Life Cycle Cost Analysis of Bituminous Pavements and Concrete Pavements in Urban Areas

Shirole Pratik Ashok¹, Ashwini R. Patil², Smita V. Pataskar³

^{1, 2, 3} Civil Engineering Department ^{1, 2, 3} D.Y. Patil College of Engineering, Akurdi, Pune

Abstract- Road building needs huge investments not only for construction of new infrastructure but also for the repair and maintenance of the old ones. In case of developing countries, like India, there is a shortage of funds required for new infrastructure projects both for construction and more significantly for their maintenance and repairs. Today's focus is on the construction of long-term performing pavement. Most of our roads are bituminous pavements which are showing early sign of distresses like rutting, cracking, ageing, etc due to increasing loads, intensity of traffic, high tyre pressure, etc.

Concrete pavements can be adopted as an alternative to traditional bituminous pavements. One of the possible alternative rehabilitation solutions to bituminous overlays is the use of whitetopping overlay on an existing bituminous pavement. In this study an attempt is made to evaluate life cycle cost analysis of concrete and bituminous pavements and suggest a beneficial alternative amongst them.

Keywords- LCCA, Whitetopping, Pavement rehabilitation, VOC, Fuel Saving.

I. INTRODUCTION

Road building needs huge investments not only for construction of new infrastructure but also for the repair and maintenance of the old ones. In case of developing countries, like India, there is a shortage of funds required for new infrastructure projects both for construction and more significantly for their maintenance and repairs.

Today's focus is on the construction of long-term performing pavement. Most of our roads are bituminous pavements. Bituminous pavements are showing early sign of distresses due to increasing loads, intensity of traffic, high tyre pressure, etc. The rutting, cracking, ageing, etc. are quite common form of distress in bituminous pavement. These distresses get more pronounced in hot climatic regions like India, since bitumen is highly sensitive to temperature.

Concrete is known to be a relatively stiffer material and is relatively less sensitive to high temperature. Accordingly, concrete pavements can be adopted as an

Page | 1

alternative to traditional bituminous pavements. One of the possible alternative rehabilitation solutions to bituminous overlays is the use of whitetopping which is a Portland Cement Concrete (PCC) overlay on an existing bituminous pavement. The principal purpose of this technique is either to restore the functional capacity or to increase the load carrying capacity of the road or both, of the existing pavement. In the process of achieving this objective, whitetopping overlays also restore the ride-ability of the existing asphalt pavements suffering from ruts and deformations, in addition to rectifying other defects such as loss of texture. Whitetopping being stronger than asphalt overlay is more resistant to rutting and surface initiated cracking and thus this technique consists potential, technical and economic benefits.

The appropriate solution for economically beneficial pavement type, bituminous or concrete pavement, is calculated by carrying out Life Cycle Cost Analysis (LCCA) which takes into account the initial investment cost and also the maintenance or rehabilitation cost required for the design life of the pavement. Life cycle cost analysis can be defined as a procedure by which a pavement design alternative will be selected, which will give a satisfactory level of service at lowest cost over design life. The economic analysis methods used most commonly for this study are net present worth and rate of return. The analysis depends on the factors such as inflation rate, discount rate and analysis period. In the present study, an attempt is made to study the long term economic benefits of pavements using the net present value (NPV) method of analysis.

II. OBJECTIVES OF STUDY

- 1. The main objective of this paper is to calculate the total cost of bituminous and concrete pavements by using life cycle lost analysis (LCCA) methodology, which could assist in the pavement selection process and help to improve the pavement system.
- 2. Compare the overall cost for 1 kilometer of both flexible and rigid pavements.
- 3. To suggest a better alternative for the maintenance and rehabilitation required in bituminous pavements.

III. METHODOLOGY

Life Cycle Cost Analysis Procedure

The steps involved in the LCCA methodology are as follows:

- 1. Estimate the initial construction cost.
- 2. Estimate maintenance cost.
- 3. Estimate road user costs
- 4. Determine life-cycle cost.

In this study the cost required for initial construction and for maintenance of the pavements is calculated by using net present value method of life cycle cost analysis. IRC SP-30 (2009) gives the formula for net present value.

