Vesicular Arbuscular Mycorrhizal Status on Some Medicinal Plants At Kaluasarh of Nayagram Block Under Jhargram District of West Bengal, India

Dr. Pampi Ghosh¹, Dr. N. K. Verma², Dr. Debabrata Das³ ¹Dept of Botany ²Retired Professor, Dept of Botany & Forestry ³Ecology Laboratory ^{1, 2} Seva Bharati Mahavidyalaya, Kapgari, Jhargram, West Bengal, India ²Vidyasagar University, Midnapore, West Bengal, India ³Lalgarh Govt. College, Lalgarh, Jhargram, West Bengal, India

Abstract- The present study was done with the aim to represent data on Vesicular Arbuscular Mcorrhizal (VAM) status of different medicinal plants available in the forest of Kaluasarh areas of Nayagram under Southwest Bengal. Kaluasarh is a sacred grove; within Nayagram area of Jhargram District which is coppice sal (Shorea robusta) dominated dry deciduous forest. Medicinal plants of 41 species studied well after critical analyses. All 41 root samples of different medicinal plants showed intercellular hyphae, arbuscule, and vesicles round the year. Some of these showed coiled hyphae also. Spores isolated from rhizospheric soil of studied samples showed spores of Glomus, Acaulospora, Gigaspora, Paraglomus and Scutellospora, in which Glomus sp was found most common. The VAmycorrozal root colonization, spore population, species richness and species diversity altered with seasons as well as with plant species. Highest root colonization percentage was found during monsoon and highest rhizospheric spore population was found during winter. As there are 7 types of mycorrhizal fungi currently recognised but the present study focused on vesicular arbuscular mycorrhizal fungi and its association with some important forest living medicinal plants.

Keywords- Arbuscular mycorrhizal status, colonization, medicinal plants, spore diversity.

I. INTRODUCTION

Lateritic South west Bengal has a vast tract of sal (Shorea robusta) dominated dry deciduous forest area. Its ground area is covered with variety of important herbaceous medicinal plants. Some plants are annual and some are present throughout the year. Medicinally important trees are also there. These medicinal plants have great importance due to their tremendous potential in modern and traditional medicines. Indian system of medicine uses 25,000 plant

species belonging to more than 1000 genera ¹ among them about 25% species are used by the industries. Herbal drugs obtained from plant parts are believed to be much safer than chemical drugs ² and has been proved in the treatments of various ailments .According to WHO nearly 80% of population in developing countries like India consume traditional medicines for sustaining health and vitality. Medicinal plants have been identified as one of the thrust areas by the Ministry and different programmes have been initiated for conservation of medicinal plants found in the forests and protected areas as well as cultivation of these plants in the degraded forest areas.

To improve the quality of plant drugs and increase production of active principles it is necessary to improve the health of plants. Fertilizer is the only way to cultivate medicinal plants in proper way. Chemical fertilizers are costly and hazardous to health and environment. So, the time comes to apply bio fertilizer to improve the plant health and productivity and at the same time improve the quality of production. Since few decades arbuscular mycorrhizal (AM) fungi has emerged as potential bio fertilizer (3, 35). It is cheap, environmental friendly and alternative of costly, hazardous chemical fertilizer⁴. Mycorrhiza is the mutualistic symbiotic association (non-pathogenic) between soil-born fungi with the roots of higher plants ⁵. Mycorrhizae are found in a wide range of habitats usually in the roots of angiosperm, gymnosperms and pteridophytes. About 80% of all terrestrial plant species form this type of symbiosis ⁶ and 95% of the world's present species of vascular plants belong to families that are characteristically mycorrhizal ⁷. VA-mycorrhizae increase tolerance to adverse soil conditions, influence response to several climatic conditions and increase plant productivity and are important for natural and managed ecosystems⁸. Mycorrhiza plays a very important role on enhancing plant growth and yield due to increase in supply of phosphorus to the host plant from the residing soil.

Mycorrhizal plants can absorb and accumulate several times more phosphate from the soil than non-mycorrhizal plants ^{9,40}.

Mycorrhiza increase root surface area for water & nutrient uptake and same time give resistance against some root diseases. Arbuscular Mycorrhizal fungi are one of the important components of rhizospheric ecosystem, because they play an important role in establishing of plant community ³⁶. Vesicular Arbuscular Mycorrhizal fungi (VAMF) acts as bio-fertilizer and have the unique ability to convert nutritionally important elements from unavailable to available form through biological processes 10. Plants with VAmyccorrizal association will have higher efficiency for nutrient absorption, such as nitrogen, phosphorus, potassium, calcium, magnesium, zinc and copper ^{11, 4}. At the same time VAM increases plant resistance to draught ¹². There are so many reports of Vamyccorrhizal association with medicinal plants ^{(10, 11, 12, 16, 17, 18, 19, 31, 32, 33, 34and 40}). Associated VAM funguses with the medicinal plants not only enhance the growth of those medicinal plants but also improve the active principle contents of plants or plant parts (13, 14, 15 and 16, 36).

The study site is situated on the bank of river Subarnarekha which is *Sal* dominated with potential natural medicinal plants. Present study is important one since literature perusal did not show any authentic study regarding VAM status of this unique geographical area. Once inventoried, the same can be used for improvement of cultivated medicinal plants and their active principle in Lateritic South West Bengal, India.

