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Abstract—We present here a new method to identify the posi-

tion of the optic disc (OD) in retinal fundus images. The 

method is based on the preliminary detection of the main 

retinal vessels. All retinal vessels originate from the OD and 

their path follows a sim-ilar directional pattern (parabolic 

course) in all images. To describe the general direction of 

retinal vessels at any given position in the image, a 

geometrical parametric model was proposed, where two of the 

model parameters are the coordinates of the OD center. 

Using as experimental data samples of vessel centerline 

points and cor-responding vessel directions, provided by any 

vessel identification procedure, model parameters were 

identified by means of a sim-ulated annealing optimization 

technique. These estimated values provide the coordinates of 

the center of OD. A Matlab® prototype implementing this 

method was developed. An evaluation of the pro-posed 

procedure was performed using the set of 81 images from the 

STARE project, containing images from both normal and 

patho-logical subjects. The OD position was correctly 

identified in 79 out of 81 images (98%), even in rather 

difficult pathological situations. 
 
Index Terms—Geometrical model, optic disc, simulated an-
nealing, retinal images, vessel tracking. 

 
I. INTRODUCTION 

THE OPTIC DISC (OD), which in fundus images usually appears as a 

round region brighter than the surrounding, is the image of the optic 
nerve (Fig. 1). From it, the central retinal  
artery and vein emerge, to cover, with further branching, most 

of the retinal region. Locating the OD position in fundus 

images is quite important for many reasons. Many important 

retinal pathologies may affect the optic nerve. Since the OD 

may be easily confounded with large exudative lesions by 

image anal-ysis techniques, its detection is also important to 

exclude it from the set of possible lesions. Moreover, OD 

detection is funda-mental for establishing a frame of reference 

within the retinal image and is, thus, important for any image 

analysis applica-tion. The detection of OD position is also a 

prerequisite for the computation of some important diagnostic 

indexes for hyperten-sive/sclerotic retinopathy based on 

vasculature, such as central retinal artery equivalent (CRAE) 

and central retinal vein equiv-alent (CRVE) [1]. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Retinal fundus image with vessels and OD (bright round shape on the 
right-hand side). 

 
Many techniques have been proposed to detect the OD, 

mainly based on its specific round shape and relatively high 

brightness, as compared to the rest of the fundus image (see, 

e.g., [2]–[7]). These techniques, however, often fail on 

pathological images, where other regions of fundus may be 

characterized by round shape and/or elevated brightness, e.g., 

large exudative lesions.  
Other techniques have been recently proposed, which try to 

exploit the information provided by the vessel structure, i.e., the 

fact that all retinal vessels originate from the OD. In Koozekanani 

et al. [8], an OD tracking technique was devel-oped for OCT 

(Optical Coherent Tomography) images, using a tiered scheme 

based on the Hough transform, eigenimage analysis and 

geometrical analysis based on a vasculature model. In Hoover 

and Goldbaum [9], an original vessel segments fuzzy 

convergence algorithm was proposed to identify the position of 

the optic nerve image as the focal point of the blood vessel 

network. Their method achieved 89% of correct identifications on 

an image data set developed within the STARE project and 

containing many pathological images [10]. It is the same data set 

we have used also in the work presented here.  
Our proposed method is based on a model of the 

geometrical directional pattern of the retinal vascular system, 

which implic-itly embeds the information on the OD position 

as the point of convergence of all vessels. However, the 

resulting method is not just based on the detection of the area 

of convergence of vessels (as in [9]), but rather on the fitting 

of a model with respect to the entire vascular structure.
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II. METHODS 
 
A. A Geometrical Model of Retinal Vessels Direction 
 

Defining a directional model for retinal vessels requires the 
definition on the whole image of a function  
 
 

 

which represents the preferential direction in any retinal image  
of a vessel present at point  . Vector  is the set of param-
eters defining the model and its positioning and, thus, it will 
include the OD coordinates.  

By visual inspection of retinal fundus images (see a 

represen-tative example in Fig. 1), it appears that a common 

vascular pat-tern is present among images: the main vessels 

originate from the OD and follow a specific course that can be 

geometrically modeled as two parabolas, with a common 

vertex inside the OD. The definition of the directional model 

can, therefore, be based on this assumption.  