Agency costs are calculated from the district schedule of rates of Public Works Department (PWD) Pune region.

The procedures of construction and estimates were studied from case studies done on three different roads.

- 1) Construction of pavements UTWT and TWT, Madhuban area at old Sanghvi ward no 59, PCMC.
- Construction of PQC pavement road from Chaphekar chowk to bridge on Pavana River towards Thergaon. PCMC
- 3) Development of 45.00W wide road from Pune Alandi road to Dabhadewasti in PCMC area.

IV. LIFE CYCLE COST ANALYSIS

Analysis period considered is 20 years starting from 2016. Discount rate of 12% is considered as per government policy and inflation rate of 5.5 % has been considered for rise of prices of material in future.

1. Life Cycle Cost of Bituminous Pavements

1) Construction cost of bituminous pavements.

Pavement Crust	Cost/km	Length (m)	Thick ness (mm)	Wid th (m)	Rate (Rs)
Bituminous					8182.00
Concrete	3,272,800	1000	40	10	/Cum
Dense					
Bituminous					7115.0
Macadam	7,115,000	1000	100	10	/Cum
Wet Mix					1150.00
Macadam	2,875,000	1000	250	10	/Cum
Granular Sub-					1270.00
Base	3,175,000	1000	250	10	/Cum
			1		21.00
Prime Coat	210,000	1000	Coats	10	/Sqm.
			2		17.50
Tack Coat	350,000	1000	Coats	10	/Sqm.
Initial Cost	16,997,800				

Table 1. Construction Cost of Bituminous Pavements

2. Maintenance cost of bituminous pavement

Overlay shall be provided at every 10th year after construction for strengthening of existing pavement having a 75mm DBM layer and 40mm BC layer. Overlay cost is shown in Table II.

According to MoRTH guidelines a layer of 25mm BC is to be provided once in 5 years. Cost of overlays is shown in Table III.

Table 2. Periodic Resurfacing in every Five Years (BC 25mm)

Pavement	Cos	st/k	Length	Thi	ck(m	Width	Rate
Layer	n	1	(m)	r	n)	(m)	(Rs)
Bituminous	2,04	15,5	1000		05	10	8182.0/
Concrete	0	0 1000 2		2.5	10	Cum	
Year		Cost per Km.		Inflated Cost @5.50% p.a.			
5 th Year		2,045,500		2,820,422.96			
14 th Year		2,045,500		4,566,530.66			
18 th Year		2,045,500		5,657,130.76		.76	
Total		6,136,500		13,044,084			

Table 5. Cost of Overlay to be provided at every toth yea	Table 3.	Cost of	Overlay to	be	provided	at	every	10th	yea
---	----------	---------	------------	----	----------	----	-------	------	-----

Quarlay Lover	Cost/km	Length	Thick(Width	Rate
Overlay Layer	COSI/KIII	(m)	mm)	(m)	(Rs)
Bituminous					8182.0
Concrete	3,272,800	1000	40	10	/Cum
Dense					
Bituminous					7115.0
Macadam	5,336,250	1000	75	10	/Cum
Tack Coat		1000	2	10	17.50

	350,000	Coats	/Sqm.
Initial Cost	8,959,050		

Overlay Year	Initial Cost (Rs)	Inflated Cost @5.50% p.a.
10 th Year	8,959,050	16,145,035.95
Total	8,959,050	16.145.036

2) Life Cycle Cost of Concrete Pavement

Construction cost of concrete pavements.

ts
ts

Pavement	Cost/k	Length	Thick(Width	Rate
Layer	m	(m)	mm)	(m)	(<u>Rs</u>)
	1,72,23,				5741.0/
PQC	000	1000	300	10	Cum
DLC	25,96,0				2596.0/
Layer	00	1000	100	10	Cum
	31,75,0				1270.0/
GSB Layer	00	1000	250	10	Sqm.
	2,29,94,				
Initial Cost	000				

Maintenance cost of Concrete Pavements

Joint Sealing: 50 % of the joint sealants are to be replaced in every 5 year:

