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Abstract- This paper reveals with the inverse square law for a 
static source, and the emission of radiation. The difference in 
their physical meaning and their characteristic form permits 
one to obtain the total rate of radiation emission (both its 
momentum rate and its energy rate) from knowledge of the 
self-force. This can be done without knowledge of the 
asymptotic form of the radiation field. The electromagnetic 
case is the main topic, but the method is also applied to the 
emission of gravitational radiation in the linear 
approximation to general relativity. 
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I. INTRODUCTION 
 
 There are only two fundamental interactions in 
classical physics, the electromagnetic and the gravitational. 
They have several properties in common, of which the best 
known are the inverse square law for a static source, and the 
emission of radiation. The latter phenomenon occurs 
whenever the source is not in uniform motion.1  
 
 That fact establishes that Newton's famous law of 
motion, Fext = ma, cannot be correct because whenever the 

force does not vanish, Fext 0, neither does the 

acceleration, a 0. Therefore, some momentum and some 
energy of the moving object is lost in the form of radiation. 
This loss is ignored in Fext = ma.. In the present paper, I 
shall show how this defect is repaired. In particular, I shall 
demonstrate that, when the loss due to radiation is taken into 
account, consistency requires that an additional phenomenon 
be included. That phenomenon is often ignored; its inclusion 
in the equations of motion gives rise to an additional term, the 
"Schott term."  
 
 When the Schott term is not ignored, it is necessary 
to distinguish between the self-force and radiation reaction: 
The former is the sum of the Schott term and the radiation 
reaction term in the equations of motion. Unfortunately, the 
physics literature is full of confusion on this point often using 

the terms "radiation reaction" and "radiation damping" 
incorrectly. The origin of this confusion will be seen in Sec. II.  
 
 I shall discuss primarily electrodynamics. But in the 
last section, I will try to use the method  for  finding  the  rate  
of  radiation  emission  from  the  self - force  also  in  the  
gravitational case. This will be done in the so-called "linear 
approximation" to general relativity in which the gravitational 
equations of motion have a striking similarity to 
electrodynamics.  
 
 In order to avoid cluttering up the equations with 
unnecessary numerical factors that take away attention from 
the physical meaning, I shall use Gaussian units as in 
Jackson's text2 (the 2nd edition or the second half of the 3rd 
edition). I shall also use units in which the speed of light c = 1; 
an easy dimensional analysis can supply the necessary factors 
of c whenever they are desired. 
 

II. THE LAD EQUATIONS OF MOTION FOR A 
CHARGE 

 
 In covariant notation, Newton's equations of motion 
read (I use tr µ  = +2), 
  

 
 
 where the external force can be (but does not have to 
be) the Lorentz force. Since this equation ignores the emission 
of radiation, one might be tempted to take it into account by 
simply subtracting on the right-hand side (since it's a loss) the 
rate of energy–momentum that is leaving the source. In special 
relativity, the four-vector rate at which the energy-momentum 
of radiation is emitted is the generalization of the Larmor 
formula,  
  

 
 
 But when this is done, one obtains an inconsistent 
equation. This can be seen as follows: Both sides of (2.1) are 
orthogonal to the velocity vector  µ, µ

µ = 0, and 
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F µ = 0, while (2.2) is parallel to it. Therefore, when 
the augmented equation is multiplied by  µ, one obtains  

= 0. A different approach to correcting (2.1) for radiation 
emission must therefore be taken.  
 