If we assume a Cartesian coordinate system, these parabolas 
Fig. 2. Parabolic model of main vessels course.

 can 
be described as the geometrical locus   
  (1) increment in tangent magnitude is modulated by expression (4), 
  

which expresses the rate of divergence of the direction at any 
where  is the parameter governing the aperture of the parabolas given   coordinate. For increasing, this rate tends toward 

(for sake of simplicity, let us assume for the time being that the the value of parameter for positive (negative) values of 

origin of the coordinate system is the vertex of the parabolas). . Values of   and represent, therefore, the limit rates of con- 

Fig. 2 shows an example of one such locus overlapped to the vergence toward (vertical direction) of the vessel directions 

retinal image.  

belonging to locus   , i.e., on the 

for positive and negative x values. These two rates are in prin- 

For a generic point ciple different, to take care of the different degree of curvature 

parabola, the directional model is expressed by the implicit of vessels in the nasal and temporal side of retina: the lower the 

equation             absolute value of this constant, the higher the curvature of ves- 

            
(2) 

sels as they move away from the OD.             
  

     
    

 Given a generic origin for the Cartesian coordinates system       

            

             

             

in use (e.g., upper-left corner in the image), in order for the              

where function returns the sign of its argument and vector 
parabolas to be centered at the coordinates of the OD center 

, as shown in Fig. 2, a translation transformation had 
p contains parameter . The above expression states that on 

to be applied to the model 
               

the parabolas the preferential vessel direction is tangent to the                
                   

parabolas themselves.                               

In order to completely define the model, it is necessary to ex-               
(5) 

press the preferential direction also outside of the parabolic geo- 
              

                   

metrical locus.   implicitly divides every quadrant in two areas: The complete model for vessel direction  at any point 

the internal area (with respect to the convexity of the parabola) in the image is given by the following equation:      
and the external area. Anatomical knowledge indicates that ves-                    

sels bifurcate when moving away from the OD, and branch ves-                    

sels tend to diverge from the main vessel. In particular, ves- 
                   
                   

                   

sels inside the parabolas quickly bend toward the macula in 
                   

                   

the temporal region (left-hand side in Fig. 2), whereas in the 
                   

                   

nasal region this inward deflection happens at a much slower 
                

(6) 
                

rate (right-hand side in Fig. 2). 
               
                   

                   

The tangent equation (2) was, thus, extended to accommodate                    

points outside by adding a correction term Fig. 3 shows an example of one such model overlapped to the 
             

retinal image. For sake of clarity, directions are shown              
             only for some points of the image and optimal values for model               

(3) parameters are used for this simulation (see below). 
  

 
(4)  

 
The numerator of (3) is zero for a point belonging to , whereas 

for a point outside  its absolute value increases in a way pro-

portional to the vertical distance between the point and . This 

 

B. Model Parameter Identification 
 

By using suitable model parameter identification techniques,  
the optimal value for  and, thus, for  , can be identi-fied 

for any image, given a set of data. The data are the vessel di-  
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Fig. 3. Complete model of vessels direction. For sake of clarity, directions 

 (gray segments) are shown only on an arbitrary grid of points. 

 

rections  measured at points , belonging  
to the vascular structure.  

Many algorithms have been developed for extracting the 

vascular structure from fundus images (see, e.g., [11]–[13]). Most 

of them provide, in addition to parameters such as vessel center-

point position and caliber, also vessel direction at the center-point 

(this latter parameter can however be easily re-covered from the 

identified vessel, e.g., by means of simple Principal Component 

Analysis on a set of vessel center-points). The detected vascular 

tree can, therefore, be represented by 

a set of quadruplets  , whose elements represent  
respectively the coordinates of vessel center-point  , the 
vessel caliber  and vessel direction  at that point.  

Our choice for the identification of model parameters has 
been the minimization of the weighted residual sum of squares 

(RSS)  
 

(7)  

 

Minimization is performed with respect to model parameters  
 and operator “ ” indicates a modulus-  difference between 

directions.  
Quantities  are weights, used to modulate the importance of 

each term in the summation. Different options have been 

investigated to describe these weights and the best results were 

obtained with  proportional to vessel caliber . Optimized  
values of parameters  represent the best positioning 

of the OD according to the model fit on the available data 

 .  
Minimization of RSS with classical gradient-based tech-

niques is rather critical, since this function exhibits many local 

minima. Fig. 4 represents, e.g., a plot of RSS as a function  
of parameters  and  only. The absolute minimum is 

correctly found when    are inside the OD, but a  
gradient-based algorithm would be easily trapped in one of the 

many local minima. To overcome this problem, a simulated 
annealing (SA) optimization algorithm has been adopted. SA 

 

 

is a global stochastic optimization algorithm that theoretically 
guarantees the convergence toward global minimum [14].  