II. MATERIALS AND METHODS

Study area:

The study site was Nayagram which is situated aside the bank of the river Subarnarekha and a Plain area with lateritic *Sal* dominated dry deciduous forest. The altitude is above mean sea level. The study Spot was Kaluashar area of Nayagram which is situated in between 22 ° 01′ 55′′ N and 87 ° 10′ 41′′ E. The spot is 6 km away from Nayagram forest range office. The temperature is in between 12 to 38 degree centigrade and the average annual precipitation is 2120 mm.

Sampling of roots and rhizospheric soils:

Available and easy to uprooting medicinal plants with their intact roots and rhizospheric soil up to 10 cm depth was collected. Periodic survey was undertaken to study the seasonal variations of mycorrhizal fungi and status of the same. Based on the climate three seasons were recognised. Monsoon (July, August, September and October), winter (November, December, January and February) and summer (March, April, May and June).

Fine feeder roots of the medicinal plants were collected and cut into approx. 1cm. Fragments was washed under tap water properly. Root samples were taken into labelled glass test tubes and 20% KOH solution added to them so that samples were immersed into the solution properly. The test tubes were kept in the laboratory for three days. The cold treatment is though time consuming at the same time labour saving and easy ^{20, 21}. After three days roots were taken in nylon tea-sieves and washed under tap water. Then these pieces were soaked in dilute HCl sol (1% to 3.5%) for 3-4 minutes and again washed in tap water. Cleared root segments were stained by writing ink (Camel, Royal Blue) as a dye. The staining solution consists of 5% ink diluted in vinegar (5% acetic acid) solvent ^{21, 22 and 23}. The samples with stain may be kept in the same condition for one day or can be observed after 30 minutes after rinsing with acidified water. Root segments if still remain pigmented after cold treatment then it is necessary to place the root segments in freshly prepared alkaline H₂O₂ Solution at room temperature for 10 to 20 minutes or until roots are bleached ²¹. Alkaline H₂O₂ is made by adding 3 ml of NH₄OH to 30 ml of 10% H₂O₂ and 567 ml of fresh tap water ²¹. Staining of VA mycorrhizae with Ink and vinegar is a low- budget, non toxic, non hazardous technique which gives excellent staining results ^{21, 24}.

Rhizospheric soil samples were collected in clean plastic carry bags with tag. Each soil sample was spread on clean news paper and was allowed to dry in air under shade of net house of Vidyasagar University. Pebbles and other unwanted matters were removed. Large lumps were broken with wooden roller or hand. After grinding soil samples were sieved through flower sieves and fine soils were stored in clean plastic carry bag with tag /Labelle for spore estimation and soil analysis in room temperature.

Estimation of root colonization:

VA-mycorrizae colonization in roots was assessed following slide method ^(25, 26) stained root pieces of app. 1cm length were randomly placed on slide in groups of 5.to.observe hyphae, vesicles, arbuscule and other related structures under light microscope ($15^{\times}10$), the root pieces were mounted in lacto phenol or 50% glycerine. It is necessary to press gently the cover slip to flatten the root pieces.

The percentage of AM infection was calculated using the formula:

IJSART - Volume 4 Issue 10 – OCTOBER 2018

Percent of root colonization= Number of root segments colonized/Number of root segments observed x 100

Spore separation and quantification:

Quantification and separation of VAmycorrhizal spores from each medicinal plant rhizospheric soil sample was done by using wet sieving and decanting method ^{27,39}. From each soil sample 100 gm soil was taken and mixed with 1L normal tap water in large beaker and stirred by glass rod until all the aggregates dispersed to leave a uniform suspension. Heavier particles were allowed to settle down. The suspension was passed through stack of sieves, 710µm, 150µm, 75µm, 45µm and 32µm consecutively for several times repeats. The residues of respective sieves were collected in separate beaker. Then the aliquots were passed through filter paper placed in a glass funnel. To accumulate spores in a single circle clear water drops should be tickled through dropper. Now the filter papers placed in wet Petridis and spores were counted and observed through stereomicroscope (×40). Total spores were counted by adding the spore numbers of each respective filter paper spores. Spore density was calculated by counting the spores in the 100gm of soil. Spores were separated wooden dowel and mounted in lacto phenol for temporary work. For permanent slide preparation for further work spores were mounted in Polyvinyl -alcohol-lacto-glycerol. Sometimes glue was used for the same purpose in absence of PVLG.

Identification of VA-mycorrhizal spore:

Based upon hyphal attachment colour, size, shape, structure and compound microscopic character spores were identified. For identification and nomenclature INVAM's World Wide Web site at http:/invam.caf.edu was used. In this present study unexplored lateritic Sal dominated forest floor near Kaluasarh was taken. Plant samples and rhizospheric soils of the study site were collected every month's interval for two years.