 Since both terms of (2.1) are orthogonal to  µ, the 
added term must be of the form  
  

 
 
 The factor Pµ   is a projector into the hyper-plane 
orthogonal to the velocity  µ. Assuming that the new 
equation will be linear and not higher than of second order in 
the time derivative of the velocity, Xµ must have the form  
  

 
 
 When Pµ   acts on that, the first term vanishes, and 
one finds b µ + cPµ . The first term is just like the 
inertial term on the left-hand side of the equation. Putting b = 
– m and combining the two inertial terms yields  
  

 
 
 Here, the physical rest mass m0 = m + m. 
Substitution for Pµ    and differentiation by parts yields  
  

 
  
 provided we identify the parameter c with 2e2/3, a 
necessity for recovering (2.2). This makes (2.6) identical to 
the Lorentz–Abraham–Dirac equation. The nonrelativistic 
limit of that equation was first suggested by Lorentz, then 
derived for the relativistic case for the first time by Abraham3 
in 1904 (the year before Einstein's first paper on special 
relativity was published and therefore without the benefit of its 
insight) starting from Maxwell's equations. Finally, it was 
derived in covariant form for a point charge by Dirac4 in 
1938. I believe, therefore, that the usual name "Lorentz–Dirac 
equation" is unfair to Abraham; I shall call it the Lorentz–
Abraham–Dirac equation or LAD equation for short. The 
derivation given above is of course just a heuristic short-cut 
and avoids a very long and difficult calculation.  
 
 The new term in Newton's equation of motion is the 

four vector F , which is sometimes called the von Laue 
four vector because he was the first one to put that term of 

Abraham's equation into manifestly covariant form.5 It is the 
self-force because it is due to the charge's own field acting on 
itself. It consists of two terms: The first term is the Schott 
term. Schott gave the first unobjectionable derivation of the 
LAD equation in his book.6 The second term is just the 
negative of (2.2), the rate at which momentum and energy are 
lost in the form of radiation. It is therefore properly called 

radiation reaction , F , Thus we have  
  

 

 
  
 These two force four vectors are easily characterized: 

F   contains neither the velocity nor the acceleration, and it 

is a total time derivative. F , the radiation reaction, is 
along the negative direction of the four velocity (for obvious 
reasons of symmetry) and the invariant total radiation rate, 

, is a positive Lorentz invariant scalar (or vanishes). The 

self-force, F , can therefore always be separated uniquely 
into these two components.  
Unfortunately, the literature is replete with confusion on these 

terms. Thus Pauli7 calls F  "radiation reaction," while 
Landau and Lifshitz8 call it "radiation damping." This 
nomenclature was mindlessly repeated in other texts.1,9 
 
 The origin of this confusion can be traced to the 
nonrelativistic limit. In that limit,  

 

while  

 

so that the equations of motion become  

 

where Fself = e2  and  
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The last term is the rate of work done by Fself and consists of 
two parts,  

 

 Thus the rate of work done by the self-force provides 
not only for the rate of emission of radiation energy but also 
contributes a term proportional to the second time derivative 
of the kinetic energy, a Schott-type term. The latter vanishes 
when the motion is assumed periodic and one averages over 
time. This is the case usually considered. In that case, one can 
call Fself of (2.8) a "damping force" that produces a loss, 
namely radiation, even though that energy is supplied by the 
work due to Fext and/or by a loss of kinetic energy. However, 

in case this assumption does not hold, the Schott-type term in 
(2.10) is not negligible so that part of the radiation loss comes 
also from that first term. An extreme case is the famous (or 
infamous?) radiation from a charge in hyperbolic motion 
(moving under a constant acceleration).9 In that case, a 

relativistic treatment shows that F  vanishes so that (2.7b) 
implies that all the radiation energy comes from the Schott 
term.  

 The Schott force, F , is a total time derivative. As 
such, it describes a reversible process being able to take on 

either sign, while F  describes an irreversible process 
involving a loss of both momentum and energy. Physically, 

F  involves only the asymptotic fields, the fields that 

decrease like 1/r, while F  involves all the rest, both 1/r2 

fields and cross terms (the energy–momentum tensor is 
bilinear in the fields).  

