
IJSART - Volume 3 Issue 9 –SEPTMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 369 www.ijsart.com

Malware Detection in Android System

Sapna Malik
Department of Computer Science & Engineering

MSIT

Abstract-With the advent of the digital age smartphones have
become a necessity for our life. Smartphones are not only used
to communicate with each other but also used for banking,
payment etc. They also contain a lot of sensitive data such as
our contacts, messages, tracking information, etc. Thus they
have become a highly vulnerable area for attacks. These
threats can disrupt the working of the phone, modify or
retransmit the data without the knowledge of the user. With
the android system, which is the world’s most popular
Smartphone operating system and covers of about 80% of the
global market share.
In this paper presented a machine learning-based method for
the detection of malicious Android applications and
successfully classified the android malware fakeInstaller with
an accuracy of 69% using SVM and a linear- time graph
kernel Neighborhood Hash Graph Kernel(NHGK

Keyword: Malware Detection; Graph Kernels; Machine
Learning;Structural Analysis of android application

I. INTRODUCTION

Smartphones have taken a crucial role and have
replaced a variety of banking and other sensitive services, they
have also become an active target for various attacks.
According to a research firm IDC, antivirus program have been
installed in only 5% of the smartphones and tablets. Despite the
rapid growth of the Android platform, little focus has been
given on the security part of the system. Android malware,
such as DroidDream, has been discovered in over 50
applications on the official Android market in March
2011[1].The android security is not strong enough to protect
our data and even safe applications can unintentionally expose
our information [2].A study has shown that around 211
applications out of 204,040 applications on the official Android
market and alternative marketplaces are found to be
malicious[3].

The demand for the tools required to deal with such

threats is increasing and different approaches like taint
analyses and signatures cannot automatically distinguish
benign apps from malware and they can be easily circumvented
using simple program obfuscations techniques[4].

The technique presents in this research work based on
structural analysis of malwares. Each type of malware has
similar structure and we try to identify the structure of the
malware in the function call graph of an android application.
This method, however, is not efficient, solely since there does
not exist any known solution to test whether two graphs are
isomorphic in polynomial time. To solve this problem, in this
research work NHGK (Neighborhood Hash Graph Kernel) has
been used to reduce the time complexity in linear time[5] and
done hashing on control flow graph to measure code similarity.

The rest of this paper is structured as follows: In
Section II we will give an overview of our approach. In section
III we will give a detailed description of creating control flow
graph of an android application. In Section IV we will explain
labeling and hashing of control flow graph and In Section V we
will explain structural analysis using SVM. In Section VI
methodology and Section VII list limitation of our approach.
We will conclude the research work in Section VIII.

II. OVERVIEW

In this paper, the following steps has been taken for

malware detection in an apk:

Reverse engineering of the android applications to

get java bytecode from android dex code

In this research work ,DEX2JAR API is used to

convert DEX code to Bytecode and used JADX API to
convert .apk files to JAVA Files.

Creation of function call graph with labels from the

byte code.

After getting the byte code we created a function call

graph. A function call graph is a directed graph [5] where a
node exists for each of the application’s functions and edges
from the callers to callers.

To visualize the call graph we have used. (Dot)

language to represent the graph in textual format and the used
zgrviewer to visualize it. For creating the graph, we also need
to have installed GraphViz.

IJSART - Volume 3 Issue 9 –SEPTMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 370 www.ijsart.com

Flowdroid is used to create a call graph directly from
the .apk. After getting the flow graph we label each node
(function) of the application to 15 bit vector depending upon
the types of instruction used in that function.

Implementation of Support Vector Machine with

NHGK kernel.

After receiving the feature vector, it is necessary to

convert it into a linearly separable data. To do so, we pass it
though the Neighborhood Hash Graph Kernel (NHGK) kernel.
After processing in the kernel we receive a 400*900 large
vector each bit corresponding to a frequency of 900 hashes
possible. Now, we compare this vector with the centroid of the
FakeInstaller and apply it to the SVM to find the degree of
similarity to it.

III. TRAINING SVM AND CONCLUDING THE

RESULT

After the implementation of the SVM it is necessary
to train it according to a malware so that the weights are
changed accordingly. For doing this we have various methods,
in this research work we are using QP programming to find
the most optimized set of weights to be used. This may be a
onetime process, but it may be invoked again for a new set of
data for better weights. After the training, we expect results, so
for each application under scrutiny, we apply the entire
process again except the training to get a value, corresponding
to which we classify the application.

