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Abstract-With the advent of the digital age smartphones have 
become a necessity for our life. Smartphones are not only used 
to communicate with each other but also used for banking, 
payment etc. They also contain a lot of sensitive data such as 
our contacts, messages, tracking information, etc. Thus they 
have become a highly vulnerable area for attacks. These 
threats can disrupt the working of the phone, modify or 
retransmit the data without the knowledge of the user. With 
the android system, which is the world’s most popular 
Smartphone operating system and covers of about 80% of the 
global market share.  
In this paper presented a machine learning-based method for 
the detection of malicious Android applications and 
successfully classified the android malware fakeInstaller with 
an accuracy of 69% using SVM and a linear- time graph 
kernel Neighborhood Hash Graph Kernel( NHGK 
 
Keyword: Malware Detection; Graph Kernels; Machine 
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I. INTRODUCTION 
 

Smartphones have taken a crucial role and have 
replaced a variety of banking and other sensitive services, they 
have also become an active target for various attacks. 
According to a research firm IDC, antivirus program have been 
installed in only 5% of the smartphones and tablets. Despite the 
rapid growth of the Android platform, little focus has been 
given on the security part of the system. Android malware, 
such as DroidDream, has been discovered in over 50 
applications on the official Android market in March 
2011[1].The android security is not strong enough to protect 
our data and even safe applications can unintentionally expose 
our information [2].A study has shown that around 211 
applications out of 204,040 applications on the official Android 
market and alternative marketplaces are found to be 
malicious[3].   

 
The demand for the tools required to deal with such 

threats is increasing and   different approaches like taint 
analyses and signatures cannot automatically distinguish 
benign apps from malware and they can be easily circumvented 
using simple program obfuscations techniques[4]. 

 

The technique presents in this research work based on 
structural analysis of malwares. Each type of malware has 
similar structure and we try to identify the structure of the 
malware in the function call graph of an android application. 
This method, however, is not efficient, solely since there does 
not exist any known solution to test whether two graphs are 
isomorphic in polynomial time.  To solve this problem, in this 
research  work NHGK (Neighborhood Hash Graph Kernel) has 
been used to reduce the time complexity in linear time[5] and 
done hashing on control flow graph to measure code similarity. 
 

The rest of this paper is structured as follows: In 
Section II we will give an overview of our approach. In section 
III we will give a detailed description of creating control flow 
graph of an android application. In Section IV we will explain 
labeling and hashing of control flow graph and In Section V we 
will explain structural analysis using SVM.  In Section VI 
methodology and Section VII list limitation of our approach.  
We will conclude the research work in Section VIII. 

 
II. OVERVIEW 

 
In this paper, the following steps has been taken for 

malware detection in an apk: 
 
Reverse engineering of the android applications to 

get java bytecode from android dex code 
 
In this research work ,DEX2JAR API is used to 

convert DEX code to Bytecode and used JADX API to 
convert .apk files to JAVA Files. 

 
Creation of function call graph with labels from the 

byte code. 
 
After getting the byte code we created a function call 

graph. A function call graph is a directed graph [5] where a 
node exists for each of the application’s functions and edges 
from the callers to callers.  

 
To visualize the call graph we have used. (Dot) 

language to represent the graph in textual format and the used 
zgrviewer to visualize it. For creating the graph, we also need 
to have installed GraphViz. 
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Flowdroid is used to create a call graph directly from 
the .apk. After getting the flow graph we label each node 
(function) of the application to 15 bit vector depending upon 
the types of instruction used in that function. 

 
Implementation of Support Vector Machine with 

NHGK kernel. 
 
After receiving the feature vector, it is necessary to 

convert it into a linearly separable data. To do so, we pass it 
though the Neighborhood Hash Graph Kernel (NHGK) kernel. 
After processing in the kernel we receive a 400*900 large 
vector each bit corresponding to a frequency of 900 hashes 
possible. Now, we compare this vector with the centroid of the 
FakeInstaller and apply it to the SVM to find the degree of 
similarity to it. 