 This separation of the self-force into Schott and 

radiation terms, therefore permits one to deduce F  
uniquely: it must be of the form (2.7b) with >0. This means 

that one can find the emitted rate of energy and momentum of 

radiation directly from F  without having to compute first 
the radiation fields (the "1/r fields"), then the Poynting vector, 
and then having to integrate the angular distribution, to obtain, 

finally, the total momentum and energy of the emitted 

radiation. If only the total momentum and energy emitted per 

unit time is needed, and if the self-force is known, a very 
simple method is thus available: one computes the self-force 
four vector, and then uniquely obtains the four vector of 
radiation reaction from that of the self-force. The point is that 
the self-force requires only the knowledge of the fields at the 
source and not the asymptotic fields. This is the method that 
will be used in Secs. III and IV. (One should add that this 
method becomes more complicated when several charges are 
involved but this is not the present concern.)  

 But before leaving the LAD equation, a remark must 
be made about the unphysical (sometimes called 
"pathological") solutions of this equation. The reason that this 
equation has such solutions comes from the approximation 
made in its derivation: the limit to a point charge is taken. This 
is physically unjustified because it exceeds the domain of 
applicability of classical physics.10 But the LAD equation can 
easily be "repaired." This was apparently first done by Landau 

and Lifshitz (Ref. 8, paragraph 76). One observes that F  is 
small compared to the other terms in the equation. One can 

therefore take the equation neglecting F , that means (2.1), 
as a first approximation, find µ and its time derivatives from 

it, and then substitute this into F . The result is an equation 
free of unphysical solutions. The deeper mathematical 
meaning of this approximation can be learned from Kunze and 
Spohn.11  

III. ELECTROMAGNETIC RADIATION FROM A 
SPHERICAL CHARGE 

  
 The generalization of the LAD equation to an 
equation for an extended source has recently been carried 
out.12 It is a generalization of the method used before for a 
sphere with a uniform surface charge.10 But now the charge 
distribution is left unspecified except that it is assumed to be 
spherically symmetric. The calculation is based on one that 
can be found in Jackson1 [Eq. (17.28) in the 2nd ed., (16.28) in 

the 3rd ed.] for the self-force of a sphere in its instantaneous 
rest frame. A boost to an arbitrary frame yields the desired 
result.  

 For a spherically symmetric charge distribution (x) 

(normalized to (x)d3x = 1) and confined to a sphere of 

radius a, F  is in good approximation  
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where  

 

Here, µ is the velocity of the center of mass of the sphere. 
This self-force is the result of the retarded self-interaction 

within the sphere computed in its instantaneous rest frame. In 

the point limit, (3.1) reduces to F  of (2.7).  

 When (3.1) is expanded, the n = 0 terms contribute 
only an inertial term of the form – m µ with m = 2e2I0/3 
being the electromagnetic contribution to the mass. When 
combined with the left-hand side of the equation of motion, 
this term yields the inertial term m0

µ, m0 = m + m being 
the observed rest mass. The n = 1 term gives exactly the self-

force F  of the LAD equation, (2.6), and is independent of 
the charge distribution since I1 = 1. Thus, only the sum from 2 
to contributes charge distribution dependent terms, yielding  

 

where  

 

and  

 

 In the point limit, a 0, all the In = 0 for n 2, 
and one obtains the LAD result for point charges.  

 The total invariant radiation rate for an arbitrary (but 
spherical) charge distribution, is therefore  

 

 If, in particular, the charge is distributed uniformly 
over the surface of the spherical source, the In can be 
integrated and the sum can be carried out.10 One obtains (with 

a = 2a)  

 

which agrees with (2.7b) in first approximation.  

IV. GRAVITATIONAL RADIATION FROM A 
SPHERICAL MASS 

 
 A similar analysis can be made for the case of an 
extended neutral particle in a gravitational field.12 In the linear 
approximation of general relativity,13 the gravitational effects 
are treated as a correction to the Minkowski metric, gµ  = 

µ  + hµ . Defining µ  = hµ – µ h with h = µ hµ , 
one can choose µ  so that it satisfies  

 

 Here, Tµ  is the matter tensor. This equation shows 
great similarity to the equation for the four potential in 
electrodynamics when the Lorentz gauge is used. But this 
similarity continues. The geodesic equation is the equation of 
motion of a freely falling particle in a gravitational field,  

