
IJSART - Volume 3 Issue 7 –JULY 2017 ISSN [ONLINE]: 2395-1052

Page | 419 www.ijsart.com

GPU Parallel Implementation of Modified K- Nearest
Neighbor Classifier

Prof. Sangita . Lade1, Prof. Priyadarshan Dhabe2

Department of Computer Engineering
1,2Vishwakarma Institute of Technology, Pune, 411037, India

Abstract-In this paper, GPU parallel implementation of
Modified K- nearest neighbor classifier (MKNN) is proposed.
MKNN was serially implemented in [1]. As the dataset grows,
the time required for classification increases proportionally
when implemented serially. Therefore it is implemented on
GPU. GPU parallel implementation of MKNN is compared
with its serial counterpart and observed that GPU+CUDA
implementation is 200 times faster than its serial counterpart.
The speed up achieved on GPU is proportional to the number
of cores and number of threads scheduled on each core.

Keywords-Modified K- nearest neighbor classifier (MKNN),
Graphics Processing Unit (GPU), Compute Unified Device
Architecture(CUDA), Group Prototypes.

I. INTRODUCTION

Instance-based classifiers such as the k-Nearest
Neighbor classifier (KNN) [2] operate on the premises that
classification of unknown instances can be done by relating
the unknown to the known according to some
distance/similarity function. Implementation of k-Nearest
Neighbor classifier algorithm on a Central Processing Unit
(CPU) for an enormous dataset, one containing instances in
lakhs, would take hours to compute. The time it would take for
the dataset to train and for an instance to classify would both
be large. With the advancement in technology there was a
great need to improve the speed of this algorithm without
having a great effect on its accuracy in classification. The
previous technique of implementation of the k-Nearest
Neighbor algorithm had two major downsides. Firstly, CPU
being a serial processor would compute the data serially,
thereby taking enormous amount of time. Secondly, to classify
an unknown instance – the instance would have to be
compared with each and every instance in the training dataset
so as to find the closest matching instance. Number of training
instances for a large dataset would be greater than a lakh and
comparing with each and every instance every time an
unclassified instance appears, it would be an erroneous task.
Hence this method of implementation doesn’t seem robust and
reliable in terms of speed and time and a newer approach to
this problem was necessary.

Two major solutions to the above problem would be
i. As highly parallel structure of GPUs make them more

effective than general-purpose CPUs for processing of
large blocks of data. So parallelizing the implementation
of KNN on GPU speeds up the operations of calculating
nearest neighbors.

ii. Modifying the KNN algorithm such that the number of

comparisons to be performed to label an unknown
instance decreases drastically, which is achieved using
MKNN [1]. So the GPU implementation of Modified K-
Nearest Neighbor Classifier (GMKNN) is proposed.

II. MKNN

 MKNN uses group prototypes. A group

prototype is a prototype of a group of patterns from the same
class and falling close to each other by a user defined
Euclidean distance d, where 0 < d ≤ 1. There can be multiple
group prototypes from the same pattern class. Instead of using
training patterns as it is to reason about the testing patterns,
these group prototypes are used. This small modification can
eliminate all the drawbacks of original KNN stated in [1].

Advantages of MKNN over KNN:

The MKNN algorithm has the following Advantages over
KNN:
1. Knowledge is represented in a generalized way so that it

can be used in great many situations, such representation
is called generalized representation.[1]

2. Scope of its applicability is increased.[1]
3. The recall time per pattern for testing patterns is very high

and it is proportional to the size of the data set.[1]

The rest of paper is organized as follows. Section III

describes NVIDIA’s CUDA-enabled parallel Computing
model, section IV describes the MKNN algorithm, section V
describes the GPU parallel implementation of MKNN and
section VI includes experimentation and results.

III. NVIDIA’S CUDA-ENABLED PARALLEL

COMPUTING

IJSART - Volume 3 Issue 7 –JULY 2017 ISSN [ONLINE]: 2395-1052

Page | 420 www.ijsart.com

 Nowadays GPUs has evolved into a highly parallel,
multithreaded, many-core processor with tremendous
computational horsepower and very high memory bandwidth.