 
III. TRAINING SVM AND CONCLUDING THE 

RESULT 
 

After the implementation of the SVM it is necessary 
to train it according to a malware so that the weights are 
changed accordingly. For doing this we have various methods, 
in this research work we are using QP programming to find 
the most optimized set of weights to be used. This may be a 
onetime process, but it may be invoked again for a new set of 
data for better weights. After the training, we expect results, so 
for each application under scrutiny, we apply the entire 
process again except the training to get a value, corresponding 
to which we classify the application. 
 
CREATING CONTROL FLOW GRAPH 
 

A function call graph is a directed graph [5] where a 
node exists for each of the application’s functions and edges 
from the callers to callas. A call graph is a directed graph 
whose vertices, representing the functions a program is 
composed of, are interconnected through directed edges which 
symbolize function calls .Call graphs are generated from a 
binary executable through static analysis of the decompiled 
bytecode. The bytecode of each application is generated from 
dex2jar. To visualize the call graph we have used. (Dot) 
language to represent the graph in textual format and the used 
zgrviewer to visualize it. The flowdroid is used to generate 
function call graph directly from the apk.    

 
IV. LABELING OF FUNCTION CALL GRAPH 

 
Furthermore, a labeled function call graph can be 

constructed by attaching a label to each node. Formally, this 
graph can be represented as a 4-tuple G = (V, E, L, l), where V 

is a finite set of nodes and each node v is associated with one 
of the application's functions. E belongs to VxV, denotes the 
set of directed edges, where an edge from a node v1 to a node 
v2 indicates a call from the function represented by v1 to the 
function represented by v2. Finally, L is the multiset of labels 
in the graph and l: V -> L is a labeling function, which assigns 
a label to each node by considering properties of the function 
it represents. 

 
Labeling of nodes is done according to the type of the 

instructions contained in their respective functions. Reviewing 
the Dalvik specification, we define 15 distinct categories of 
instructions based on their functionality as shown in Table 1. 
Each node can thus be labeled using a 15-bit field, where each 
bit is associated with one of the categories: 

 
Consequently, the set of labels L is given by a subset 

of all possible 15-bit sequences.  
 

V. CLASSIFICATION 
 
This research work uses the Support Vector Machine 

to classify malicious and non-malicious applications as SVM 
have the property of not getting over fitting into the dataset as 
in case of other learning algorithm. Another advantage is that 
with the introduction of kernel in SVM non-linear data can be 
curved into a linear dataset. This makes the process more 
flexible and robust. A brief explanation of how the SVM 
works is as follows 

 
Support Vector Machine 
 

SVM is responsible for finding a hyperplane that will 
differentiate between positive and negative examples. The 
goal is to separate the two classes by a function which is 
induced from available examples. The second goal is to 
produce a classifier that will work well on unseen examples, 
i.e. it generalizes well. This linear classifier is termed the 
optimal separating hyper plane. Intuitively, we would expect 
this boundary to generalize well as opposed to the other 
possible boundaries.  

 
But one of the problems in this is that the dataset may 

not be linear enough to find a hyperplane for the data. So one 
needs to use a kernel function which will transform the input 
to a high dimensional implementation and convert the inputs 
into linearly separable data. This project makes use of 
Neighborhood Hash Graph Kernel. 
 
Neighborhood Hash graph Kernel(NHGK) 
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The main idea of the NHGK is that the functions 
closer to one function also have an effect on the structure of 
the graph. So for each node a hashed value is created using the 
labels of its neighboring nodes and itself. 
Hashing of Neighbors  
 

After labelling nodes each function stores 
information about the code in it, but we also need a way to 
store the information about the functions that are directly 
connected to a function. To do this we calculate a hash over all 
of its neighbors in the function call graph [6]. The main 
advantage NHGK kernel is that it reduce the time complexity 
of comparing two graphs O (2 n) in linear time. 

 
The computation of the hash for a given node v and 

its set of adjacent nodes Vv is defined by the operation  

 
Where represents a bit wise XOR of labels and r denotes a 
single-bit rotation to the left. We calculate the hash for each 
node individually and replace the label with the hash value. 
 
Similarity with malicious application 

 
After hashing the kernel needs to return degree of 

similarity of the application with a malicious application[7]. 
We have analyzed the malicious data to find out a centroid of 
the hash vector of the malicious applications. Now to compare 
this with our graph we use the function  
 

K (Gh, Gh’) =|Lh⋂Lh’| 
 

Where Gh corresponds to the graph corresponding to the 
centroid of malicious applications, Gh’ corresponds to the graph 
corresponding to the application to classify and Lh and Lh’ 
corresponds to their hash vector, {a1, a2,…, aN}, where aiƐ	ℕ 
indicates the occurrences of the i-th hash in Gh, respectively. 
 