 

 The factors m are gratuitous; they express the 
equivalence principle: the inertial mass (left-hand side) and the 

gravitational mass (right-hand side) are equal. is the 
Christoffel symbol, which involves first derivatives of the 
metric tensor gµ . When the above substitution is made for it, 
(4.2) becomes (in the instantaneous particle rest frame)  
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 Here is the second striking similarity to 

electrodynamics. It suggests the notation Aµ = – /4 and E = 

– –4 . The factor 4 and an overall sign are the only 
differences compared with the electrodynamic case: m  = –
mE; but the mass now replaces the charge.  

 This similarity of the linear approximation of general 
relativity to electrodynamics has been exploited in the past. 
Thus, the Lens–Thirring effect (the dragging of inertial frames 
by a rotating mass, the analog of the Coriolis-type acceleration 
due to the self-force exerted by the magnetic field produced by 
a rotating charge) can be computed in that way (see p. 192 of 
Ref. 13). This suggests that the above calculation of the 
electromagnetic self-force can be repeated for the gravitational 
case. The only change would be a factor 4 wherever the vector 
potential appears. One finds exactly the same result for the 
gravitational self-force as in the electromagnetic case except 
for an overall numerical factor,  

 

 The new overall factor has the opposite sign from that 
for the electromagnetic case, (3.1). The reason is very simple: 
equal charges repel, while masses attract one another.  

 As in the electromagnetic case, the first two terms of 

the sum deserve special consideration. The n = 0 term is again 

an inertial term, + m µ with m = 11Gm2I0/3. Note that this 
gravitational mass gives a negative contribution, m0 = m– m, 
in contrast to the electromagnetic case. Even more interesting 
is the fact that such a "mass renormalization" violates the 
principle of equivalence! The inertial mass is renormalized 
while the gravitational mass is not. I have elaborated on this 
elsewhere.14  

 The n = 1 term in the sum (4.4) gives a contribution 
analogous to the self-force in the LAD equation,  

 

the label HG indicating that this result was first derived by 
Havas and Goldberg.15  

 Thus, one can write the gravitational equation of 
motion exactly as in the electromagnetic case, Eq. (3.3),  

 

 

Here,  

 

in analogy to (2.7b). But now the radiation rate has the wrong 
sign! This was of course also noted by Havas and Goldberg. 
The explanation lies in the linear approximation. In that 
approximation, the equations "don't know" that gravitational 
radiation cannot be emitted as dipole radiation but only as 
quadrupole radiation or as higher multipoles. In fact, this can 
be seen from the above derivation: from the equation of 

motion (4.1) only the and not the kl terms were used. 

Thus the term F  (HG) should simply be ignored.  

 Can the correct gravitational radiation rate be 
obtained from the higher terms in the expansion? To answer 
this question, I make the following argument. The next term in 
the series cannot be expected to give gravitational radiation 
since that next term would be the cross term between the 
dipole and the quadrupole radiation. This leads to 
consideration of the n = 3 term of the sum,  

 

 This term contains total time derivatives similar to the Schott 
term. These must be separated from the radiation reaction term; 
since the above inner product of four vectors can be written as 

+ (total derivatives), the rate of energy–momentum 
four-vector emission of gravitational radiation is  

 

 In analogy to the electromagnetic case, the invariant 

gravitational radiation rate therefore follows as  
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 Since = dx /d , we see that it is proportional to 
the sixth power of frequency, as it should be but (4.9) is quite 
different from the standard result that involves the square of 
the quadrupole moment (see, e.g., Ref. 8, Sec. 110). 
Furthermore, should be positive definite, and that holds 
only if in the instantaneous rest frame | |>| |2. Such an 
inequality cannot be assured for general motion; it also 
violates the assumption made in the derivation of (4.8) 
according to which higher time derivatives are small compared 
to lower ones. It follows that (4.9) cannot be taken seriously 
and the derivation of the gravitational radiation rate fails in 
this linear approximation.  
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