Joint Length: Contraction Joint length per km. for 10m wide carriageway 10000m

Longitudinal Joint length for 1 km and two joints in 10m width 10000m

Length to be replaced every 5 years is 30% of total length Contraction joint = 3333.333 m

Longitudinal joint = 3333.333 m

Cost of joint seals in shown in Table V

Table 5.Cost of Joint Seals (Preformed Seals) per Km

Maintenance Cost of Joints Sealing					
Maintenance Year	Maintenance Cost (Rs.)	Inflated Cost @5.50% p.a.			
5 th Year	833,333	1,149,035.67			
10 th Year	833,333	1,501,743.67			
15 th Year	833,333	1,962,718.92			
20 th Year	833,333	2,565,195.13			
Total	3,333,333	7,178,693			

Concrete spalling:-

0.5% of Joint length for a width of 500mm in every 10 years 10th year spalling concrete = 50 Sqm Repairs of concrete spalling = 50*6889.2 = Rs 344460

Table 6. Tota	l Cost and	I Inflated C	Cost of	Concrete	Spalling
---------------	------------	--------------	---------	----------	----------

CONCRETE SPALLING					
Maintenance Year	Maintenance Cost (Rs.)	Inflated Cost @5.50% p.a.			
10 th Year	344,460	620,748.75			
Total	344,460	620,749			

3) Life Cycle Cost of Overlays

Life cycle cost of bituminous overlays

Bituminous Overlays

Table 7.	LCC	of Bituminous	Overlays
----------	-----	---------------	----------

Bituminous Overlays									
Overlay	Initial Cost	Inflated cost							
Strengthening overlay	8,959,050	16,145,036							
Periodic overlays	6,136,500	13,044,084							
Total	15,095,550	29,189,120							

3. Life cycle cost of Concrete overlays

2) Construction cost of Thin White topping overlay

Table 8. Thin White topping overlay

Pavement	Cos	ot/km	Length		Thick W		dth	Rate
Layer	Cos	50/KIII	(m)	((mm)	(m)		(Rs)
Thin White								
Topping								5741.0
(TWT)	8,6,1	1,500	1000		150	10	0	/Cum
								53.6/C
Milling	26	,775	1000		50	10	0	um
Initial Cost	8,63	8,300						
					Rate			
Item		Unit	Quantity	,	Rate (Rs.))	Co	ost /Km.
Item		Unit	Quantity 3333.333	,	Rate (Rs.))	Co	ost /Km.
Item Contraction J	oint	Unit m	Quantity 3333.333 m	;	Rate (Rs.) 150)	Co 5	ost /Km. 00000
Item Contraction J Longitudinal	oint	Unit m	Quantity 3333.333 m 3333.333	}	Rate (Rs.) 150)	Co 5	ost /Km. 00000 3333.33
Item Contraction J Longitudinal Joint	oint	Unit m	Quantity 3333.333 m 3333.333 m	;	Rate (Rs.) 150)	Co 5 333	ost /Km. 00000 3333.33 3
Item Contraction J Longitudinal Joint	oint	Unit m m	Quantity 3333.333 m 3333.333 m	;	Rate (Rs.) 150 100)	Co 5 333	ost /Km. 00000 3333.33 3 3333.33

3) Construction cost of Ultra Thin White topping overlay

Table 8. Ultra Thin White topping Overlay

Pavement Layer	Cost/km	Leng th (m)	Thick (mm)	Width (m)	Rate (Rs)
Ultra-Thin					
White					
Topping					5741.0/C
(UTWT)	5,741,000	1000	100	10	um
Milling	26,775	1000	50	10	53.6/Cum
Initial Cost	5,767,800				

4) Maintenance cost for concrete overlays will be same as that of new concrete roads.

 Table 9. Maintenance cost of Concrete Pavements

Stages	Initial cost	Inflated cost
Joint sealing	3,333,333	7,178,693
Concrete spalling	344,460	620,749
Total	3,677,793	7,799,442

Road User Cost.