To find the intersection of the two vectors we have made use of 
the formula: 
 
hi = min (ai, ai’) ∀ ai Ɛ Lh and ∀ ai’ Ɛ Lh’. 
 

Barla et al. [3] show that this histogram intersection 
can be indeed adopted in kernel-based methods and propose a 
feature mapping, such that S is an inner product in the induced 
vector space. For this purpose, each histogram H is mapped to 
a P-dimensional vector߮(ܪ) as follows 

 
where M is the maximum value of all bins in the dataset, N is 
the number of bins in each histogram This is the feature vector 
returned by kernel to be used by the SVM. 
 

VI. METHODOLOGY 
 
This research work is an open source project with 

code available on github 
(https://github.com/nitish2794/MALDIAS). We have used 
version control (git) to track the changes in the project and to 
revert them if needed. 

 
Structure of project and the files required for 

processing 
 
1).Processing of android application 

 
Input Files required for the processing of android 

application 
 
Android Platforms SDK:- Each android application 

uses android’s library to implement these features, so to 
separate these methods from used defined ones we need 
android sdk to find the default android methods. 

 
Source and Sinks.txt:- This file is used by flowdroid 

to find all possible entry and exit points in an application 
which helps in accurately implementation of call graph. 

 
SVM training module: - We need to train SVM 

before we can use it to classify, to train the SVM we need to 
preprocess the entire dataset available and then train the SVM 
according to the dataset. 

 
2). Creating a flow graph of the android application 
 

We have used to flowdroid to create a control flow 
graph of the android application. 
 
3 a).Implementation of NHGK kernel 
 

We create a label to each function of the application, 
depending upon the types of instruction used in the function. 
After that we do the hashing of the labels of a node  with the 
labels of its neighbors. 
 
3 b).Sending the feature vector SVM to classify.  
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After receiving the feature vector, it is necessary to 
convert it into a linearly separable data. To do so, we pass it 
though the NHGK kernel. After processing in the kernel we 
receive a 400*900 large vector each bit corresponding to a 
frequency of 900 hashes possible. Now, we compare this 
vector with the centroid of the FakeInstaller and apply it to the 
SVM to find the degree of similarity to tithe various files used 
in this are;- 

 
Default.txt:-This contains a feature vector 

corresponding to the centroid of the malware fakeInstaller. 
 
Weights.txt:- This contains the   weights 

corresponding to the 400*900 size vector. This weights are 
already trained one and as the project continues these weights 
may be progressed as more and more data is found. 
 
4). Display the result 
 

 The SVM returns a value to the system 
corresponding to the feature vector of the application and 
according to this value we classify it into malicious or non-
malicious or safe application. 
 
DATA SET 
 

 Our dataset consisted of 91 applications out of which 
28 were benign rest were malicious and belonged to the group 
of FakeInstaller. 

 
VII.   LIMITATION 

 
In this static analysis technique call graph processed 

are the approximation of the real functions and their neighbor. 
So there is a limit to what extent you can store relevant 
information in a neighborhood hash. A call graph can be 
obfuscated by adding unreachable calls. Moreover, function 
inlining can be used to hide the graph structure. Invalid 
bytecode sequences can be deliberately added by the attacker 
to prevent the successful decompilation of android application. 

 
VIII. CONCLUSION AND FUTURE WORK 

 
In this paper we have presented a machine learning-

based method for the detection of malicious Android 
applications. Our method is inspired by the neighbourhood 
hash graph kernel to represent applications based on their 
function call graphs. This representation is shown to be both, 
efficient and effective, for training an SVM that ultimately 
enables us to automatically identify Android malware with a 
detection rate of 69% with 1% false positives, corresponding 

to one false alarm in 100 installed applications on a 
Smartphone.  

 
Further, this same procedure can be applied to many 

different types of malwares to create a collection of SVM each 
of which will correspond to a malware type. Then, we can use 
one-vs-all strategy to analyze an application. 
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