III. RESULTS AND DISCUSSION

A total 41 medicinal plant species were screened for VA-mycorrhizal colonization in Kaluasarh sacred grove area. Among them 41 host species belong to 39 genera under 30 different families (Table 1). All the plants were found myccorizal. VA-mycorrhizal colonization was indicated by the presence of hyphal networks, arbuscules, vesicles, interradicular vesicles (IRVs) and coiled hyphae. Highest percentage of colonization showed in rainy season and lowest in summer as the result is similar to the result of Bouamari et al.²⁸. Spore density increased to its peak in winter and least in rainy seasons followed by Sambandan²⁹. Plants like Cissampelos pareira, Rungia pectinata, and Smilax zeylanica showed high % of infection (99%) during monsoon and Blumea lacera showed highest % of spore density (280) per 100 gm rhizospheric soil during winter (Table 2). Temperature and moisture fluctuations with different seasons influence the AM spore population and root colonization directly or indirectly ¹³. The VA-mycorrhizal spore count has showed no significant or positive correlation with the root colonization percentage 12.

The spore density was in between 74 to 280/100gm soil. The major population of VAM fungi was *Glomus* sp followed by *Scutellospora*, *Aculospora* and *Gigaspora*. The predominance of various *Glomus* spp. seems to be general observation reported under curtained ecosystem by others also and at the same time in case of medicinal plants also ^{12,19, 29 and} ³⁰. *Glomus* has high adaptive mechanism for associations with various medicinal plants of deciduous lateritic *sal* dominated Southwest Bengal forest floor as well as in agricultural land of the same site ^{37, 38}.

Sl.	Name of plant	Family	Parts used	Uses	Active principle
No.					
1.	Aegle marmeolos	Rutaceae	Fruit pulp	Fruit pulp is usedin Chronic	Furoquinolin,
	Corr.		and	diarrhea, dysentery, Half ripe fruit	furo-coumarins.
	(BengBel)		Leaves.	is used as an astringent, digestive,	
				stomachic and in diarrhea.	
2.	Amorphophalus	Araceae	Corm	Used as chemical medicine called	Phenolic
	sylvaticus (Roxb.)			madanmast	compounds,
	Kunth. Syn.:				glycyrrhizin
	Synantherias sylvatica				
	Schott.				
	(BengBan oal)				

Table 1 Important Medicinal Plants of Kaluasarh at Nayagram, Jhargram, West Bengal, India

3.	Aristolochia indica L.	Aristololoc	Leaves,bar	Juice with honey used against	Alkaloid
	(BengIswarmul)	hiaceae	k,stem and root	leucoderma,used against fever,arthritis and bowel complaints	aristolochine
4.	Azadirachta indica	Meliaceae	All parts	Anthelmintic,carminative	Alkaloid
	Adr. Juss.(Beng		i in pute	expectorant, leaves used in skin	azadirachtin
	Neem)			diseases, seed oil used for killing	
	,			lice	
5.	Blumea lacera DC.	Composita	Leaves	Juice of leaves is anthelmintic,	Apinene,
	(BengKuksima)	e/Asterace		diuretic, stimulant, and febrifuge	Humulene, E-b-
		ae			farnesene
6.	Chlorophytum	Antheriace	Tubers	Used as aphrodisiac and tonic, to	Steroids,
	tuberosum (Roxb.)	ae		treat physical illness.	saponin,
	Baker (BengMusli)				triterpinoids,
					glycosides and
					alakloids.
7.	Cissampelos pareira L.	Menisperm	Dried roots	Used in diarrhea, dysentery, colic	Alkaloid
	(BengPadh)	aceae	leaves	pains, cough and urinary troubles.	bebeerines or
					pelosine:
					Hayatine.
8.	Cissus quadrangularis	Vitaceae	Stem.	Plant pest used to join broken	Phytosterols,
	L. (BengHarjora)			bone	flavonoids
9.	Clerodendrum	Verbenace	Leaves	Locally used over boils and	Steroids,
	viscosum Vent.	ae	roots	certain skin diseases, also	flavonoids,
1.0	(BengGhentu)	~	_	anthelmintic, antiperiodic	saponins
10.	Commelina obliqua	Commelin	Leaves	Juice of leaves used to treat insect	-`
11.	Vahl.	aceae	Whole	bites.	Dramolizidono
11.	<i>Croton bonplandianum</i> Baill.	Euphorbia ceae	plant	Extract is useful as hypotensive and spasmolytic	Pyrrolizidene alkaloids such
	(Beng	Ceae	plan	and spasmorytic	as mucronatin,
	Banlanka/Churchri)				monocrotaline
12.	Curculigo orchioides	Hypoxidac	Rhizome.	Alterative, appetizer	phenolic
	Gaertn. (Beng	eae		aphrodisliac, carminative, demulce	compound
	Talamuli)			nt, diuretic.	Curculigoside
13.	Desmodium	Fabaceae	Roots and	Used in febrifuse and anti-	Alkaloids,
	gangeticum DC.		Seeds.	catarrhalic medicine. It has also	terpenopids,
	(BengSalpani)			antipyretic property.	phenols,
					steroids and
14.	Dioscorea bulbifera L.	Dioscoreac	Tuberous	Used o treat ulcers, piles and	tannin. Stigmasterol,
1 7.	(BengBanalu)	eae	roots	syphilis, anti-tumour, anticancer	mono-arachidin,
	(=			suppressing activity.	dioscorin,
				11	diosbulbin-B, D.
15.	Dioscorea triphylla (Dioscoreac	Tuber	Used to treat indigestion, having	Steroids,
	L.) Amoen.	eae		anticancer suppressing activity.	alakaloids and
	(BengChurka alu)				glycosides.
16.	Elephantopus scaber	Asteraceae	Leaves	Decoction used for diarrhoea,	Terpenoids,
	L. (Beng		and roots	dysentery and pains in stomach. It	flavonoids,