1. Vehicle Operating Cost (VOC):-

User cost are those that borne by the vehicles that travel on the road. These cost comprise of Vehicle Operating Cost (VOC), time costs of passenger and commodities in transit and accident cost. In the Present analysis, only VOC is considered, assuming the other two costs are equal in both types of pavements. VOC consists of wear and tear of vehicle, fuel, lubricants, depreciation and fixed cost. It has been observed that a well-constructed bituminous concrete surface has a smooth riding quality with a roughness index around 2000 mm/km but the riding quality deteriorate with traffic and may reach value of roughness of 4000 mm/km in a few years and renewal wearing course is given at the stage to improve the riding quality. On the other hand, initial roughness of cement concrete surface is maintained almost throughout its life with very little deterioration, for comparison of life cycle cost, roughness of bituminous surface is taken as 3000 mm/km and for concrete surface 2000 mm/km.

is found from IRC SP: 30 Manual of economic evaluation for transportation projects. Annual growth in traffic 7.5% and inflation rate of 7.5% is considered.

VOC is calculated as VOC per year = (No. of vehicle per day) * (365) * (VOC Rs /km)

Calculation of VOC is shown in Table XI

Traffic volume survey was conducted manually for three days, twelve hours daily and number of commercial vehicles per day were considered.

Table 10. Traffic Volume Count

Site Name	Chap	hekar C	howk	Dabhadewasti, Charholi				
		CVPD			CVPD			
Day	D1	D2	D3	D1	D2	D3		
Time(9am to 9pm)								
9.00 - 10.00	58	61	58	58	59	63		
10.00 - 11.00	61	58	58	59	64	61		
11.00 - 12.00	48	51	55	69	67	64		
12.00 - 01.00	53	55	52	57	61	59		
01.00 - 02.00	49	47	52	52	48	47		
02.00 - 03.00	55	51	47	45	53	43		
03.00 - 04.00	48	50	49	58	56	55		
04.00 - 05.00	50	48	53	54	51	59		
05.00 - 06.00	55	53	55	61	59	66		
06.00 - 07.00	57	61	60	53	66	61		
07.00 - 08.00	62	58	56	58	61	60		
08.00 - 09.00	63	60	65	68	67	66		
Total	659	653	660	692	712	704		
Average		657.33		702.67				
		657			703			

2. Fuel Saving

In USA, a study was made and it was observed that there is fuel saving of 20% on concrete road as compared to bituminous roads having same roughness index.

In India, central road research institute (CRRI), New Delhi also made similar study on Delhi-Agra (NH-2) and found that there is a fuel saving of 14% on concrete roads as compared to bituminous roads for commercial vehicles. Due to increase in traffic on roads and rising in the fuel prices in the international market, the impact of fuel saving has been found quite important as compared to extra initial cost of concrete road over bituminous road.

A case study on Durable and cost effective concrete overlay on city bituminous roads: White topping by Binod Kumar, Scientist, CRRI also states that there is 10% - 15% fuel saving for heavy vehicles on concrete roads.

Annual fuel saving (Rs) = No. of CVPD * 365 * 14/100 *1/4 *58

14/100 = 14 % fuel saving, 1/4 = (4km per litre), Inflation rate - 5% in diesel cost

Calculation of Fuel saving is shown in table XII

V. RESULTS AND DISCUSSION

Life cycle cost comparison of new bituminous and concrete pavements is shown in Table XIII

Life Cycle Cost Comparison of New Bituminous Pavements XIV

VI. CONCLUSION

- Life cycle cost analysis shows that even if the initial cost of concrete pavements is high the net present value of concrete pavements is Rs 193 lakhs/km (5%) less than bituminous pavements.
- 2) Life cycle cost analysis of overlays shows that the net present value of ultra thin white topping is Rs 283 lakhs/km (7%) less and of thin white topping is Rs 254 lakhs/km (6%) less than the cost of bituminous overlays.
- 3) When the net present value of bituminous overlays and concrete white toppings without considering vehicle operating cost and fuel saving the total cost of bituminous overlays is Rs 172 lakhs and that of concrete white toppings is Rs 107 lakhs for thin white topping and Rs 78 lakhs for ultra thin white topping, which is 38% and 55% lesser than bituminous overlays.
- LCCA concludes that concrete pavements are more beneficial than bituminous pavements and concrete overlays can be considered as beneficial option for rehabilitation of existing bituminous pavements.

