
IJSART - Volume 3 Issue 9 – SEPTEMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 428 www.ijsart.com

Study And Analysis of Basic CPU Scheduling
Algorithms

Mrs. Shital Vivek Ghate1

1, 2 RTMNU Nagpur, India

Abstract- The process scheduling is the activity of the process
manager that handles the removal of the running process from
the CPU and the selection of another process on the basis of a
particular strategy. CPU scheduling is the basis of multi-
programmed operating systems. Scheduling is a fundamental
operating system function, since almost all computer
resources are scheduled before use. By switching the CPU
among processes, the operating system can make the computer
more productive .In this paper we study several CPU-
scheduling algorithms. Objective of this paper is to describe
various CPU-scheduling algorithms, and find out the best
algorithm is for the particular situation.

Keywords- execution time, scheduling, operating system(os),
Scheduling Algorithm, turnaround time, waiting time.

I. INTRODUCTION

Basic Concepts

 In a single-processor system, only one process can
run at a time, any others must wait until the CPU is free and
can be rescheduled. The objective of multiprogramming is to
have some process running at all times, to maximize CPU
utilization. A process is executed until it must wait, typically
for the completion of some I/O request. In a simple computer
system, the CPU then just sits idle. All this waiting time is
wasted; no useful work is accomplished. With
multiprogramming, we try to use this time productively.
Several processes are kept in memory at one time. When one
process has to wait, the operating system takes the CPU away
from that process and gives the CPU to another process. This
pattern continues. Every time one process has to wait, another
process can take over use of the CPU. Scheduling of this kind
is a fundamental operating-system function. Almost all
computer resources are scheduled before use.

Process Scheduling Queues

 The OS maintains all PCBs in Process Scheduling
Queues. The OS maintains a separate queue for each of the
process states and PCBs of all processes in the same execution
state are placed in the same queue. When the state of a process

is changed, its PCB is unlinked from its current queue and
moved to its new state queue.

 The Operating System maintains the following
important process scheduling queues:

 Job queue - This queue keeps all the processes in the
system.

 Ready queue - This queue keeps a set of all
processes residing in main memory, ready and waiting to
execute. A new process is always put in this queue.

 Device queues - The processes which are blocked
due to unavailability of an I/O device constitute this queue.

 The OS can use different policies to manage each
queue (FIFO, Round Robin, Priority, etc.). The OS scheduler
determines how to move processes between the ready and run
queues which can only have one entry per processor core on
the system; in the given figure diagram. it has been merged
with the CPU.

Figure 1.

 When a new process is created, it enters into the
system as in the running state. Processes that are not running
are kept in queue, waiting for their turn to execute. Each entry
in the queue is a pointer to a particular process. Queue is
implemented by using linked list. Use of dispatcher is as
follows. When a process is interrupted, that process is
transferred in the waiting queue. If the process has completed
or aborted, the process is discarded. In either case, the
dispatcher then selects a process from the queue to execute.

IJSART - Volume 3 Issue 9 – SEPTEMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 429 www.ijsart.com

Schedulers

 are special system software which handle process
scheduling in various ways. Their main task is to select the
jobs to be submitted into the system and to decide which
process to run. Schedulers are of three types:
 Long-Term Scheduler
 Short-Term Scheduler
 Medium-Term Scheduler

Long-Term Scheduler

 It is also called a job scheduler. A long-term
scheduler determines which programs are admitted to the
system for processing. It selects processes from the job queue
and loads them into memory for execution. Process loads into
the memory for CPU scheduling. The primary objective of the
job scheduler is to provide a balanced mix of jobs, such as I/O
bound and processor bound. It also controls the degree of
multiprogramming. On some systems, the long-term scheduler
may not be available or minimal. Time-sharing operating
systems have no long term scheduler. When a process changes
the state from new to ready, then there is use of long-term
scheduler.

Short-Term Scheduler

 It is also called as CPU scheduler. Its main objective
is to increase system performance in accordance with the
chosen set of criteria. It is the change of ready state to running
state of the process. CPU scheduler selects a process among
the processes that are ready to execute and allocates CPU to
one of them. Short-term schedulers, also known as
dispatchers, make the decision of which process to execute
next. Short-term schedulers are faster than long-term
schedulers.

