Spectroscopic Exploration of TiO₂ Doped lithium Borophosphate Glass System

M.Veeraiah¹, D. Syamala Devi², Ch.Anjaneyulu³

^{1, 2, 3} Department of Physics

^{1, 2} Achrya Nagarjuna University, Guntur, Andhra Pradesh ³ Bapatla Engineering College, Bapatla, Guntur, Andhra Pradesh.

Abstract- Spectroscopic exploration of TiO₂ doped lithium borophosphate glass system has been studied. A systematic investigation on characterization, XRD studies and spectroscopic properties (viz., optical absorption, infrared, and ESR) has been carried out. The X-ray diffraction confirms that the samples prepared were of amorphous nature. The optical absorption spectra of the present glass system exhibited two clearly resolved absorption bands at 531nm and 581nm. The bands are attributed due to ${}^{2}B_{2g} \rightarrow {}^{2}B_{1g}$ (531 nm) and ${}^{2}B_{2g} \rightarrow {}^{2}A_{1g}$ (581 nm). FTIR spectra of TiO₂ doped glasses has indicated stretching symmetry of various bands B - O, P - OO, OH, POH etc. A considerable suppression of the hyperfine structure is clearly evident from the observed ESR spectra of these samples with increase in Ti content. We conclude from this study that tetragonally distorted octahedral positions of Ti^{3+} ions existed in the glass system. The glass sample with 1.0 mol% of TiO_2 is a good candidate for the practical applications.

Keywords- Borophosphate Glasses, Ti-ions, UV-Vis., FT-IR, ESR.

I. INTRODUCTION

Borophosphate glasses doped with transition metal ions are of much interest due to their high ultra violet transmission. High transparency and low glass transition temperature of these kinds of glasses was successfully reported by Hashimoto et al [1]. Small quantity of TiO₂ can considerably increase GFA and chemical durability of borophosphate glass. The P₂O₅ and B₂O₃ mixed glasses exhibit distinct properties from those of either pure borate or phosphate networks. The boro-phosphate glasses with Lithium content can find wide range of applications in solid state lasers, solar concentrators, and optical fibres. These glasses are also proved to be suitable for their application in micro batteries, smart card and medical appliance [2, 3]. The addition of small quantities of TiO₂ to boro phosphate glasses can provide ample scope of applicability of this final glass system. Ti ions can cause local field variations and structural modifications due to their valence and variation in coordination.

Page | 633

II. EXPERIMENTAL DETAILS

The particular composition of glass system according to 10 Li₂O-(45-x) B₂O₃-(45-x) P₂O₅:xTiO₂ with 0<x<1.0 mol% (x=0, 0.25, 0.5, 0.75 and 1.0) is chosen for the present study. The present glasses were prepared by using standard melt quenching technique in the normal air atmosphere conditions [4-6]. The raw materials used in this study are AR grade NaH₂PO₄(2H₂O), Li₂O, H₃BO₃ (99 % pure), TiO₂. 10 to 15 g of glass batches of the compounds were mechanically homogenized by thoroughly mixing in an agate mortar and melted in a sintered porcelain crucible, which is glazed inner and outer except outside bottom. The furnace used was a programmable temperature controlled furnace (~1600 °C). The glasses were melted at about 1050 to 1100 °C around 30 to 35 minutes till a bubble free liquid was formed. The resultant melt was cast onto a rectangular brass mould held at room temperature. The samples were subsequently annealed at 300 °C in another furnace. The physical appearance of thus prepared samples was shown in Fig.[1]. For optical studies the glasses were grounded flat shaped to a dimension of about 1x1x0.2cm

The density of the glasses is determined to an accuracy of $(\pm 0.0001 \text{ g})$ by the standard principle of Archimedes' using O-xylene (99.99 % pure) as the buoyant liquid with OHAUS balance (model AR 2140). The amorphous nature of the glass samples were examined by Xray diffraction technique by X'pert_Pro_PANalytical with Cu K_{α} radiation with wavelength 1.540598 Å as standard. The optical absorption spectra of the glasses were recorded at room temperature in the wavelength range 400-1600nm (UV region) up to a resolution of 0.2nm using CARY 100 (Varian) spectrophotometer. IR transmission spectra were recorded on a Bruker IFS 66V-IR spectrophotometer in the wave number range of 400-4000 cm⁻¹. The EPR spectra of the glass samples were recorded using JES-FA200 (JEOL model with X- Band frequency: 8.75 - 9.65 GHz and Sensitivity: 7 x 10^9 spins/0.1mT) operating in the X-band frequency (≈ 9200 MHz) with a modulation frequency of 100 kHz and width of 0.35mT. The magnetic field was scanned from 50 to 550mT and the microwave power used was 0.998mW.