REFERENCES

- Bageshwar Prasad "Life Cycle Cost Analysis of Cement Concrete Roads VS Bituminous Roads" (Indian Road Congress (IRC) Technical Papers 2007)
- Patel Karan M., Dr. L.B.Zala, Prof. A.A.Amin "Life cycle cost analysis for selecting pavement maintenance alternatives, A case study of Kota- Baran road (NH-27)" International journal of Advance Research in Engineering, Science & Technology Volume 3, Issue 7, July-2016
- [3] Preethi.S, Radhakrishna, Raghavendra Prasad "Life cycle cost analysis of Overlay for an Urban road in Bangalore" International journal of Research in Engineering and Technology eISSN: 2319 -1163 | pISSN : 2321-7308
- [4] Mr. Akhai Mudassar Mohammed Shafi, Mr. Ahmed Afaque Shakeel, Prof. Siddesh Kashinath Pai "Life Cycle Cost Analysis of Road Pavements in Rural Ares" IJSTM International Journal of Science Technology and

Management. Vol. No.5, Issue No. 08, August 2016

- [5] Purvesh Raval, Darsh Belani, P. Jayeshkumar Pitroda "A literature review on UTW pavements in Indian Context" (Journal of International Academic Research for Multidisciplinary Impact Factor 1.393, Volume 1, Issue 9, October 2013
- [6] Vinay H N, Sunil S "Rehabilitation of Low Volume Flexible Pavements by White Topping – A Case Study" (IJRET: International Journal of Research in Engineering and Technology
- [7] D.R. Jundhare, K.C. Khare R.K. Jain "Ultra-Thin Whitetopping in India: State-of-Practice" ACEE Int. J. on Transportation and Urban Development, Vol. 2, No. 1, April 2012
- [8] Ankush Kumar Sehgal and S.N. Sachdeva "A review of using thin white topping overlays for rehabilitation of asphalt pavements" (Journal of Basic and Applied Engineering Research) Volume 2, Number 3; January-March, 2015, pp. 182-187.
- [9] D.R. Jundhare, K.C. Khare R.K. Jain "Ultra-Thin Whitetopping in India: State-of-Practice" ACEE Int. J. on Transportation and Urban Development, Vol. 2, No. 1, April 2012
- [10] Mitesh D. Patel, Prof. P.S. Ramanuj, Bhavin Parmar, Akash Parmar "White Topping as a Rehabilitation Method: A Case Study Of Budhel-Ghogha Road" International Journal of Advanced Engineering Research and Studies.

						V	C							
		Vehicle Oj	perating Cost f	or Conc	rete Pavements		Vehicle Operating Cost for Bituminous Pavements							
Sr No	Year	CVPD Traffic Growth @ 7.5%	VOC (IRC SP 30 for Roughness) 2000	Days	VOC	VOC (in Lakhs)	Sr No	Year	CVPD Traffic Growth @ 7.5%	VOC (IRC SP 30 for Roughness) 3000	Days	VOC	VOC (in Lakhs)	
1	2016	0	57.95	365	0	0	1	2016	0	59.26	365	0	0	
2	2017	700	62.30	365	15917384.39	159.174	2	2017	700	63.71	365	16277506.21	162.775	
3	2018	753	66.97	365	18394527.34	183.945	3	2018	753	68.49	365	18810693.12	188.107	
4	2019	809	71.99	365	21257175.66	212.572	4	2019	809	73.62	365	21738107.23	217.381	
5	2020	870	77.39	365	24565323.62	245.653	5	2020	870	79.14	365	25121100.17	251.211	
6	2021	935	83.20	365	28388302.1	283.883	6	2021	935	85.08	365	29030571.38	290.306	
7	2022	1005	89.44	365	32806231.62	328.062	7	2022	1005	91.46	365	33548454.05	335.485	
8	2023	1080	96.15	365	37911701.42	379.117	8	2023	1080	98.32	365	38769432.22	387.694	
9	2024	1161	103.36	365	43811709.95	438.117	9	2024	1161	105.70	365	44802925.11	448.029	
10	2025	1248	111.11	365	50629907.31	506.299	10	2025	1248	113.62	365	51775380.33	517.754	
11	2026	1342	119.44	365	58509186.63	585.092	11	2026	1342	122.14	365	59832923.89	598.329	
12	2027	1443	128.40	365	67614678.8	676.147	12	2027	1443	131.31	365	69144422.67	691.444	
13	2028	1551	138.03	365	78137213.19	781.372	13	2028	1551	141.15	365	79905023.45	799.050	
14	2029	1667	148.38	365	90297317	902.973	14	2029	1667	151.74	365	92340242.72	923.402	
15	2030	1792	159.51	365	104349837	1043.498	15	2030	1792	163.12	365	106710693	1067.107	
16	2031	1927	171.47	365	120589280.3	1205.893	16	2031	1927	175.35	365	123317544.6	1233.175	
17	2032	2071	184.33	365	139355987.1	1393.560	17	2032	2071	188.51	365	142508837.5	1425.088	
18	2033	2227	198.16	365	161043262.6	1610.433	18	2033	2227	202.64	365	164686775.3	1646.868	
19	2034	2394	213.02	365	186105620.3	1861.056	19	2034	2394	217.84	365	190316154.7	1903.162	
20	2035	2573	229.00	365	215068307.5	2150.683	20	2035	2573	234.18	365	219934106.3	2199.341	
21	2036	2766	246.17	365	248538312.8	2485.383	21	2036	2766	251.74	365	254161351.6	2541.614	

