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I. INTRODUCTION 

 
 Annamalai computing method (ACM) provides a 
novel approach for computation of geometric series in a 
different manner. ACM can be used in the research field of 
science and technology such as computational biology [1, 2], 
medicine [3, 4], networking and security [5, 6].  
 
We commonly know that a geometric series is any series that 
can be written in the following 

form: ........32  ararara , where the common 
ration is r.   

This series can also be written in the notation
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)(ii .........2221 32  , where a = 1 and r = 2. 
 
It is eventually understood by the presently existing books of 
mathematics the summation of finite geometric series is: 
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II. NOVEL COMPUTATION OF GEOMETRIC SERIES 

 
This new ideas can help students to form the geometric series and computing it explicitly. 
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If the integer ‘k’ reaches to the integer ‘0’, then 
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)(iii Let us choose an integer ‘13’ for forming and computing the geometric series in a new way. 
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We can further expand the terms as follows: 
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By simplifying we get  
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If the integer ‘k’reachesto the integer ‘0’, then 
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theorem). 
 
Theorem (New Formation of Generalized Geometric Series and its Computation): 
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Proof 
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From (1) and (2) we get: 
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We can also write this expression as 
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Corollaries:  
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IV. CONCLUSION 

 
In the research study, a novel technique has been introduced to 
form the generalized geometric series and computing it. 
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