III. RESULTS

Table[1] shows various physical parameters like Molar volume, Ti ion concentration, Inter-ionic distance, Polaron radius and Ionic field strength for the present glass system, which were calculated from the measured values of density and average molecular weight M using conventional formulae from literature [4, 5]. Fig [2] shows X-ray diffraction pattern of pure and 0.25, 0.5, 0.75, and 1.0 mol% of TiO₂ doped glass samples. The optical absorption spectra of Li₂O- $B_2O_3-P_2O_5$: TiO₂ glasses recorded at room temperature in the wavelength region of 400 to 1400 nm were represented in Fig. [3]. No absorption peaks were found in the spectrum of pure sample. The UV-visible spectra of the present glasses exhibit two kinks at about 531, 581 nm except the undoped one in the wavelength region of 400 to 1400nm. For the doped glasses, the respective peaks were attributed to transitions $({}^{2}B_{2s} \rightarrow {}^{2}B_{1s})$ and $({}^{2}B_{2g} \rightarrow {}^{2}E_{1g})$. The wavelengths at peak values, energy gap and Urbach energies were shown in Table [2]. FTIR transmission spectra of the present glass system were shown in Fig.[5]. The spectra exhibited various vibrational bands as illustrated in Table [3]. ESR spectra of Li₂O-B₂O₃-P₂O₅ glasses doped with different concentrations of TiO₂ recorded at room temperature are presented in Fig. [6]. The 'g' values of various glasses were given in Table [4]. The Variation of Urbach energy (ΔE) and optical band gap (E₀) with TiO₂ concentration is shown in Fig [7].

IV. DISCUSSION

The X-ray diffraction confirms that the samples prepared were of amorphous nature. There is no indication of any crystalline planes in all the samples. The bands observed in the optical absorption spectra are assigned at 510nm and 600nm respectively from transitions of ${}^{2}B_{2g} \rightarrow {}^{2}B_{1g}$ and ${}^{2}B_{2g} \rightarrow {}^{2}A_{1g}$ of ${}^{3}D_{1}$ electrons of Ti³⁺ ions. In the present study the first band was shifted little bit higher wavelength (531nm) side but the second band was shifted towards a lower wavelength (581nm) side. The jumping of the charge carriers $(Ti^{3+} \rightarrow Ti^{4+})$ during the network formation was observed with the present study, which is uniformly changed with TiO₂ content [12]. The infrared transmission spectra of the entire glasses exhibited common variation at high frequency region but show different trend of variation at low frequency or high wave number region [13]. From these spectra it is observed that undoped sample exhibit the very high intense IR band at about 3460 cm⁻¹. This may be attributed to moist attack on the phosphate glasses. The present IR spectral investigations indicate the Ti⁴⁺ ions exist both in tetrahedral and octahedral positions and they also form B-O-Ti linkages. The presence of part of titanium ions in Ti³⁺ state which take modifier

positions if TiO_2 is gradually changed according to optical absorption and EPR spectral studies [14].

No EPR signal is detected in the spectra of un-doped sample. The spectra of LBPTi1 consist of good hyperfine structure centred at $g \sim 2$. However remaining samples did not exhibit such a distinguishable hyperfine structure. It is diminishing up to LBPTi3 sample. The spectrum of glass LBPTi4 consists of an intense symmetric spectral line centred at g = 2.1391. Signal (1) at higher 'g' side is very weak for this sample and also the hyperfine structure which is unable to detect [15]. The intensity of the signal with concentration of TiO₂ gradually changes and this variation is shown in the respective figures. A strong hyperfine interaction is observed at lower concentration of TiO₂ content i.e. at 0.25 mol%. This interaction gradually decreased with increase in TiO₂ content.

V. CONCLUSIONS

Finally we are able to conclude from this study that the tetragonally distorted octahedral positions of Ti^{3+} ions are existed in this glass system. The hyperfine interaction is strong at 1 mol% of TiO₂. The Ti^{4+} ions do exist both in tetrahedral and octahedral positions and they also form B–O–Ti linkages and the glass sample with 1.0 mol% of TiO₂ is a good candidate for the practical applications in non-linear optical devices.

Figure 1. Physical appearance of 1.0 mm thick TiO2 doped glass samples

Table 1. Physica	l parameters of tl	ne glass sample:
------------------	--------------------	------------------

Sample code	Density X10 ³ Kg/m ³	Molar volume cm ³ /mol	Dopant ion concentration (N _i) x10 ²¹ ions/cm ³	Inter ionic distance R _i (Å)	Polaron radius <u>R</u> p (Å)	Field strength (F) x10 ¹⁵ cm ⁻²
LBPTi0	2.6144	37.9047	0	5	5	
LBPTil	2.6172	37.8394	7.5414	5.0994	2.0547	9.4746
LBPTi2	2.6197	37.7786	15.0828	4.0474	1.6308	15.0404
LBPTi3	2.6166	37.7986	22.6242	3.5357	1.4246	19.7094
LBPTi4	2.6142	37.8085	30.1656	3.2124	1.2944	23.8739

Figure 2. X-ray Diffraction patterns of the LBPTi glass

Figure 3. Optical absorption spectra of LBPTi glass system

Table 2. The energy gap, wavelengths at peak values andUrbach energy values.