Table 11. Vehicle Operating Cost

				FUEL SAVIN	5		
Year	CVPD	Days	Fuel Saving @ 14%	Mileage (1/4)	Diesel Cost Inflation @ 5%	Extra Fuel Cost	Extra Fuel Cost in Lakhs
2016	0	0	0	0	0	0	0
2017	703	365	0.14	0.25	58	520887.85	5.21
2018	756	365	0.14	0.25	61	587952.1607	5.88
2019	812	365	0.14	0.25	64	663651.0014	6.64
2020	873	365	0.14	0.25	67	749096.0678	7.49
2021	939	365	0.14	0.25	70	845542.1865	8.46
2022	1009	365	0.14	0.25	74	954405.743	9.54
2023	1085	365	0.14	0.25	78	1077285.482	10.77
2024	1166	365	0.14	0.25	82	1215985.988	12.16
2025	1254	365	0.14	0.25	86	1372544.184	13.73
2026	1348	365	0.14	0.25	90	1549259.248	15.49
2027	1449	365	0.14	0.25	94	1748726.376	17.49
2028	1558	365	0.14	0.25	99	1973874.897	19.74
2029	1674	365	0.14	0.25	104	2228011.29	22.28
2030	1800	365	0.14	0.25	109	2514867.744	25.15
2031	1935	365	0.14	0.25	115	2838656.966	28.39
2032	2080	365	0.14	0.25	121	3204134.05	32.04
2033	2236	365	0.14	0.25	127	3616666.309	36.17
2034	2404	365	0.14	0.25	133	4082312.096	40.82
2035	2584	365	0.14	0.25	140	4607909.779	46.08
2036	2778	365	0.14	0.25	147	5201178.163	52.01