		[1	
	Hatikan/Gobhi)			has anti-bacterial, anti-viral, anti-	glycosides,
				tumour and hepatoprotective	alkaloids,
				properties. It balances the blood	quinines,
				pressure also.	phenols, tannin
				-	and saponins.
					elephantopin
17.	Elsholtzia patrini	Lamiaceae	Lagua	Oil of leaves is used in medicine	beta-
17.	A	Lamaceae	Leave		
	Garcke. (BengSedok)			which is aromatic.	dehydroelsholizi
					one, Elghotlzia
					ketone, d-
					carvone.
18.	Fimbristylis cymosa R.	Cyperacea	Whole	Used against snake bites,	Alakaloids,
	Br.	e	plant	antimicrobial, anti-diarrhoeal.	glycosides and
			*		saponins
19.	Flacourtia vulgare	Flacourtiac	Leaves.	Leaf juice having anti-diabetic	Alkaloids,
17.	Mill. (BengBaichi)	eae	Leuves.	effect	tannins,
	min. (DoingDaloini)	Cue			
					saponins,
					flavonoids,
					glycosides,
					phenolic
					compounds,
					triterpenoids
					and steroids.
20.	Gardenia gummifera L.	Rubiaceae	Bark and	antispasmodic, carminative,	Gardemin,
	(BengBon Gandharaj)		gum-resin.	anthelmintic and antibacterial	Oleanomic
	(Deng. Den Gunanaraj)		gen resin	Gum-resin is used as carminative,	aldehyde and
				stimulant and in dyspepsia.	nevadensin
				sumulant and in dyspepsia.	nevadensm
21.	Hemisdesmus indicus	Asclepiada	Roots	Roots are used as substitute of	p-methoxy
21.	L. (BengAnantamul)	ceae.	1000	Sarsaparilla; as tonic, diuretic,	salisylic
	L. (DengAnantaniai)	ceae.		diaphoretic and demulcent	aldehyde,
				diaphoretic and demulcent	•
					coumarins,
					flavonoids,
					triterpenes,
					pregnane
					glycoside,
					polyphenols,
					and sterols
22.	Holarrhena	Apocynace	Leaves,	Used to cure dysentery, and	Bark contains
	antidysenterica (L.)	ae.	bark,	diarrhoea.	Conessine,
	Wall. Ex Dc. (Beng		seeds, root		Kurchine,
	Kurchi)		,		Kurchicine,
	Kurchi)		(Bark).		· · · · ·
					holarrhimine,
					conarrhimine,
					iso-conessimine,
					conimine,
					holacetin and
					conkurchin
23.	Ichnocarpus	Apocynace	Roots,	Used to treat cough,	Alkaloids,
	frutescens Ait. & Ait.	ae.	leaves	thirst, vomiting, fever, biliousness,	glycosides,
	(BengDudhilata)			decoction used as nervous	steroids,
	(DongDuulinata)			accocuon usea as nervous	5010105,

24.	<i>Lygodium japonicum</i> (Thunb.)Sw. (Beng Berajal)	Lygodiaca ea-A fern.	Whole plant	debility. Leaf paste used against skin diseases. Plant paste used on fractured bones. Decoction of plant parts (vegetative and spores) is used as diuretic and cathartic.	flavonoids and tannins Quercetin
25.	Meyna laxiflora Robys. Syn.: Vanguiria spinosa Roxb. (Beng Maynakanta)	Rubiaceae.	Fruits.	Dry fruits is used for boils and dysentery	Glycosides, alkaloids, steroids, tannins, saponins, gums, terpenoids, mucilage etc.
26.	<i>Mimosa pudica</i> L. (BengLajjwati)	Mimosace ae.	Leaves, Seeds.	Used as sedative and laxative	Alkaloisds, mimosin, flavonoid, C- glycosides, sterols, terpenoids, tannins and fatty acids.
27.	Mitrcarpus verticillatus (Schumach. & Thonn.) Vatke. (Beng Papra)/Rubiaceae	Rubiaceae	Whole plant	Whole plant used to treat nausea and vomiting, antimicrobial, antileashmanial.	Phenolics and flavonoids
28.	Mollugo lotoides (L.) O. Kuntze (Beng Gimesak)	Mollugina ceae.	Whole plant.	Dried plant is used in diarrhoea; cure for boils, bilious attacks and for wounds and pains in the limbs.	Saponin, flavonoids
29.	<i>Mollugo pentaphylla</i> L. (BengGhoragime)	Mollugina ceae	Whole plant	Stomachic, aperients, antiseptic and emmenagogue, and is used in poultice for sore legs.	Saponin, carotine
30.	Ocimum americanum L. (BengBantulsi)	Lamiaceae.	Seeds, leaves.	Seeds are used in dysentery and chronic diarrhea, leaves are aromatic expectorant, stomachic and carminative	Methyl havicol, eugenol, limonene
31.	<i>Olax scandens</i> Roxb. (BengVaduriara)	Olacaceae.	Bark.	Used in anaemia, stem bark also used to cure fever and cough.	henolics and alakaloids
32.	Pedalium murex L. (Beng Baragokhur/Baghnak)	Pedaliacea e.	Fruits.	Seeds used to treat urinary troubles.	Alkaloids, flavonoids, steroids, fixed oils and fats, glycosides in bark
33.	PhyllanthusfraternusWebster(BengBhuiamlaki)	Euphorbia ceae	Whole plant, roots.	Whole plant used to treat jaundice, ulcers and skin diseases.	Alkaloids, cyanogenic glycosides,