The working parameters of this procedure (e.g., number of 

data points, initial model parameters value, initial 

temperature, termination criterion, etc.) have been empirically 

tuned using a representative subset of 20 images. The 

resulting set of values was then used for model parameter 

estimation in all 81 images of the entire data set.  
In order to overcome the stochastic nature of SA algorithm, 

several optimization runs were performed, starting the proce-dure 

from different points in the parameter space, and the final RSS 

values were compared to select the smallest one. A number of six 

runs for each image proved to be sufficient in our test set. 

 

III. RESULTS 
 

A Matlab
®

 prototype implementing the described method 

was realized. An evaluation of the proposed procedure was 
per-formed using the 81 fundus images of the STARE project 
data set (35  field of view and 700  605 pixels) [10]. Thirty-
one images were from normal subjects, whereas the other 50 
con-tained pathological lesions of various types and severity.  

In order to assess the robustness of the proposed procedure to 

detect OD position with respect to different vessel detection 

algorithms, we have used the measured vessel directions pro-

vided by two sets of vessel data. The first one (Track-1) was ob-

tained by applying a binary segmentation procedure developed by 

Hoover et al. [12] and used to provide input data also to their 

own system for OD detection [9]. For each image, 10 different 

sets of vessel structure data were provided, to produce vessel 

segmentations at different scales, from 0 to 9. At variance with 

[9], where 6 segmentations for each image were used to detect 

vessel convergence and, thus, OD detection, we used only one 

segmentation (scale value of 4). The second set of vessel data 

(Track-2) was obtained by applying our own procedure, based on 

a sparse tracking algorithm [13]. As proposed also in [9], the OD 

position was considered correctly detected if the estimated 

coordinates were inside the contour of the OD, i.e., within 60 

pixels of its center, as manually identified for ground truth.  
The method, using either set of vessel data, was able to cor-

rectly position the OD in 79 out of 81 images. Identification 

results are summarized in Table I for both vessel detection 

pro-cedures. Examples of highly pathological images in which 

the OD was successfully identified are shown in Fig. 5.  
SA runs took on average 2 min for each image on a mid-

size PC (2-MHz Intel
®

 Pentium
®

 IV CPU and 512 Mb 

RAM). This value is expected to be at least ten-fold reduced 
when a more efficient C++ implementation of the whole 
procedure will be developed. 

 

IV. DISCUSSION 
 

We have developed a new algorithm for the OD detection 

in retinal images. It is based on a geometrical model of the di-

rection of main retinal vessels (two parabolas with a common 

vertex) and its robustness lies in the a priori knowledge pro-

vided by this model. The model parameters are identified 

from a set of data, representing the directions of retinal vessels 

on a set of image points, through the minimization of a least-

squares cost function. 
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Fig. 4. Plot of RSS values (vertical axis, in arbitrary units) as a function of model parameters x  and y  (image plane, in pixels). 

 

TABLE I  
PERFORMANCES OF THE ALGORITHM, EXPRESSED AS NUMBER OF IMAGES IN 
WHICH THE OD WAS CORRECTLY IDENTIFIED OR NOT. IN “TRACK-1,” VESSEL 
IDENTIFICATION DATA FROM HOOVER et al. [12] WERE USED, WHEREAS IN 
“TRACK-2” OUR OWN TRACKING ALGORITHM [13] WAS EMPLOYED  
 
 
 
 
 
 
 
 
 
 
 

 

The model assumes the symmetry of the vascular network 

around the parabolas axes, lying horizontally and, thus, 

images with vessels having this directional symmetry are 

required to obtain a reliable estimate of the OD location. This 

is reasonable for the fundus images acquired in clinical 

settings, with fields of view including OD (such as standard 

ETDRS fields 1M and 2M [15] and proposed modified fields 

NM1 and NM3 [16]). The vessels identified in the image 

should also have sufficient curvature to provide good 

sensitivity of the model parameters to the data.  
A preliminary investigation was performed to assess the ad-

equacy of the proposed model by analyzing the behavior of the 

cost function RSS when model parameter values are varied. 

These values were moved one by one on their interval of vari-

ation and the existence of an absolute minimum for RSS was 

 

confirmed. As an example, the values assumed by RSS for pa-  
rameters  and  varying over a grid of coordinates are 

shown in Fig. 4; albeit many local minima are present, a global  
minimum exists and it is reached just for  and  at the 

center of OD. Moreover, while two different values for 

param-eter  were found to be necessary (  and  ), only one 

value for parameter  turned out to be adequate for obtaining 

satisfactory performances of the algorithm.  
The issue of the number of data points  to be used in each 

