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Abstract-In this paper, GPU parallel implementation of 
Modified K- nearest neighbor classifier (MKNN) is proposed. 
MKNN was serially implemented in [1]. As the dataset grows, 
the time required for classification increases proportionally 
when implemented serially. Therefore it is implemented on 
GPU. GPU parallel implementation of MKNN is compared 
with its serial counterpart and observed that GPU+CUDA 
implementation is 200 times faster than its serial counterpart.  
The speed up achieved on GPU is proportional to the number 
of cores and number of threads scheduled on each core. 
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I. INTRODUCTION 
 

Instance-based classifiers such as the k-Nearest 
Neighbor classifier (KNN) [2] operate on the premises that 
classification of unknown instances can be done by relating 
the unknown to the known according to some 
distance/similarity function. Implementation of k-Nearest 
Neighbor classifier algorithm on a Central Processing Unit 
(CPU) for an enormous dataset, one containing instances in 
lakhs, would take hours to compute. The time it would take for 
the dataset to train and for an instance to classify would both 
be large. With the advancement in technology there was a 
great need to improve the speed of this algorithm without 
having a great effect on its accuracy in classification. The 
previous technique of implementation of the k-Nearest 
Neighbor algorithm had two major downsides. Firstly, CPU 
being a serial processor would compute the data serially, 
thereby taking enormous amount of time. Secondly, to classify 
an unknown instance – the instance would have to be 
compared with each and every instance in the training dataset 
so as to find the closest matching instance. Number of training 
instances for a large dataset would be greater than a lakh and 
comparing with each and every instance every time an 
unclassified instance appears, it would be an erroneous task.  
Hence this method of implementation doesn’t seem robust and 
reliable in terms of speed and time and a newer approach to 
this problem was necessary. 

 

Two major solutions to the above problem would be  
i. As highly parallel structure of GPUs make them more 

effective than general-purpose CPUs for processing of 
large blocks of data. So parallelizing the implementation 
of KNN on GPU speeds up the operations of calculating 
nearest neighbors.  

 
ii. Modifying the KNN algorithm such that the number of 

comparisons to be performed to label an unknown 
instance decreases drastically, which is achieved using 
MKNN [1]. So the GPU implementation of Modified K- 
Nearest Neighbor Classifier (GMKNN) is proposed. 

 
II. MKNN 

 
         MKNN uses group prototypes. A group 

prototype is a prototype of a group of patterns from the same 
class and falling close to each other by a user defined 
Euclidean distance d, where 0 < d ≤ 1. There can be multiple 
group prototypes from the same pattern class. Instead of using 
training patterns as it is to reason about the testing patterns, 
these group prototypes are used. This small modification can 
eliminate all the drawbacks of original KNN stated in [1].  
 
Advantages of MKNN over KNN: 
 
The MKNN algorithm has the following Advantages over 
KNN:  
1. Knowledge is represented in a generalized way so that it 

can be used in great many situations, such representation 
is called generalized representation.[1]   

2. Scope of its applicability is increased.[1]  
3. The recall time per pattern for testing patterns is very high 

and it is proportional to the size of the data set.[1]  
 
The rest of paper is organized as follows. Section III 

describes NVIDIA’s CUDA-enabled parallel Computing 
model, section IV describes the MKNN algorithm, section V 
describes the GPU parallel implementation of MKNN and 
section VI includes experimentation and results. 

 
III. NVIDIA’S CUDA-ENABLED PARALLEL 

COMPUTING 
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 Nowadays GPUs has evolved into a highly parallel, 
multithreaded, many-core processor with tremendous 
computational horsepower and very high memory bandwidth.  

 
A. GPU architecture 
 

 GPUs are suitable to compute-intensive, highly 
parallel computations. NVIDIA’s GPU with the CUDA 
programming model provides an adequate API for non-
graphics applications. CPU sees a CUDA device as a many-
core co-processor. At the hardware level, CUDA-enabled 
GPU is a set of SIMD stream multiprocessors (SMs) with 8 
stream processors (SPs) each. GeForce 8800GTX has 128 SPs 
and Tesla C1060 has 240 SPs. Each SM contains a fast shared 
memory, which is shared by all of its SPs as shown in Fig. 1. 
It also has a read-only constant cache and texture cache which 
is shared by all the SPs on the GPU. A set of local 32-bit 
registers is available for each SP. The SMs communicate 
through the global/device memory. The global memory can be 
read or written by the host and is persistent across kernel 
launches by the same application. Shared memory is managed 
explicitly by the programmers. Compared to the CPU, more 
transistors on the GPU are devoted to computing, so the peak 
floating-point capability of the GPU is an order of magnitude 
higher than that of the CPU as well as the memory bandwidth 
due to NVIDIA’s efforts on optimization. [6] 

 

 
 

B.The CUDA Paradigm 
 
CUDA is a minimal extension of the C and C++ 

programming languages. The programmer writes a serial 
program that calls parallel kernels, which may be simple 
functions or full programs. A kernel executes in parallel across 
a set of parallel threads. The programmer organizes these 

threads into a hierarchy of grids of thread blocks. A thread 
block is a set of concurrent threads that can cooperate among 
themselves through barrier synchronization and shared access 
to a memory space private to the block. A grid is a set of 
thread blocks that may be executed independently and thus 
may execute in parallel. When invoking a kernel, the 
programmer specifies the number of threads per block and the 
number of blocks making up the grid. Each thread is given a 
unique thread ID number threadIdx within its thread block, 
numbered 0, 1, 2, ..., blockDim–1, and each thread block is 
given a unique block ID number blockIdx within its grid. 
CUDA supports thread blocks containing up to 512 threads. 
For convenience, thread blocks and grids may have one, two, 
or three dimensions, accessed via .x, .y, and .z index fields. [4]  