IJSART - Volume 4 Issue 10 – OCTOBER 2018

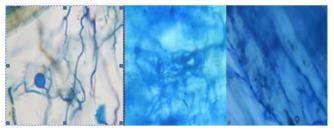
	Γ	I	I	l	· · · · · · · · · · · · · · · · · · ·
					saponins,
					tannins and
					oxalates
34.	Rungia pectinata (L.)	Acanthace	Leaves	Juice of the leaves is given in	Flavonoids and
	Nees	ae		small pox and has cooling effect,	terpinoids
	(BengNilful)			considered cooling and aperients,	
				and is given to relief pain and	
				swellings.	
35.	Sagittaria sagittifolia	Alismatace	Whole	Corm paste used to treat swellings	Sagittine A-D
	L.	ae	plant	and to reduce joint pain, having	
	(BengTirusak)			antibacterial activity, rheumatism	
				and in oral diseases.	
36.	Shorea robusta Gaertn.	Dipterocar	Resin	Used in diarrhea and dysentery,	Alkaloids and
	f. (Beng Sal)	paceae		and also in ointments for skin	flavonoids
	Fig. 1, 3.			diseases.	
37.	Smilax zeylanica L.	Smilacacea	Roots	Roots are substitute for India	Catechin
57.	(Beng Ramdantan)	e	ROOIS	Sarsaparila in treatment of veneral	Calecilli
	(Deng Kanidantan)	C		diseases, also applied for	
				rheumatism and bloodless	
				dysentery.	
				dysentery.	
38.	Stephania japonica	Menisperm	Tuber	Tubers are used for fever,	Phenols,
	(Thunb.) Miers.	aceae		diarrhoea and to stop stomachic	flavonoids,
	(BengTejomala)				alakaloids,
					saponins and
					glycosides
39.	Tamarindus indica L.	Caesalpini	Leaves and	Fruit pulp is refrigerant,	Phenolic
	(BengTentul)	aceae	seeds,	carminative and laxative, infusion	compound,
			Flowers.	of leaves is reported to be cooling	cardiac
				and useful in bilious fever,	glycosides.
				poultice of fresh leaves is useful	
				in swellings and boils, and for	
				relieving pain.	
40	17		XX71 1		T :
40.	Vernonea cineria (L.)	Asteraceae	Whole	Antifilarial, anthelmintic,	Triterpene,
	Less. (BengSahadevi)		plant	diaphoretic, diuretic seeds Paste	luteolin
				used locally in skin diseases and	
				destroying head lice.	
41.	Xeromphis spinosa	Rubiaceae	Fruits	Used as refrigerant, cholagogue.	Glycosides,
	(Thunb.) Keay				alakaloids,
	(Beng				steroids,
1	(Deng				
	(Beng Mainphal/Madan)				saponins

S1.	Name of plant	Season	Season wise root Colonization			density	in 100g
No.	Name of plant	%		colonization	Spore rhizosph	-	in 100g
		Rainy season	Winter season	Summer season	Rainy season	Winter season	Summer season
1.	Aegle marmeolos Corr. (BengBel)	72 (72:0)	46	40	100	210	170
2.	Amorphophalussylvaticus(Roxb.) Kunth.(BengBan oal)	22 (11:1)	Dead plant	Dead Plant	80	75	74
3.	Aristolochia indica L. (Beng Iswarmul)	50 (19:2)	46	40	80	170	120
4.	Azadirachta indica Adr. Juss. (BengNeem)	75 (75:0)	65	60	135	200	170
5.	Blumea lacera DC. (Kuksima - Beng.)	92 (92:0)	88	60	135	280	160
6.	Chlorophytumtuberosum(Roxb.) Baker (BengMusli)	76 (76:0)	52	40	120	260	155
7.	Cissampelos pareira L. (Beng Padh)	99 (19:15)	40	32	140	240	190
8.	<i>Cissus quadrangularis</i> L. (BengHarjora)	40 (4:1)	34	24	90	200	140
9.	Clerodendrum viscosum Vent. (BengGhentu)	82 (12:1)	72	60	120	220	150
10.	Commelina oblique Vahl.	70 (5:1)	PNV	PNV	90	-	-
11.	<i>Croton bonplandianum</i> Baill. (BengBanlanka/Churchri)	84 (84:0)	72	68	135	220	170
12.	Curculigo orchioides Gaertn. (BengTalamuli)	62 (31:8)	Dead Plant	PNV	120	180	-
13.	<i>Desmodium gangeticum</i> DC. (BengSalpani)	47 (45:12)	36	30	90	200	160
14.	Dioscorea bulbifera L. (BengBanalu)	98 (49:1)	PNV	PNV	140	-	-
15.	Dioscorea triphylla (L.) Amoen. (BengTinpataalu)	74 (37:2)	PNV	PNV	120	-	-
16.	<i>Elephantopus scaber</i> L. (BengHatikan/Gobhi)	91 (13:10)	48	PNV	131	200	-