A. GPU architecture

 GPUs are suitable to compute-intensive, highly
parallel computations. NVIDIA’s GPU with the CUDA
programming model provides an adequate API for non-
graphics applications. CPU sees a CUDA device as a many-
core co-processor. At the hardware level, CUDA-enabled
GPU is a set of SIMD stream multiprocessors (SMs) with 8
stream processors (SPs) each. GeForce 8800GTX has 128 SPs
and Tesla C1060 has 240 SPs. Each SM contains a fast shared
memory, which is shared by all of its SPs as shown in Fig. 1.
It also has a read-only constant cache and texture cache which
is shared by all the SPs on the GPU. A set of local 32-bit
registers is available for each SP. The SMs communicate
through the global/device memory. The global memory can be
read or written by the host and is persistent across kernel
launches by the same application. Shared memory is managed
explicitly by the programmers. Compared to the CPU, more
transistors on the GPU are devoted to computing, so the peak
floating-point capability of the GPU is an order of magnitude
higher than that of the CPU as well as the memory bandwidth
due to NVIDIA’s efforts on optimization. [6]

B.The CUDA Paradigm

CUDA is a minimal extension of the C and C++

programming languages. The programmer writes a serial
program that calls parallel kernels, which may be simple
functions or full programs. A kernel executes in parallel across
a set of parallel threads. The programmer organizes these

threads into a hierarchy of grids of thread blocks. A thread
block is a set of concurrent threads that can cooperate among
themselves through barrier synchronization and shared access
to a memory space private to the block. A grid is a set of
thread blocks that may be executed independently and thus
may execute in parallel. When invoking a kernel, the
programmer specifies the number of threads per block and the
number of blocks making up the grid. Each thread is given a
unique thread ID number threadIdx within its thread block,
numbered 0, 1, 2, ..., blockDim–1, and each thread block is
given a unique block ID number blockIdx within its grid.
CUDA supports thread blocks containing up to 512 threads.
For convenience, thread blocks and grids may have one, two,
or three dimensions, accessed via .x, .y, and .z index fields. [4]

The text of a CUDA kernel is simply a C function for

one sequential thread. Thus, it is generally straightforward to
write and is typically simpler than writing parallel code for
vector operations. Parallelism is determined clearly and
explicitly by specifying the dimensions of a grid and its thread
blocks when launching a kernel. Parallel execution and thread
management are automatic. All thread creation, scheduling,
and termination are handled for the programmer by the
underlying system. [4]

IV. SERIAL MKNN

The original KNN is modified to overcome the
drawbacks of KNN, using group prototypes. A group
prototype is a prototype of a group of patterns from the same
class and falling close to each other by a user defined

IJSART - Volume 3 Issue 7 –JULY 2017 ISSN [ONLINE]: 2395-1052

Page | 421 www.ijsart.com

Euclidean distance d , where 0 < d ≤ 1 . There can be multiple
group prototypes from the same pattern class. Instead of using
training patterns as it is to reason about the testing patterns,
these group prototypes are used. This small modification can
eliminate all the drawbacks of original KNN.

A. Algorithm to calculate group prototypes

i. Let D be the set of K, n-dimensional training

patterns along with their class labels and belonging to
P classes.
Thus

 ),(),....,,(),(),(321 ikiii cxcxcxcxD 
,
where ic is the class label, where Pi ,....,2,1 .

ii. Each pattern qx is a n-dimensional normalized vector

as  qnqqq xxxx ,...,, 21

iii. Initialize d , such that 10  d
iv. Normalize the patterns qx such that each

component 10 
jqx . For nj ,..,2,1 while(!

all patterns groups are created)
v. Select any pattern v from the data set. For all the

patterns belonging to the same class w of v do
a. Find Euclidian distance between v and w
b. If Euclidian distance between v and w is < =

d add the pattern t w to the corresponding
group of pattern v . Call this group of patterns
as g.

c. Find the group prototype for each group g.
d. Let group g has m patterns, and then the group

prototype for it can be calculated as an average
of the m patterns from the group g. Remove all
these patterns in g from the data set and use
updated data set and go to step iii.

B. Testing Phase of MKNN

Use these group prototypes for the testing purpose

instead of using actual patterns in the training set like
original KNN. Find the value of for which 100%
classification rate is achieved. If not then reduce the value of ,
which will result in creation of more number of group
prototypes. Use group prototypes created such that they gives
100% classification and then go for testing the patterns
present in the testing set.