 
The text of a CUDA kernel is simply a C function for 

one sequential thread. Thus, it is generally straightforward to 
write and is typically simpler than writing parallel code for 
vector operations. Parallelism is determined clearly and 
explicitly by specifying the dimensions of a grid and its thread 
blocks when launching a kernel. Parallel execution and thread 
management are automatic. All thread creation, scheduling, 
and termination are handled for the programmer by the 
underlying system. [4] 

 

 
 

IV. SERIAL MKNN 
 

The original KNN is modified to overcome the 
drawbacks of KNN, using group prototypes. A group 
prototype is a prototype of a group of patterns from the same 
class and falling close to each other by a user defined 
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Euclidean distance d , where 0 < d ≤ 1 . There can be multiple 
group prototypes from the same pattern class. Instead of using 
training patterns as it is to reason about the testing patterns, 
these group prototypes are used. This small modification can 
eliminate all the drawbacks of original KNN. 

 
A. Algorithm to calculate group prototypes 
 
i. Let D  be the set of K, n-dimensional training 

patterns along with their class labels and belonging to 
P classes.  
Thus 

 ),(),....,,(),(),( 321 ikiii cxcxcxcxD 
,  
where ic  is the class label, where Pi ,....,2,1 .  

ii. Each pattern qx is a n-dimensional normalized vector 

as  qnqqq xxxx ,...,, 21  

iii. Initialize  d , such that 10  d  
iv. Normalize the patterns qx such that each 

component 10 
jqx . For nj ,..,2,1 while(! 

all patterns groups are created) 
v. Select any pattern v  from the data set. For all the 

patterns belonging to the same   class w  of v  do 
a. Find Euclidian distance  between v  and w  
b. If Euclidian distance between v  and w   is < =  

d  add the pattern t w to the   corresponding 
group of pattern  v . Call this group of patterns 
as g. 

c. Find the group prototype for each group g. 
d. Let group g has m patterns, and then the group 

prototype for it can be calculated as an average 
of the m patterns from the group g. Remove all 
these patterns in g from the data set and use 
updated data set and go to step iii. 

 
B. Testing Phase of MKNN 

 
Use these group prototypes for the testing purpose 

instead of using actual     patterns in the training set like 
original KNN. Find the value of  for which 100% 
classification rate is achieved. If not then reduce the value of , 
which will result in creation of more number of group 
prototypes. Use group prototypes created such that they gives 
100%            classification and then go for testing the patterns 
present in the testing set. 

 
V. GPU PARALLEL IMPLEMENTATION OF MKNN 

 
Let CPU to be the master and the other N CUDA 

cores as slaves. Master launches the kernel for calculating the 
group prototypes for the training instances. Each core now 
computes the distance measures independently and stores the 
distance measures in a local array (using Euclidian distance). 

 
The Euclidian distance is calculated using a formula 

              n 
      D = ∑(xi –yi)2 
             i=o 
 
Group prototypes are calculated by each threads 

using distance d. Master then notes the end of processing for 
the sender processor and acquires the computed distance 
measures by copying them into its own array. After the master 
has claimed all distance measures from all processors, the 
following steps are performed: 
 
i. Sort all distance measures in ascending order. 
ii. Select top k measures and count the number of classes in 

the top k measures. 
iii. The test sample’s class will assign the class having the 

higher count among top k measures. 
 

Data set: The actual forest cover type for a given 30 x 30 
meter cell was determined from US Forest Service (USFS) 
Region 2 Resource Information System data. Independent 
variables were then derived from data obtained from the US 
Geological Survey and USFS. The data is in raw form (not 
scaled) and contains binary columns of data for qualitative 
independent variables such as wilderness areas and soil type. 
This study area includes four wilderness areas located in the 
Roosevelt National Forest of northern Colorado. These areas 
represent forests with minimal human-caused disturbances, so 
that existing forest cover types are more a result of ecological 
processes rather than forest management practices. The 
training set contains both features and the Cover_Type. The 
test set contains only the features. The number of instances 
used for training is 290506 & another set of 290506 is used for 
testing. 

 
VI. EXPERIMENTATION AND RESULTS 
 
In this section, we present the performance 

evaluation of MKNN on CPU and parallel implementation of 
MKNN on GPU. 

 
Classification Time: Gpaph 1 shows the classification time for 
MKNN on GPU & CPU. It is found that GPU takes less time 
as compared to CPU for any value of d. The classification 
time is % reduced overall on GPU. 
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Graph 1 : Classification Time of CPU v/s GPU 

 

 
 
Graph 2: Testing Time for CPU v/s GPU 
 

 
Graph 3: Speed of GPU over CPU 

VI.   CONCLUSION 
 

Writing kernel for GPU is a challenging task as 
synchronization of all threads is to be ensured to get maximum 
accuracy. The GPU parallel implementation provides better 
results than its serial counterpart & also decreases the 
classification time as it works in parallel. The value of d plays 
very important role in classification. For 0.2 value of d for the 
given forest cover type dataset, 221% of speedup on GPU is 
achieved over CPU. For any other value of d, the overall speed 
up of 66%.is achieved. 
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