Table 2. VAM Root Colonization % and spore Density/100 gm rhizospheric soils of medicinal Plants available at Nayagram, India

IJSART - Volume 4 Issue 10 – OCTOBER 2018

1.5		0.6	DUT	DUI	100	1	
17.	<i>Elsholtzia patrini</i> Garcke. (BengSedok)	96 (46:3)	PNV	PNV	120	-	-
18.	Fimbristylis cymosa R. Br.	10	PNV	PNV	70	_	
18.	(BengSulughas)	(1:1)	PINV	PINV	70	-	-
19.	Flacourtia vulgare Mill.	65	30	20	123	176	150
17.	(Baichi -Beng.)	(65:0)	50	20	125	170	150
20.	Gardenia gummifera L. (Beng	76	68	50	130	210	170
	Bon Gandharaj)	(76:0)					- / •
21.	Hemisdesmus indicus L.	84	82	71	132	240	200
	(BengAnantamul)	(4:3)					
22.	Holarrhena antidysenterica	75	64	60	131	256	189
	(L.) Wall. Ex Dc. (Beng Kurchi)	(75:0)					
23.	Ichnocarpus frutescens Ait. &	58	50	45	122	242	170
	Ait. (BengDudhilata)	(58:0)					- / •
24.	Lygodium japonicum	20	12	10	60	150	130
	(Thunb.)Sw. (BengBerajal)	(35:1)					
25.	Meyna laxiflora Robys. (Beng	78	70	60	80	180	170
	Mynaphal/Mynakanta)	(78:0)					
26.	Mimosa pudica L. (Beng	70	56	30	130	215	160
	Lajjwati)	(7:1)					
27.	Mitrcarpus verticillatus	91	PNV	PNV	140	-	-
	(Schumach. & Thonn.) Vatke.	(42:7)					
	(Bengpapra)/Rubiaceae						
28.	Mollugo lotoides (L.) O.	12	PNV	PNV	80	-	-
	Kuntze (BengGimesak)	(12:0)					
29.	Mollugo pentaphylla L. (Beng	10	PNV	PNV	70	-	-
_>.	Ghoragime)	(10:0)					
30.	Ocimum americanum L.	54	PNV	PNV	120	-	-
50.	(BengBan tulsi)	(17:5)	1144	114.4	120	-	_
31.	Olax scandens Roxb. (Beng	51	40	24	131	199	156
51.	Vaduriara)	(51:0)	40	24	151	199	150
32.	Pedalium murex L. (Beng	92	72	42	140	205	160
52.	Baragokhur/Baghnak)	(41:19)	12	42	140	205	100
	Durugoknur/Duginiuk)	(+1.17)					
33.	Phyllanthus fraternus Webster	34	30	24	70	180	120
	(BengBhuiamlaki)	(34:0)					
		· /					
34.	Rungia pectinata (L.) Nees	99	98	PNV	145	240	-
	(BengNilphul)	(99:0)					
	(2 ong. 1 (nphu))	(22.0)					
35.	Sagittaria sagittifolia L.	98	PNV	PNV	90	-	-
	(BengTirusak)	(10:3)					
36.	Shorea robusta Gaertn. f.	40	32	21	70	180	140
	(Beng Sal)	(7:3)	-				
		()					
37.	Smilax zeylanica L.	99	62	40	145	225	170
	(Beng Ramdantan)	(99:0)		-			
38.	Stephania japonica (Thunb.)	62	46	32	97	160	125
	Miers.	(62:0)	-	-			-
		(0=.0)	1				


	(BengTejomala)						
39.	Tamarindus indica L. (BengTentul)	78 (78:0)	60	28	80	120	114
40.	Vernonea cineria Less. (Beng Sahadevi)	75 (75:0)	68	48	130	200	168
41.	Xeromphis spinosa (Thunb.) Keay (BengMainphal/Madan)	68 (68:0)	50	42	120	198	160

N.B: PNV =Plant physically not visible during the season. Value in parenthesis indicates arbuscle and vesicle ratio. As monsoon shows all available plant species, hence arbuscles and vesicles ratio has been done on the basis of common occurrence of species at study site.

IV. PHOTO PLATE

Fig 1 Forest official and 1st author during field,
2. Kaluasarh sacred grove,
3. Forest floor of dry deciduous coppice sal

\Fig 4. Vesicle in *Aristolichia* root,
5. Coiled hyphae in *Aristolichia* root,
6. Arbuscles in roots of *Aristolichia* sp.

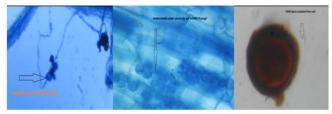


Fig 7. Auxiliary cells of VAM fungi, 8. IRV of VAM fungi, 9. VAM spore isolated from soil of Nayagarm forest.