CREATING CONTROL FLOW GRAPH

A function call graph is a directed graph [5] where a
node exists for each of the application’s functions and edges
from the callers to callas. A call graph is a directed graph
whose vertices, representing the functions a program is
composed of, are interconnected through directed edges which
symbolize function calls .Call graphs are generated from a
binary executable through static analysis of the decompiled
bytecode. The bytecode of each application is generated from
dex2jar. To visualize the call graph we have used. (Dot)
language to represent the graph in textual format and the used
zgrviewer to visualize it. The flowdroid is used to generate
function call graph directly from the apk.

IV. LABELING OF FUNCTION CALL GRAPH

Furthermore, a labeled function call graph can be

constructed by attaching a label to each node. Formally, this
graph can be represented as a 4-tuple G = (V, E, L, l), where V

is a finite set of nodes and each node v is associated with one
of the application's functions. E belongs to VxV, denotes the
set of directed edges, where an edge from a node v1 to a node
v2 indicates a call from the function represented by v1 to the
function represented by v2. Finally, L is the multiset of labels
in the graph and l: V -> L is a labeling function, which assigns
a label to each node by considering properties of the function
it represents.

Labeling of nodes is done according to the type of the

instructions contained in their respective functions. Reviewing
the Dalvik specification, we define 15 distinct categories of
instructions based on their functionality as shown in Table 1.
Each node can thus be labeled using a 15-bit field, where each
bit is associated with one of the categories:

Consequently, the set of labels L is given by a subset

of all possible 15-bit sequences.

V. CLASSIFICATION

This research work uses the Support Vector Machine

to classify malicious and non-malicious applications as SVM
have the property of not getting over fitting into the dataset as
in case of other learning algorithm. Another advantage is that
with the introduction of kernel in SVM non-linear data can be
curved into a linear dataset. This makes the process more
flexible and robust. A brief explanation of how the SVM
works is as follows

Support Vector Machine

SVM is responsible for finding a hyperplane that will
differentiate between positive and negative examples. The
goal is to separate the two classes by a function which is
induced from available examples. The second goal is to
produce a classifier that will work well on unseen examples,
i.e. it generalizes well. This linear classifier is termed the
optimal separating hyper plane. Intuitively, we would expect
this boundary to generalize well as opposed to the other
possible boundaries.

But one of the problems in this is that the dataset may

not be linear enough to find a hyperplane for the data. So one
needs to use a kernel function which will transform the input
to a high dimensional implementation and convert the inputs
into linearly separable data. This project makes use of
Neighborhood Hash Graph Kernel.

Neighborhood Hash graph Kernel(NHGK)

IJSART - Volume 3 Issue 9 –SEPTMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 371 www.ijsart.com

The main idea of the NHGK is that the functions
closer to one function also have an effect on the structure of
the graph. So for each node a hashed value is created using the
labels of its neighboring nodes and itself.
Hashing of Neighbors

After labelling nodes each function stores
information about the code in it, but we also need a way to
store the information about the functions that are directly
connected to a function. To do this we calculate a hash over all
of its neighbors in the function call graph [6]. The main
advantage NHGK kernel is that it reduce the time complexity
of comparing two graphs O (2 n) in linear time.

The computation of the hash for a given node v and

its set of adjacent nodes Vv is defined by the operation

Where represents a bit wise XOR of labels and r denotes a
single-bit rotation to the left. We calculate the hash for each
node individually and replace the label with the hash value.

Similarity with malicious application

After hashing the kernel needs to return degree of

similarity of the application with a malicious application[7].
We have analyzed the malicious data to find out a centroid of
the hash vector of the malicious applications. Now to compare
this with our graph we use the function

K (Gh, Gh’) =|Lh⋂Lh’|

Where Gh corresponds to the graph corresponding to the
centroid of malicious applications, Gh’ corresponds to the graph
corresponding to the application to classify and Lh and Lh’
corresponds to their hash vector, {a1, a2,…, aN}, where aiƐ	ℕ
indicates the occurrences of the i-th hash in Gh, respectively.

To find the intersection of the two vectors we have made use of
the formula:

hi = min (ai, ai’) ∀ ai Ɛ Lh and ∀ ai’ Ɛ Lh’.

Barla et al. [3] show that this histogram intersection
can be indeed adopted in kernel-based methods and propose a
feature mapping, such that S is an inner product in the induced
vector space. For this purpose, each histogram H is mapped to
a P-dimensional vector߮(ܪ) as follows

where M is the maximum value of all bins in the dataset, N is
the number of bins in each histogram This is the feature vector
returned by kernel to be used by the SVM.