V. GPU PARALLEL IMPLEMENTATION OF MKNN

Let CPU to be the master and the other N CUDA

cores as slaves. Master launches the kernel for calculating the
group prototypes for the training instances. Each core now
computes the distance measures independently and stores the
distance measures in a local array (using Euclidian distance).

The Euclidian distance is calculated using a formula

 n
 D = ∑(xi –yi)2
 i=o

Group prototypes are calculated by each threads

using distance d. Master then notes the end of processing for
the sender processor and acquires the computed distance
measures by copying them into its own array. After the master
has claimed all distance measures from all processors, the
following steps are performed:

i. Sort all distance measures in ascending order.
ii. Select top k measures and count the number of classes in

the top k measures.
iii. The test sample’s class will assign the class having the

higher count among top k measures.

Data set: The actual forest cover type for a given 30 x 30
meter cell was determined from US Forest Service (USFS)
Region 2 Resource Information System data. Independent
variables were then derived from data obtained from the US
Geological Survey and USFS. The data is in raw form (not
scaled) and contains binary columns of data for qualitative
independent variables such as wilderness areas and soil type.
This study area includes four wilderness areas located in the
Roosevelt National Forest of northern Colorado. These areas
represent forests with minimal human-caused disturbances, so
that existing forest cover types are more a result of ecological
processes rather than forest management practices. The
training set contains both features and the Cover_Type. The
test set contains only the features. The number of instances
used for training is 290506 & another set of 290506 is used for
testing.

VI. EXPERIMENTATION AND RESULTS

In this section, we present the performance

evaluation of MKNN on CPU and parallel implementation of
MKNN on GPU.

Classification Time: Gpaph 1 shows the classification time for
MKNN on GPU & CPU. It is found that GPU takes less time
as compared to CPU for any value of d. The classification
time is % reduced overall on GPU.

IJSART - Volume 3 Issue 7 –JULY 2017 ISSN [ONLINE]: 2395-1052

Page | 422 www.ijsart.com

Graph 1 : Classification Time of CPU v/s GPU

Graph 2: Testing Time for CPU v/s GPU

Graph 3: Speed of GPU over CPU

VI. CONCLUSION

Writing kernel for GPU is a challenging task as
synchronization of all threads is to be ensured to get maximum
accuracy. The GPU parallel implementation provides better
results than its serial counterpart & also decreases the
classification time as it works in parallel. The value of d plays
very important role in classification. For 0.2 value of d for the
given forest cover type dataset, 221% of speedup on GPU is
achieved over CPU. For any other value of d, the overall speed
up of 66%.is achieved.

REFERENCES

[1] P. S. Dhabe, S G. Lade, Snehal Pingale , Rachana Prakash

and M.L. Dhore “Modified K- Nearest Neighbor
Classifier Using Group Prototypes and Its Application To
Fault Diagnosis.”.CIIT International Journal of Data
Miming and Knowledge Engineering,2010.

[2] Thomas M. Cover and Peter E. Hart, "Nearest neighbor
pattern classification," IEEE Transactions on Information
Theory, (1967) Vol. 13 (1) pp. 21-27

[3] Stratton, J.A., Stone, S. S., Hwu, W. W. 2008. “M-
CUDA: An efficient implementation of CUDA kernels on
multicores.” IMPACT Technical Report 08-01,
University of Illinois at Urbana-Champaign, (February)

[4] NICKOLLS, IAN BUCK, AND MICHAEL GARLAND,
NVIDIA,KEVIN SKADRON, “Scalable Parallel
PROGRAMMING with CUDA” UNIVERSITY OF
VIRGINIA, March/April 2008 ACM QUEUE.

[5] NVIDIA. 2007. CUDA Technology;
http://www.nvidia.com/CUDA.

[6] NVIDIA.2007.CUDA Programming Guide 1.1; http://
developer . Download . nvidia.com/compute/cuda/1_1/
NVIDIA_CUDA_Programming_G uide_1.1.pdf.

[7] Liheng Jian · ChengWang Ying Liu · Shenshen Liang·
Weidong Yi · Yong Shi “ Parallel data mining techniques
on Graphics Processing Unit with Compute Unified
Device Architecture (CUDA) “ Published online: 26
August 2011 © Springer Science+Business Media, LLC
2011