V. CONCLUSION

Based on this study and investigation, it was not possible to access the host specificity in details of medicinal

plants of forests for VAM fungal colonization. So, there is a true scope for further detailed study to compromise the understanding between the AM fungi and host for the specificity of colonization. Not only that there are scopes to study more to know about the VAMF interaction to the medicinal plants along with the effect on enhancements of secondary metabolites particularly the production of active principles. This may be made in a trial basis under controlled condition in pot culture under net house to know the actual deviation found in field under natural condition.

VI. CONFLICT OF INTEREST

Conflict of interest is none.

VII. ACKNOWLEDGEMENTS

Authors express their sincere thanks to Deputy Librarian, Vidyasagar University, Midnapore for his help to consult Library and Journal section of the same. Head, Deptt. of Botany & Forestry, Vidyasagar University is well acknowledged for his help. All scholars and staff of both the departments are well acknowledged. Foresters of specified range office are well acknowledged.

REFERENCES

- Kartikeyan, B; Joe, M. M and Jaleel, C.A. 2009. Response of Some Medicinal Plants to Vesicular Arbuscular Mycorrhizal Inoculations, *Journal of Scientific Research*, 1(1), 381-386.
- [2] Mitalaya, K.D; Bhatt, D.C; Patet, N.K and Didia, S. K.2003. Herbal remedies used for hair disorders by tribes and rural folk in Gujarat, *Indian journal of Traditional Knowledge*, 2: 389-392
- [3] Dalpe, Y and Monreal, M. 2004. Arbuscular Mycorrhiza Inoculum to Support Sustainable Cropping Systems, Online Crop Management, doi:10.1094/CM-2004-0301-

09-RV.2004

- [4] Stivastava D; Kapoor R; Srivastava, A.K. and Mukerji, K.G. 1996. Vesicular Arbuscular Mycorrhiza, an overview, In Mukerji KG (Edn.), Concepts in mycorrhizal research, Kluwer, Dordrecht, pp.1-34.
- [5] Sieverding, E. 1991. Vesicular Arbuscular Mycorrhizal Management in Tropical Agrosystems. Technical Cooperation, Federal Republic of Germany Eschborn, ISBN 3-88085-462.
- [6] Smith, S E and Read, D. J. 1997. Mycorrhizal Symbiosis, Academic Press, Inc San Diego California.
- [7] Quilimbo, O. A. 2002. Functioning of Peanut (*Arachis hypogea* L) under nutrient deficiency and drought stress in relation to symbiotic associations, Ph. D thesis, University of Groningen, The Netherlands, Van Denderen B.V., Groningen.
- [8] Brundrett, M; Beegher, N; Dell, B; Groove, and Malajczuk, N. T. 1996. Working with Myccorizas in Forestry and Agriculture, ACIAR monograph 32.374+xp ISBN 1863201815
- [9] Verma, N. K. 1998. Effect of VA mycorrhiza on the growth and P uptake in *Eupatorium adenophorum* Spreng. (Asteraceae) grown in soil amended with soluble phosphate, *J. Nat. Bot. Soc.* 52: 41-45 (printed in India).
- [10] Hedge, D.M; Dwived,B. S and Sudhakara, S. N. 1999. Biofertilizers for cereal production in India Review, *Indian J. Agri Sci*, **69**; 73-83
- [11] Achakzoi, A. K.K; Liasu, M.O and Popwla, O.J. 2012. Effect of mycorrhizal inoculation on the growth and phytoextraction of heavy metals by maize grow in oil contaminated soil, *Pakisthan Journal of Botany*,44 (1): 221-230.
- [12] Koul,K; Agarwal, S and Rafiq, L. 2012. Diversity of Arbuscular Mycorrhizal Fungi Associated with the Medicinal plants from Gwalior-Chambal region of Madhya Pradesh, India; *American-Eurasian J. Agric.* and *Environ, Sci.*, **12** (8): 1004-1011
- [13] Pawaar, J. S. and Kakde, U. B. 2013. Screening of some important medicinal plants and Rhizosphere for arbuscular mycorrhiza of Mumbai Region, *Life Science leaflets*, 8: 08-18.
- [14] Sing, M. Sing, P and Vyas, D.D. 2011.Mycorrhozation in Medicinal Plants, *Mycorrhizal News*, 23:14-21.
- [15] Baylin, G.T.S. 1967. Experiments on the ecological significance of phycomycetous mycorrhizas. *New Phytol.*, 66: 231-243.
- [16] Zubek, S. and Blaszkowski, J. 2009. Medicinal plants as hosts of arbuscular mycorrhizal fungi and dark septate endophytes, *Phytochem.Rev.*, 8: 571-580.
- [17] Hassan, M; Sadaghiani, R; Hossani, A; Mohsen, B; Youness Rezaee, D and Sefidkon, F. 2010. Effect of arbuscular mycorrhizal (AM) fungi on growth, essential

oil production and nutrient uptake in basil, *Jopurnal of Medicinal Plants Research* **4** (21): 2222-2228.