Table	12.	Fuel	Saving

	LIFE CYCLE COST ANALYSIS										LIFE CYCLE COST ANALYSIS							
	Bituminous Pavements										Concrete Pavementa							
							Cost 🗞	Lakha							Cost 🗞	Lakha		
S r N e	Yea T	Constr uction & Mainte nance cost	voc	Extr 3 Fucl Cost	Tota 1 Cost	(1/1.1 2)^n	NPV Constru ction & Mainte nance	NPV Tota 1	Sr N e	Yea F	Const ructio n & Main tenan cc cost	voc	Tota 1 Cost	(1/1.1 2)^n	NPV Constru ction & Mainte nance	NP V Tota 1		
1	2016	169.97	0.00	0	169. 98	1.00	169.98	169. 98	1	2016	229.9 4	0.00	229. 94	1.00	229.94	229. 94		
2	2017		162.78	5.21	167. 98	0.89	0.00	149. 99	2	2017	0.00	159.17	159.	0.89	0.00	142.		
3	2018		188.11	5.88	193. 99	0.80	0.00	154. 64	3	2018	0.00	183.95	183. 95	0.80	0.00	146. 64		
4	2019		217.38	6.64	224. 02	0.71	0.00	159. 45	4	2019	0.00	212.57	212. 57	0.71	0.00	151. 30		
5	2020		251.21	7.49	258. 70	0.64	0.00	164. 41	5	2020	0.00	245.65	245. 65	0.64	0.00	156.		
6	2021	28.20	290.31	8.46	326. 97	0.57	16.00	185. 53	6	2021	11.49	283.88	295. 37	0.57	6.52	167. 60		
7	2022		335.48	9.54	345. 03	0.51	0.00	174. 80	τ	2022	0.00	328.06	328. 06	0.51	0.00	166. 21		
8	2023		387.69	10.77	398. 47	0.45	0.00	180. 25	8	2023	0.00	379.12	379. 12	0.45	0.00	171. 49		
9	2024		448.03	12.16	460. 19	0.40	0.00	185. 86	9	2024	0.00	438.12	438. 12	0.40	0.00	176. 95		
1	2025		\$17.75	13.73	531. 48	0.36	0.00	191. 66	10	2025	0.00	506.30	506. 30	0.36	0.00	182. 58		
1	2026	161.45	\$98.33	15.40	775. 27	0.32	51.98	249. 62	11	2026	21.22	585.09	606. 32	0.32	6.83	195. 22		
1 2	2027		691.44	17.49	708. 93	0.29	0.00	203. 80	12	2027	0.00	676.15	676. 15	0.29	0.00	194. 38		
1 3	2028		799.05	19.74	81B. 79	0.26	0.00	210. 16	13	2028	0.00	781.37	781. 37	0.26	0.00	200. 56		
1 4	2029		913.40	22.28	945. 68	0.23	0.00	216. 73	14	2029	0.00	902.97	902. 97	0.23	0.00	206. 94		
1 5	2030	45.67	1067.11	25.15	1137 .92	0.20	9.34	232. 84	15	2030	0.00	1043.5 0	1043 .50	0.20	0.00	213. 52		
1 6	2031		1233.18	28.39	1261 .56	0.18	0.00	230. 48	16	2031	19.63	1205.8	1225 .52	0.18	3.59	223. 90		
$\frac{1}{7}$	2032		1425.09	32.04	1457 .13	0.16	0.00	237. 69	17	2032	0.00	1393.5	1393 .56	0.16	0.00	227. 32		
1 0	2033		1646.87	36.17	1683 .03	0.15	0.00	245. 12	18	2033	0.00	1610.4 3	1610 .43	0.15	0.00	234. 55		
1	2034	56.57	1903.16	40.82	2000 .56	0.13	7.36	260. 15	19	2034	0.00	1861.0 6	1861 .06	0.13	0.00	242. 01		
2 0	2035		2199.34	46.08	2245 .42	0.12	0.00	260. 71	20	2035	0.00	2150.6 B	2150 .68	0.12	0.00	240. 71		
2 1	2036		2541.61	52.01	2593 .63	0.10	0.00	268. 87	21	2036	25.65	2485.3 B	2511 .04	0.10	2.66	260. 31		
			Total NPV	v			254.67	4332 .74			Te	tal NPV			249.54	4139 .36		