VI. METHODOLOGY

This research work is an open source project with

code available on github
(https://github.com/nitish2794/MALDIAS). We have used
version control (git) to track the changes in the project and to
revert them if needed.

Structure of project and the files required for

processing

1).Processing of android application

Input Files required for the processing of android

application

Android Platforms SDK:- Each android application

uses android’s library to implement these features, so to
separate these methods from used defined ones we need
android sdk to find the default android methods.

Source and Sinks.txt:- This file is used by flowdroid

to find all possible entry and exit points in an application
which helps in accurately implementation of call graph.

SVM training module: - We need to train SVM

before we can use it to classify, to train the SVM we need to
preprocess the entire dataset available and then train the SVM
according to the dataset.

2). Creating a flow graph of the android application

We have used to flowdroid to create a control flow
graph of the android application.

3 a).Implementation of NHGK kernel

We create a label to each function of the application,
depending upon the types of instruction used in the function.
After that we do the hashing of the labels of a node with the
labels of its neighbors.

3 b).Sending the feature vector SVM to classify.

IJSART - Volume 3 Issue 9 –SEPTMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 372 www.ijsart.com

After receiving the feature vector, it is necessary to
convert it into a linearly separable data. To do so, we pass it
though the NHGK kernel. After processing in the kernel we
receive a 400*900 large vector each bit corresponding to a
frequency of 900 hashes possible. Now, we compare this
vector with the centroid of the FakeInstaller and apply it to the
SVM to find the degree of similarity to tithe various files used
in this are;-

Default.txt:-This contains a feature vector

corresponding to the centroid of the malware fakeInstaller.

Weights.txt:- This contains the weights

corresponding to the 400*900 size vector. This weights are
already trained one and as the project continues these weights
may be progressed as more and more data is found.

4). Display the result

 The SVM returns a value to the system
corresponding to the feature vector of the application and
according to this value we classify it into malicious or non-
malicious or safe application.

DATA SET

 Our dataset consisted of 91 applications out of which
28 were benign rest were malicious and belonged to the group
of FakeInstaller.

VII. LIMITATION

In this static analysis technique call graph processed

are the approximation of the real functions and their neighbor.
So there is a limit to what extent you can store relevant
information in a neighborhood hash. A call graph can be
obfuscated by adding unreachable calls. Moreover, function
inlining can be used to hide the graph structure. Invalid
bytecode sequences can be deliberately added by the attacker
to prevent the successful decompilation of android application.

VIII. CONCLUSION AND FUTURE WORK

In this paper we have presented a machine learning-

based method for the detection of malicious Android
applications. Our method is inspired by the neighbourhood
hash graph kernel to represent applications based on their
function call graphs. This representation is shown to be both,
efficient and effective, for training an SVM that ultimately
enables us to automatically identify Android malware with a
detection rate of 69% with 1% false positives, corresponding

to one false alarm in 100 installed applications on a
Smartphone.

Further, this same procedure can be applied to many

different types of malwares to create a collection of SVM each
of which will correspond to a malware type. Then, we can use
one-vs-all strategy to analyze an application.

REFERENCES

[1] Lookout Mobile Security. Security alert: Droiddream

malware found in officialandroid
market.http://blog.mylookout.com/blog/2011/03/01/securi
ty-alert-malware-found-in-official-android-market-
droiddream/

[2] William Enck, Damien Octeau, Patrick McDaniel, and
Swarat Chaudhuri “A study of android application
security”, In Proceedings of the 20th USENIX Security
Symposium, 2011.

[3] Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang,
“Hey, you, get off of my market: Detecting malicious
apps in official and alternative android markets”, In
Proceedings of the 19th Network and Distributed System
Security Symposium, 2012.

[4] C. Kolbitsch, P. Comparetti, C. Kruegel, E. Kirda, X.
Zhou, and X. Wang, “Efective and efficient malware
detection at the end host”, In Proc. of USENIX Security
Symposium, 2009.

[5] X. Hu, T.C. Chiueh, and K. G. Shin, “Large-scale
malware indexing using function-call graphs”, In Proc. of
the ACM conference on Computer and communications
security, 2009.

[6] A. Barla, F. Odone, and A. Verri, “Histogram intersection
kernel for image classification” In Proc. of International
Conference on Image Processing, ICIP, volume 2, pp.
513-516, 2003.

[7] V. Rastogi, Y. Chen, and X. Jiang. “DroidChameleon:
evaluating Android anti-malware against transformation
attacks,” In ASIACCS, pages 329–334. ACM, 2013.

