇1
𝑇2
𝑇3
𝑇4

} = {

𝑄1
1

0
0
𝑄2
3

} (29) 

The equation (29) can be called as modified finite element 

model and it is common for plane wall, cylinder and sphere. 

The value of M will change corresponding to the type of 

problems. This form is very simple and easy to determine the 

unknown temperature at each nodal points. Using this method, 

the heat transfer through complicated geometries are easily 

solved with high accuracy as that of analytical solutions. 

 

IV.  PYTHON 

 

Python is an open source software is made better when 

users can easily contribute code and documentation to use it and 

add features. Python strongly encourages community 

involvement in improving the software.  Python is better and 

very useful for everyone. The version used for this research 

work is Python 3.6.1. It consists of different modules and each 

module can be downloaded freely and installed for creating 

codes for different works [16]. The coding has been written and 

executed with the help of number modules like, numpy, scipy, 

math, etc., The Python UI shell, Python file with extension as 

.py and Python execution are shown in Fig.9 (a) and (b) 

respectively. 

 

 
(a) 

 

(b) 

Figure 9.  (a) Python shell and (b) Python file 

V.  RESULTS AND DISCUSSION 

 

The results of three various methods like analytical exact 

solutions, finite element method solution and modified finite 

element method solutions are obtained for different geometries 

and parameters. The obtained results from all the three methods 

has been compared and suggestions and key features are 

discussed. 

a. Plane wall 

 
Figure 10. Plane wall Temperature distribution 

 Consider a plane wall shown in Fig. 3 with thermal 

conductivity 10 W/m K, temperature at inner and outer surfaces 

are 80°C and 30°C respectively, unit length and unit area 

normal to heat flow. Discretize the wall into three elements with 

equal thickness 𝑙𝑒. Using developed models this heat transfer 

problem is solved by three different methods, analytical method 

(Exact), finite element method (FEM) and modified finite 

element method (MFEM), and the nodal temperatures obtained 

by each methods are plotted in Fig.10 and the values of nodal 

temperatures are given with four decimal accuracies in Table 1.  

Table 1. Plane wall temperature comparison 

Nodal 

Temperature 

Exact 

Solution 

FEM 

Solution 

MFEM 

Solution 

T1 80 80 80 

T2 63.3333 63.3333 63.3333 

T3 46.6667 46.6667 46.6667 

T4 30 30 30 

 The heat transfer through plane wall for given 

conditions gives the nodal temperatures for all the three 

methods are exactly equal. Here only the variable is nodal 

temperature 𝑇 and other parameters like thermal conductivity 

𝑘, element length 𝑙𝑒, and  area normal to heat flow 𝐴 are remains 

constant.  

b. Cylinder 

Consider a cylinder shown in Fig. 5 of inner diameter 0.5 

m, outer diameter 2 m, thermal conductivity 10 W/m K, inner 

and outer surface temperatures are 80°C and 30°C respectively. 

The heat transfer through the cylinder wall is solved and nodal 

temperatures are plotted in Fig. 11 and the values are given in 

Table 2.  
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Figure 11. Cylinder Temperature distribution 

Table 2. Cylinder temperature comparison 

Nodal 

Temperature 

Exact 

Solution 

FEM 

Solution 

MFEM 

Solution 

T1 80 80 80 

T2 55 55 55 

T3 40.3759 40.3759 40.3759 

T4 30 30 30 

 In conduction through cylinder wall the nodal 

temperature are again equal for all the three methods. Though 

the area normal to the heat flow is varying the nodal 

temperatures are equal for constant thermal conductivity, 

element length.  

 

c. Sphere 

 
Figure 12. Sphere Temperature distribution 

 

Consider a sphere shown in Fig. 7 of inner diameter 

0.5 m, outer diameter 2 m, thermal conductivity 10 W/m K, 

inner and outer surface temperatures are 80°C and 30°C 

respectively. The heat transfer through the spherical wall is 

solved, with help of FEM equation (24) and MFEM equation 

(29), and nodal temperatures are plotted in Fig. 12 and the 

values are given in Table 3. 