Table 13. Life Cycle Cost Comparison of Bituminous and Concrete Pavements

							Ne	t Pres	ent Value o	f OVER	LAYS							
		NPV	Bitumino	us Ove	rlays		NPV Concrete Overlays () White Topping Thickness				(<u>Illíra Th</u> is - 100mí	tra Thin NPV Concrete Overlays (Thin White 100mm) Topping Thickness - 150mm)						hite
S r N o	Year	Con stru ctio n & Mai nten anc e cost	voc	Ext ra Fuel Cos t	(1/1.1 2)^n	NPV	S r N o	Ye ar	Constr uction & Mainte nance cost	vo c	(1/1.1 2)^n	NP V	S r N o	Ye ar	Constr uction & Mainte nance cost	vo c	(1/1.1 2)^n	NPV
1	2016	89.5 905	0.000	0	1.00	89.590 5	1	20 16	57.678	0.00	1.00	57. 678	1	20 16	86.383	0.00	1.00	86.38 3
2	2017		162.7 75	5.21	0.89	149.98 5661	2	20 17		159. 174	0.89	142 .12	2	20 17		159. 174	0.89	142.1 19504
3	2018		188.1 07	5.88	0.80	154.64 4812	3	20 18		183. 945	0.80	146 .64	3	20 18		183. 945	0.80	146.6 40046
4	2019		217.3 81	6.64	0.71	159.45 129	4	20 19		212. 572	0.71	151 .3	4	20 19		212. 572	0.71	151.3 04378
5	2020		251.2 11	7.49	0.64	164.40 9774	5	20 20		245. 653	0.64	156 .12	5	20 20		245. 653	0.64	156.1 17073
6	2021	28.2 0	290.3 06	8.46	0.57	185.52 8929	6	20 21	11.49	283. 883	0.57	167 .6	б	20 21	11.49	283. 883	0.57	167.6 02787
7	2022		335.4 85	9.54	0.51	174.80 2225	7	20 22		328. 062	0.51	166 .21	7	20 22		3:28. 062	0.51	166.2 06579
8	2023		387.6 94	10.7	0.45	180.24 6315	8	20 23		379. 117	0.45	171 .49	8	20 23		379. 117	0.45	171.4 93284
9	2024		448.0 29	12.1	0.40	185.86 2664	9	20 24		438. 117	0.40	176 .95	9	20 24		438. 117	0.40	176.9 48148
1 0	2025		517.7 54	13.7 3	0.36	191.65 6744	1 0	20 25		506. 299	0.36	182 .58	1 0	20 25		506. 299	0.36	182.5 76521
1 1	2026	161. 45	598.3 29	15.4 9	0.32	249.61 6897	1 1	20 26	21.22	585. 092	0.32	195 .22	1 1	20 26	21.22	585. 092	0.32	195.2 17779
1	2027		691.4 44	17.4 9	0.29	203.80 0863	1	20 27		676. 147	0.29	194 .38	1	20 27		676. 147	0.29	194.3 76044
1	2028		799.0 50	19.7 4	0.26	210.16 2738	1 3	20 28		781. 372	0.26	200 .56	1	20 28		781. 372	0.26	200.5 58765
1 4	2029		923.4 02	22.2	0.23	216.72 603	1 4	20 29		902. 973	0.23	206 .94	1 4	20 29		902. 973	0.23	206.9 38145
1	2030		1067. 107	25.1 5	0.20	223.49 7138	15	20 30		1043 .498	0.20	213 .52	1	20 30		1043 .498	0.20	213.5 20441
1 6	2031	45.6 7	1233. 175	28.3 9	0.18	238.82 5544	1 6	20 31	19.63	1205 .893	0.18	223 .9	1 6	20 31	19.63	1205 .893	0.18	223.8 97921
1 7	2032		1425. 088	32.0 4	0.16	237.68 9421	$\frac{1}{7}$	20 32		1393 .560	0.16	227 .32	1 7	20 32		1393 .560	0.16	227.3 19802
1 8	2033		1646. 868	36.1 7	0.15	245.12 4438	1 8	20 33		1610 .433	0.15	234 .55	1	20 33		1610 .433	0.15	234.5 50398
1 9	2034		1903. 162	40.8	0.13	252.79 4969	1 9	20 34		1861 .056	0.13	242 .01	1 9	20 34		1861 .056	0.13	242.0 10986
2 0	2035		2199. 341	46.0 8	0.12	260.70 8498	2 0	20 35		2150 .683	0.12	249 .71	2 0	20 35		2150 .683	0.12	249.7 0888
2 1	2036	56.5 7	2541. 614	52.0 1	0.10	274.73 7309	2 1	20 36	25.65	2485 .383	0.10	260 .31	2 1	20 36	25.65	2485 .383	0.10	260.3 10884
					Total	4249.8 6					Total	396 7.1					Total	3995. 8014

Table 14. Life Cycle Cost Compariso	n of Bituminous and Concrete Overlays
-------------------------------------	---------------------------------------