Sample code	Energygap (E ₀) eV.	Band positions ² B _{2g} ? ² B _{1g} band position(nm)	² B _{2g} ? ² A _{1g} band position(nm)	∆E (eV)
LBPTil	1.7779	531	581	0.0341
LBPTi2	1.7481	531	581	0.0449
LBPTi3	1.6762	531	581	0.0714
LBPTi4	1.5433	531	581	0.1234

Figure 4. Tauc's plot of LBPTi Glasses

Figure 5. FT-IR spectra of LBP glasses with TiO2

Table 3. Summary of data and assignments of various IR bands of the LBPTi

Glasses doped with TiO2. (With a probable error of ± 0.1 cm-1)

LI	-		-	100	÷	
Ti0 cm ⁻¹	Ti1 cm ⁻¹	Ti2 cm ⁻¹	Ti3 cm ⁻¹	Ti4 cm ⁻¹	Assignment	References
528	528	518	518	518	P-O-P symmetric vibrations	[7]
	778	777	778	778	P–O–P symmetric stretching vibrations	[8]
984	984	987	987	976	PO ₃ symmetric vibrations	[9]
1074	1064	1064	1064	1064	Stretching vibrations of B-O bonds in BO ₄ units from tri, tetra and <u>penta</u> borate groups.	[9]
1165	1196	1196	1196	1196	B-O stretch in BO3 units from pyro and ortho borate groups	[10]
1429					Vibration modes of BO3	[10]
1651					Vibration modes of BO3	[10]
	3240				peak value is assigned to water <u>OH.POH</u> , vibrations originating Mostly for moisture attack on Phosphate glass.	[11]
3450	3428		3491		Symmetric stretching of O-H groups, v _s (H-O-H)	[11]

Table 4. Summary of g values from ESR spectra.

Glass Sample	g-Values		
	g1	g2	
LBPTi0			
LBPTi1	1.7873	5.9894	
LBPTi2	1.8514	5.8428	
LBPTi3	2.2095	4.2054	
LBPTi4	2.1392		

Figure 6. EPR absorption spectra due to Ti3+ions in LBPTi glass system.

Figure 7. Variation of Urbach energy (ΔE) and optical band gap (Eo) with TiO2 concentration.

VI. ACKNOWLEDGMENT

One of the authors, M.Veeraiah, gratefully acknowledge respective faculty of Achrya Nagarjuna University for providing experimental facility for analytical work and to management of Bapatla Engineering College after utilising sample preparation facility.

REFERENCES

[1] T. Hashimoto, M. Murakami, H. Nasu, A. Ishihara, K.

Kunii, J. Am. Ceram. Soc. 92(2009) 1250.

- [2] X. Yu, J.B. Bates, G.E. Jellison Jr., F.X.Hart, J. Electrochem. Soc. 144 (1997) 524.
- [3] F. Scholz, J. Solid State Electrochem. 15 (2011) 14.
- [4] A. Paul Chemistry of glasses (Chapman & Hall, London, 1982).
- [5] S. R. Elliot Physics of amorphous materials (Longman, London, 1990).
- [6] J. F. Shackle ford "Introduction to Materials Science for Engineers" (Macmillan, New York, 1985).
- [7] P. Subbalakshmi, N. Veeraiah, Mater. Lett. 56 (2002) 880–888.
- [8] G. Murali Krishna, Y. Gandhi, and N. Veeraiah, Phys. Stat. Solidi (a) 205 (2008) 177.
- [9] P. Pascuta, Borodi Gheorghe, Culea Eugen, J. Non-Cryst. Solids 354 (2008) 5475.
- [10] F.A.Khalifa, H.A.El-Batal, A.Azooz Ind.J.Pure & Appl.Phys.36(6), (1998), pp. 314-318.
- [11] I. Ardelean, M. Peteanu, R. Ciceo-Lucacel, I. Bratu, J. Mater. Sci. Mater.Electron 11(2000) 11.
- [12] A.Subba Rao, I.V.Kityk, J.Ashok, V.Ravi Kumar, K.J.Plucinski, A.SivaSeshaReddy, K. NareshKumar, N.Veeraiah, Journal of Alloys and Compounds, 725(2017) 318-325.
- [13] N.Narasimha Rao, I.V.Kityk, V.Ravi Kumar, Ch.Srinivasa Rao, M.Piasecki, P.Bragiel, N.Veeraiah, Ceramics International, 38 (2012)2551-2562.
- [14] A.V.Ravi Kumar, Ch.Srinivasa Rao, T.Srikumar, Y.Gandhi, V. RaviKumar, N.Veeraiah, Journal of Alloys and Compounds, 515 (2012)134-142.
- [15] R.Vijay, L.Pavic, A.Santic, A.Mogus-Milankovic, P.RameshBabu, D.KrishnaRao, V. RaviKumar, N.Veeraiah, Journal of Physics and Chemistry of Solids, 107(2017)108-117.