Table 3. Sphere temperature comparison 

Nodal 

Temperature 

Exact 

Solution 

FEM 

Solution 

MFEM 

Solution 

T1 80 80 80 

T2 46.6667 46.6667 46.6667 

T3 35.5556 35.5556 35.5556 

T4 30 30 30 

 

 In conduction through spherical wall also the nodal 

temperatures are exactly equal in all the three methods which 

shows that in pure conduction without heat generation the nodal 

temperatures obtained through MFEM produces zero error. 

 

d.  Plane wall with convection at one end 

 
Figure 13. Plane wall with convection at one end 

  

Consider the plane wall shown in Fig.3 contain a 

convective boundary at one end with heat transfer coefficient ℎ 

is 15 W/m2 K and ambient temperature 𝑇∞ is 30°C. This 

problem is solved and the nodal temperatures are plotted in 

Fig.13 and the values are given in the Table 4.  

Table 4. Plane wall with convection temperature 

comparison 

Nodal 

Temperature 

Exact 

Solution 

FEM 

Solution 

MFEM 

Solution 

T1 80 80 80 

T2 70 70 70 

T3 60 60 60 

T4 50 50 50 

 

 Heat transfer through plane wall with a convective 

boundary also gives same nodal temperatures for all the three 

methods and MFEM produces zero error. 
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e. Cylinder with convection 

 
Figure 14. Cylinder with convection at outside 

 Consider a cylinder shown in Fig. 5 contain a 

convective boundary at outer side with heat transfer coefficient 

15 W/m2 K and ambient temperature 30°C. The heat transfer 

through this cylinder is solved and the nodal temperatures are 

plotted in Fig.14 and the values are given in Table 5. 

Table 5. Cylinder with convection temperature 

Nodal 

Temperature 

Exact 

Solution 

FEM 

Solution 

MFEM 

Solution 

T1 80 80 80 

T2 63.1184 63.4906 63.1184 

T3 53.2432 *53.5849 53.2432 

T4 46.2367 46.5094 46.2367 

 From Table 5 it is clearly noted that the nodal 

temperatures obtained by FEM produces 0.59% error at node 2, 

0.64% of maximum error (*) at node 3 and 0.59% error at node 

4 due to approximation and computation but the values obtained 

through MFEM gives zero error compared to that of exact 

solution. 

f. Sphere with convection 

Consider a sphere shown in Fig. 7 contain a convective 

boundary at outer side with heat transfer coefficient 15 W/m2 K 

and ambient temperature 30°C. The heat transfer through this 

sphere is solved and the nodal temperatures are plotted in Fig.15 

and the values are given in Table 6. 

 
Figure 15. Sphere with convection at outside 

From Table 6 it is clearly noted that the nodal temperatures 

obtained by FEM produces 3.01% of maximum error (*) at 

node 2, 2.78 % error at node 3 and 2.30% error at node 4 due to 

approximation and computation but the values obtained through 

MFEM gives zero error compared to that of exact solution. 

 

Table 6. Sphere with convection temperature 

comparison 

Nodal 

Temperature 

Exact 

Solution 

FEM 

Solution 

MFEM 

Solution 

T1 80 80 80 

T2 52.7273 *54.3129 52.7273 

T3 43.6364 44.8492 43.6364 

T4 39.0909 39.9894 39.0909 

 

g. Composite wall 

 
Figure 16. Composite wall 

 

 Consider a composite wall consist of three different 

materials shown in Fig. 4 with thermal conductivities 𝑘1, 𝑘2, 𝑘3 

are 70, 40, 20 W/m K respectively, wall thicknesses 𝑙1, 𝑙2, 𝑙3 are 

0.02, 0.025, 0.04 m respectively, temperature at inner and outer 

surfaces are 200°C and 50°C respectively, unit length and unit 

area normal to heat flow. Using developed models, the nodal 

temperatures obtained by each methods are plotted in Fig.16 

and the values of nodal temperatures are given with four 

decimal accuracies in Table 7. 