image for parameter estimation has been also examined. The 

number of points originally provided by the vessel identification 

procedures ranged from 4300 to 7800, depending on the quality 

of the images and the parameters used in the procedures (e.g., 

scale value in “Track-1”). To reduce the computational burden of 

the algorithm, an analysis was performed to identify an av-erage 

minimum number of data points. In the subset of 20 im-ages, we 

investigated how the reduction in  affected the posi-tion of RSS 

minima when varying one by one the model param- 

eters, in particular  and .  was gradually decreased, 

by sub-sampling the set of data points, until the estimated OD 

position moved outside the visually detected OD. A number 

of 300 data points proved to be adequate for a correct OD 

identi-fication in all the subset images and then also in the 

whole data set. In the four cases where OD was not correctly 

identified, increments of  did not provide any improvement, 

suggesting that the problem was not linked to the number of 

data points used for parameter estimation.  
The weights used in cost function (7) are meant to repre-

sent the (lack of) uncertainty attached to the available sample 
of measured direction at the specific position. Assigning a 
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Fig. 5. Images with estimated parabolas (black line) and OD position (white cross).  

 

higher weight to larger caliber vessels implicitly strengthens the 

anatomical assumption that the main vessels tend to be positioned 

around the parabolic locus. Smaller vessels, on the contrary, 

although presenting a common directional pattern between 

images, tend to be less regular; they are also less easily and 

accurately identified by vessel identification procedures and, 

therefore, should be assigned a higher uncertainty. If these 

weights were given the meaning of inverse error variances and 

the measured directions were normally and independently dis-

tributed around their true values, the resulting estimator would be 

a Maximum Likelihood estimator for the model parameters.  
Results on the 81 normal and pathological images of the 

STARE project were satisfying, despite the presence of heavily 

confounding features in many of them. For example, in the 

images shown in Fig. 5, top, the OD is completely covered by 

extensive retinal lesions, either dark hemorrhages or bright 

exudates, and would have proved impossible to be detected by 

techniques based on brightness or shape. In the images of Fig. 5, 

bottom, the disc is only partially visible, many confounding 

lesions are present and only part of the vascular network is 

framed in the image. Thanks to its powerful model-based 

extrapolation capabilities, the proposed technique was able to 

correctly identify the position of OD also in these very difficult 

images. We also tested it in some images where the OD was not 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 6. Image with estimated parabolas (white line), vessel directions (dark 
segments) and OD position (white cross). Image not belonging to the STARE 
data set. 

 

even present in the analyzed image. An example is shown in Fig. 

6 (image not belonging to the STARE data base), where the
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Fig. 7. Images Im0027 (left) and Im0008 (right), where estimation of OD position (white cross) using data from ‘Track-1’ failed.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8. Images Im0041 (left) and Im0026 (right), where estimation of OD position (white cross) using data from ‘Track-2’ failed. 

 

estimated OD position is well in agreement with the location 
intuitively reconstructed from anatomical knowledge.  

The two cases in which the OD was not correctly detected 

are different for “Track-1” (shown in Fig. 7) and for “Track-

2” (shown in Fig. 8). The main reason for failing was the 

absence in the images of a sizable part of the vessel structure, 

e.g., for a serious pathological situation (Im0026, Fig. 8, right 

panel), and especially when the symmetry around the 

horizontal axis was totally lost [Im0027, Fig. 7 (left); Im0041, 

Fig. 8 (left)]. In one instance [Im0008, Fig. 7 (right)], the 

vascular structure was not completely reconstructed and the 

model predicted a slightly misplaced OD position.  
On the contrary, in Im0026 with ‘Track-1’ data the model was 

able to correctly detect the OD position thanks to the erroneous 

recognition of radial hemorrhages as vessels. In Im0041, the dif-

ferent ways of recovering vessel calibers (used as weights by the 

parameter identification procedure) by ‘Track-1’ with respect to 

‘Track-2’, allowed the former to provide from the upper part of the 

images (containing smaller vessels) enough data for a correct OD 

identification. Conversely, in both Im0027 and Im0008, data from 

‘Track-2’ allowed a more accurate reconstruction of the vascular 

structure and, thus, a correct identification of model parameters. 

 

V. CONCLUSION 
 

The performances of the proposed method, based on a model 

of the vascular structure, are dependent on the availability of a 

good portion of this structure in the image, whereas are indepen-

dent of the actual visibility (or even presence) of the OD. Being 

the vascular structure spread all over the image, it is much less 

affected by the presence of confounding or obscuring patholog-

ical areas. The availability of a vessel extraction procedure is a 

necessary prerequisite for our technique, and the performances of 

this step directly affect the correct positioning of the OD. 

However, the remarkably good results we obtained using the data 

provided by either procedure used in this work, which were 

algorithmically different and independently developed, suggest 

that this is not a critical issue. 
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