Medium-Term Scheduler

 Medium-term scheduling is a part of swapping. It
removes the processes from the memory. It reduces the degree
of multiprogramming. A running process may become
suspended if it makes an I/O request. A suspended processes
cannot make any progress towards completion. In this
condition, to remove the process from memory and make
space for other processes, the suspended process is moved to
the secondary storage. This process is called swapping, and
the process is said to be swapped out or rolled out. Swapping
may be necessary to improve the process mix.

Figure 2. Process of Schedulers

II. SCHEDULING CRITERIA

 Many criteria have been suggested for comparing
CPU scheduling algorithms. Which characteristics are used for
comparison can make a substantial difference in which
algorithm is judged to be best. The criteria include the
following:

 CPU utilization. We want to keep the CPU as busy as

possible. Conceptually, CPU utilization can range from 0
to 100 percent. In a real system, it should range from 40
percent (for a lightly loaded system) to 90 percent (for a
heavily used system).

 Throughput. If the CPU is busy executing processes,

then work is being done. One measure of work is the
number of processes that are completed per time unit,
called throughput. For long processes, this rate may be
one process per hour; for short transactions, it may be 10
processes per second

 Turnaround time. The interval from the time of
submission of a process to the time of completion is
theturnaround time. Turnaround time is the sum of the
periods spent waiting to get into memory, waiting in the
ready queue, executing on the CPU, and doing I/O.

 Waiting time. Waiting time is the sum of the periods

spent waiting in the ready queue.

 Response time: The time from the submission of a

request until the first response is produced. This measure,
called response time, is the time it takes to start
responding, not the time it takes to output the response.

 The turnaround time is generally limited by the speed
of the output device.It is desirable to maximize CPU

IJSART - Volume 3 Issue 9 – SEPTEMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 430 www.ijsart.com

utilization and throughput and to minimize turnaround time,
waiting time, and response time. In most cases, we optimize
the average measure.

III. SCHEDULING ALGORITHM

First Come, First Served (FCFS)

 It is the simplest CPU-scheduling algorithm. With
this scheme, the process that requests the CPU first is
allocated the CPU first. The implementation of the FCFS
policy is easily managed with a FIFO queue. When a process
enters the ready queue, its PCB is linked onto the tail of the
queue. When the CPU is free, it is allocated to the process at
the head of the queue. The running process is then removed
from the queue. The code for FCFS scheduling is simple to
write and understand. The average waiting time under the
FCFS policy, however, is often quite long.
 Jobs are executed on first come, first served basis.
 It is a non-preemptive scheduling algorithm.
 Easy to understand and implement.
 Its implementation is based on FIFO queue.
 Poor in performance, as average wait time is high.

Figure 3.

Shortest Job Next (SJN)

 This algorithm associates with each process the
length of th eprocess's next CPU burst. When the CPU is
available, it is assigned to the process that has the smallest
next CPU burst. If the next CPU bursts of two processes are
the same, FCFS scheduling is used to break the tie. Note that a
more appropriate term for this scheduling method would be
the shortest-next-CPU-burst algorithm, because scheduling

depends on the length of the next CPU burst of a process,
rather than its total length.
• This is also known as shortest job first, or SJF.
• This is a non-preemptive scheduling algorithm.
• Best approach to minimize waiting time.
• Easy to implement in Batch systems where required

CPU time is known in advance.
• Impossible to implement in interactive systems where

the required CPU time is not known.
• The processer should know in advance how much

time a process will take.

Figure 4.

Figure 5.

Priority Based Scheduling

 The SJF algorithm is a special case of the general
priority scheduling algorithm. A priority is associated with
each process, and the CPU is allocated to the process with the
highest priority. Equal-priority processes are scheduled in
FCFS order. An SJF algorithm is simply a priority algorithm
where the priority (p) is the inverse of the (predicted) next
CPU burst. The larger the CPU burst, the lower the priority,
and vice versa.

IJSART - Volume 3 Issue 9 – SEPTEMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 431 www.ijsart.com

• Priority scheduling is a non-preemptive algorithm
and one of the most common scheduling algorithms
in batch systems.

• Each process is assigned a priority. Process with
highest priority is to be executed first and so on.

• Processes with same priority are executed on first
come first served basis.

• Priority can be decided based on memory
requirements, time requirements or any other
resource requirement.

Figure 6.

Figure 7.