Table 7. Composite wall temperature comparison 

Nodal 

Temperature 

Exact 

Solution 

FEM 

Solution 

MFEM 

Solution 

T1 200 200 200 
T2 185.2761 185.2761 185.2761 
T3 153.0675 153.0675 153.0675 
T4 50 50 50 

 In conduction heat transfer through composite wall the 

interface temperatures are remains same for all the three 

methods and the MFEM produces zero error. 
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h. Composite cylinder 

 
Figure 17. Composite cylinder 

 Consider a composite cylinder consist of three 

different materials shown in Fig. 6 of inner diameter 0.4 m, 

cylinder wall thickness 𝑡1, 𝑡2, 𝑡3 are 0.25, 0.4, 0.15 m 

respectively, thermal conductivities 𝑘1, 𝑘2, 𝑘3 are 8.5, 0.25, 

0.08 W/m K respectively,  inner and outer surface temperatures 

are 80°C and 30°C respectively. The heat transfer through the 

composite cylinder wall is solved and nodal temperatures are 

plotted in Fig. 17 and the values are given in Table 8. 

Table 8. Composite cylinder temperature 

Nodal 

Temperature 

Exact 

Solution 

FEM 

Solution 

MFEM 

Solution 

T1 80 80 80 
T2 78.9787 79.0312 78.9787 
T3 51.7465 52.6812 51.7465 
T4 30 *30.9825 30 

 From Table 8 it is clearly noted that the nodal 

temperatures obtained by FEM produces 0.07% error at node 2, 

1.81 % error at node 3 and 3.28% of maximum error (*) at node 

4 due to approximation and computation but the values obtained 

through MFEM gives zero error compared to that of exact 

solution. 

i. Composite sphere 

 
Figure 18. Composite sphere 

 

 

 Consider a composite sphere consist of three different 

materials shown in Fig. 8 of inner diameter 0.4 m, cylinder wall 

thickness 𝑡1, 𝑡2, 𝑡3 are 0.25, 0.4, 0.15 m respectively, thermal 

conductivities 𝑘1, 𝑘2, 𝑘3 are 8.5, 0.25, 0.08 W/m K respectively,  

inner and outer surface temperatures are 80°C and 30°C 

respectively. The heat transfer through the composite spherical 

wall is solved and nodal temperatures are plotted in Fig. 18 and 

the values are given in Table 9. 

 

Table 9. Composite sphere temperature 

Nodal 

Temperature 

Exact 

Solution 

FEM 

Solution 

MFEM 

Solution 

T1 80 80 80 
T2 77.5669 78.0243 77.5669 
T3 46.4234 50.6918 46.4234 
T4 30 *34.4121 30 

 

 From Table 9 it is clearly noted that the nodal 

temperatures obtained by FEM produces 0.59% error at node 2, 

9.19 % error at node 3 and 14.71% of maximum error (*) at 

node 4 due to approximation and computation but the values 

obtained through MFEM gives zero error compared to that of 

exact solution. 

 

j. Composite wall with convection 

Consider a composite wall consist of three different 

materials shown in Fig. 4 with thermal conductivities 𝑘1, 𝑘2, 𝑘3 

are 70, 40, 20 W/m K respectively, wall thicknesses 𝑙1, 𝑙2, 𝑙3 are 

0.02, 0.025, 0.04 m respectively, temperature at inner surface is 

200°C, unit length, unit area normal to heat flow, heat transfer 

coefficient ℎ is 10 W/m2 K and ambient temperature 𝑇∞ is 50°C. 

The nodal temperatures obtained by each methods are plotted 

in Fig.19 and the values of nodal temperatures are given with 

four decimal accuracies in Table 10. 

 

 
Figure 19. Composite wall with convection 
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Table 10. Composite wall with convection 

Nodal 

Temperature 

Exact 

Solution 

FEM 

Solution 

MFEM 

Solution 

T1 200 200 200 
T2 199.5836 199.5836 199.5836 
T3 198.6726 198.6726 198.6726 
T4 195.7574 195.7574 195.7574 

 In conduction heat transfer through composite wall 

with convective boundary at one end the interface temperatures 

are remains same for all the three methods and the MFEM 

produces zero error. 

k. Composite cylinder with convection 

 
(a) 

  
(b) 

  
(c) 

 
(d) 

Figure 20. (a) Composite cylinder with convection, (b) 

Temperature at node 2, (c) Temperature at node 3 and (d) 

Temperature at node 4 

 Consider a composite cylinder with convective 

boundary consist of three different materials shown in Fig. 6 of 

inner diameter 0.4 m, cylinder wall thickness 𝑡1, 𝑡2, 𝑡3 are 0.25, 

0.4, 0.15 m respectively, thermal conductivities 𝑘1, 𝑘2, 𝑘3 are 

8.5, 0.25, 0.08 W/m K respectively,  inner surface temperatures 

of 80°C, heat transfer coefficient of 5 W/m2K and ambient 

temperature of 30°C. The heat transfer through the composite 

cylinder wall is solved and nodal temperatures are plotted in 

Fig. 20 and the values are given in Table 11. 