- [18] Aparna, J and Bagyaraj, D.J. 2007. Response of Kalmegh to an Arbuscular Mycorrhizal Fungus and a Plant Growth Promoting Rhizomicro organism at two Levels of Phosphorus Fertilizer, *American-Eurasian J. Agricu. & Envioron Sci.*, 2 (1): 33-38.
- [19] Muthuraj, K, Prasad Joseph, V. J and Nagarajan, N. 2014. Arbuscular Mycorrhizal Fungal Diversity and root colonization of some Medicinal plants Rhizospheric soil of Madayipara Hills, Kannur, Western Ghat Kerala, *World Journal of Pharmacy and Pharmaceutical Science*, **3** (6): 1114-1122.
- [20] Zubek, S; Blaszkowski, J; Seidler-Lozykowska, K; Baba, W and Mleczko, P. 2013. Arbuscular Mycorrhizal Fungi Abundance Species Richness and Composition under the monocultures of five Medicinal Plants, *Acta Sci.Pol.,Hortorum Cultus*, **12**(5): 127-141
- [21] Utobo,E.B; Ogbodo, E. N and Nwogbaga, A.C. 2011. Techniques for Extraction and Quantification of Arbuscular Mycorrhizal Fungi , *Libyan Agriculture Research Centre journal International*, 2(2): 68-78.
- [22] Mycorrhiza-AM Mannual, INVAM Pdf 17/8/13
- [23] Vierheilig, H., Coughhlan, A.P; Wyss and Picge, Y. 1998. Ink and vinegar, a simple staining technique for arbuscular mycorrhizal fungi, *Appl. Environ. Microbial.*, 64: 5004-5007.
- [24] Vierheilig, H., Schweiger and Brundrett, M. 2005. An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots, *Physiologia Plantarum*, **125**: 393-404.
- [25] Giovannetti, M and B. Mosse. 1980. An evaluation of techniques for measuring Vesicular Arbuscular Mycorrhizal infection in root, *New Phytologist.* 84: 489-500.
- [26] McGonigle, T.P; Miller, M.H; Evans, D.G.; Fairchild, G.L and Swan, J.A. 1990. A new method Which gives an objective measure of colonization of roots by Vesicular Arbuscular Mycorrhizal fungi, *New Phytol.***115**: 495-501.
- [27] Gerdemann, J.W. and Nicolson, T.H. 1963. Spores of Mycorrhizal Endogone Species extracted from soil by wet sieving and decanting, *Transaction of British Mycological society*, 46: 235-244.
- [28] Bouamri, R; Dalpe, Y and Serrhini, M.N. 2014. Effect of seasonal variation on arbuscular mycorrhizal fungi associated with date palm, *Emir. J. Food Agric.* 26 (11): 977-986.
- [29] Sambandan, K. 2014. Studies on Arbuscular Mycorrhizal (AM) profiles of costal soils in Karaikal district, U.T of Puducherry, India. *International Journal of Multidisciplinary and Current Research*, 2: 307-312.
- [30] Ram, U. and Bhadauria, S. 2009. Vesicular-arbuscular

mycorrhizal association with some medicinal plants growing on alkaline soils of Manipuri District, Uttar Pradesh, *Mycorrhiza News*, **13**: 12-14.

- [31] Gupta, M. L; Khalig, A; Pandey, R; Shukla, R.S; Sing, H. N and Kumar, S. 2000. Vesicular-Arbuscular Mycorrhizal fungi associated with *Ocimum* Spp., *J. Herbs Species Med. Plants*, 7: 57-63.
- [32] Gupta , A. K; Chaturvedi, S and Sharma, A.K 2009. Arbuscular mycorrhizal fungal diversity in some medicinal plants, *Mycorrhiza News*, 20: 10-13.
- [33] Panwara, J and Tarafdar, J. C. 2006. Distribution of the endangered medicinal plant species and their colonization with arbuscular mycorrhiza, *J. of Arid Environ.*, 65(3): 337-350.
- [34] Gaur, S. and Kausik, P. 2011b. Influence of Edaphic Factors on Distribution of Mycorrhiza Associated with Medicinal Plants in Indian Central Himalayas, *Journal of Biological Sciences*, 11(5): 349-358.
- [35] Mahmood, I and Rizvi, R. 2010. Mycorrhiza and organic farming, Asian Journal of Plant Sciences, 9(5): 241-248.
- [36] Kulkarni, A. 2015. Studies on AM fungal association with certain medicinal plants, *Flora and Fauna*, 21(1): 103-106
- [37] Ghosh, P and Das, D. 2017a. VAMF spore diversity of Jhitka Forest floor under proposed Jhargram District in West Bengal, India, *IJSART*, 3(2): 227-232.
- [38] Ghosh, P and Das, D. 2017b. AMF spore density in three agricultural sites in two districts of West Bengal, *IJSART*, 3(5):140-146.
- [39] Ghosh, P and Das, D. 2018. Anthill soil is a good repository of VA mycorrhizal spores in Southwest Bengal, Indian Journal of Applied and Pure Biology, 33(2):119-123.
- [40] Ghosh, P. 2017. Vesicular-Arbuscular Mycorrhizal studies of selected Medicinal plants of Southwest Bengal and its impact on Yield. Ph. D. Theis Awarded from Vidyasagar University, Midnapore.