Shortest Remaining Time

• Shortest remaining time (SRT) is the preemptive

version of the SJN algorithm.
• The processor is allocated to the job closest to

completion but it can be preempted by a newer ready
job with shorter time to completion.

• Impossible to implement in interactive systems where
required CPU time is not known.

• It is often used in batch environments where short
jobs need to be given preference.

Round Robin Scheduling

 The round-robin (RR) scheduling algorithm is
designed especially for timesharing systems. It is similar to
FCFS scheduling, but preemption is added to switch between

processes. A small unit of time, called a time quantum or time
slice, is defined. A time quantum is generally from 10 to 100
milliseconds. The ready queue is treated as a circular queue.
The CPU scheduler goes around the ready queue, allocating
the CPU to each process for a time interval of up to 1 time
quantum. To implement RR scheduling, we keep the ready
queue as a FIFO queue of processes. New processes are added
to the tail of the ready queue. The CPU scheduler picks the
first process from the ready queue, sets a timer to interrupt
after 1 time quantum, and dispatches the process. One of two
things will then happen. The process may have a CPU burst of
less than 1 time quantum. In this case, the process itself will
release the CPU voluntarily. The scheduler will then proceed
to the next process in the ready queue. Otherwise, if the CPU
burst of the currently running process is longer than 1 time
quantum, the timer will go off and will cause an interrupt to
the operating system. A context switch will be executed, and
the process will be put at the tail of the ready queue. The CPU
scheduler will then select the next process in the ready queue.
The average waiting time under the RR policy is often long.

• Round Robin is a preemptive process scheduling

algorithm.
• Each process is provided a fix time to execute; it is

called a quantum.
• Once a process is executed for a given time period, it

is preempted and other process executes for a given
time period.

• Context switching is used to save states of preempted
processes.

Figure 8.

Figure 9.

IJSART - Volume 3 Issue 9 – SEPTEMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 432 www.ijsart.com

Figure 10.

 From above analysis and discussion, we can say that
the FCFS is simple to understand and suitable only for batch
system where waiting time is largeThe FCFS scheduling
algorithm is non-preemptive. Once the CPU has been
allocated to a process, that process keeps the CPU until it
releases the CPU, either by terminating or by requesting I/O.
The FCFS algorithm is thus particularly troublesome for time-
sharing systems. The SJF scheduling algorithm is provably
optimal, in that it gives the minimum average waiting time for
a given set of processes. Moving a short process before a long
one decreases the waiting time of the short process more than
it increases the waiting time of the long process.
Consequently, the average waiting time decreases. The
priority scheduling algorithm is based on the priority in which
the highest priority job can run first and the lowest priority job
need to wait though it will create a problem of starvation. The
round robin scheduling algorithm is preemptive which is
based on round robin policy one of the scheduling algorithm
which follows the interactive system and the round robin
scheduling algorithm is deal with the time sharing system.

IV. CONCLUSIONS

 The SJF scheduling algorithm is provably optimal, in
that it gives the minimum average waiting time for a given set
of processes. Moving a short process before long one decrease
the waiting time of the short process more than it increases the
waiting time of the long process. Consequently, the average
waiting time decreases.

 To get more accurate evaluation of scheduling
algorithms, simulations are often used. But a simulation has
limited accuracy. The only completely accurate way of
evaluating a scheduling algorithm is to code and put it in the
operating system to see how it works. This approach puts the
actual algorithm in the real system for evaluation under real
operating conditions.

REFERENCES

[1] Analysis and Comparison of CPU Scheduling
Algorithms, Pushpraj Singh1, Vinod Singh2, Anjani
Pandey, “Analysis and Comparison of CPU Scheduling
Algorithms,” International Journal of Emerging
Technology and Advanced Engineering Website:
www.ijetae.com (ISSN 2250-2459, ISO 9001:2008
Certified Journal, Volume 4, Issue 1, January 2014)

[2] Abraham Silberschatz, Peter Baer Galvin, Greg Gangne;”
Operating System Concepts”, edition-7, ©2009, John
Wiley and Sons, INC.

[3] ” Operating System, fundamental os concepts”, tutorials
Pont,www.tutorialspoint.com

[4] James L. Peterson, Abraham Silerschatz, university of
Texas at Austin ”Operating System concepts”©1983 by
Addision-Wesley publishing Company,Inc.