Table 11. Composite cylinder with convection 

temperature comparison 

Nodal 

Temperature 

Exact 

Solution 

FEM 

Solution 

MFEM 

Solution 

T1 80 80 80 
T2 79.0207 79.0532 79.0207 
T3 52.9066 *53.2998 52.9066 
T4 32.053 32.0925 32.053 

 From Table 11 it is clearly noted that the nodal 

temperatures obtained by FEM produces 0.04% error at node 2, 

0.74 % of maximum error (*) at node 3 and 0.12% error at node 

4 due to approximation and computation but the values obtained 

through MFEM gives zero error compared to that of exact 

solution. 
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l. Composite sphere with convection 

 
(a) 

  
(b) 

 
(c) 

 
(d) 

Figure 21. (a) Composite sphere with convection, (b) 

Temperature at node 2, (c) Temperature at node 3 and (d) 

Temperature at node 4 

 Consider a composite sphere with convective 

boundary consist of three different materials shown in Fig. 8 of 

inner diameter 0.4 m, cylinder wall thickness 𝑡1, 𝑡2, 𝑡3 are 0.25, 

0.4, 0.15 m respectively, thermal conductivities 𝑘1, 𝑘2, 𝑘3 are 

8.5, 0.25, 0.08 W/m K respectively,  inner surface temperatures 

of 80°C, heat transfer coefficient of 5 W/m2K and ambient 

temperature of 30°C. The heat transfer through the composite 

spherical wall is solved and nodal temperatures are plotted in 

Fig. 21 and the values are given in Table 12. 

 

Table 12. Composite cylinder with convection 

Nodal 

Temperature 

Exact 

Solution 

FEM 

Solution 

MFEM 

Solution 

T1 80 80 80 
T2 77.6373 77.9659 77.7037 
T3 47.3944 49.8264 48.3108 
T4 31.446 *33.066 32.8107 

 

 From Table 12. it is clearly noted that the nodal 

temperatures obtained by FEM produces 0.42% error at node 2, 

5.13 % error at node 3, 5.15% of maximum error (*) at node 4 

due to approximation and computation, and MFEM produces 

0.09% error at node 2, 1.93% error at node 3, 4.34% of 

maximum error (*) at node 4 due to computation compared to 

that of exact solution. 

 

VI. CONCLUSION 

The modified finite element method is successfully 

developed for conductive and convective heat transfer 

problems. A finite element model for sphere is also developed 

and presented for heat transfer application. The models are 

coded in Python high level language using Python 3.6 open 

source software consist of different modules freely available in 

internet. The coding is executed and results obtained for nodal 

temperatures through three methods, analytical solution, finite 

element method and modified finite element solution, are 

discussed for different applications like plane wall, cylinder, 
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sphere and composite walls with and without convective 

boundary condition. The result shows that the values of nodal 

temperatures obtained by finite element method produces zero 

error for plane wall, cylinder, sphere without convective 

boundary condition and composite wall with boundary 

condition. In case of cylinder and sphere with convective 

boundary condition FEM produces some errors due to 

approximation and computation. The modified finite element 

method produces zero error for plane wall, cylinder, sphere 

without convective boundary condition and composite wall, 

cylinder with convective boundary. It produces the error only 

for sphere with convective boundary condition and also the 

error produced by MFEM is lies between the FEM and exact 

solutions which are very close to exact solutions. 

By using this modified finite element method accurate 

solutions can be obtained by considering the thermal resistance 

in each and every element and resistance becomes primary 

variable for heat transfer problem. This method also suitable for 

complex geometries and uneven discretization of the n number 

of elements. The coding developed through Python is very 

easier and quicker than that of FORTRAN, MATLAB and 

VB.Net. MFEM in Python can produce high accurate results 

with considerably short duration. 
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