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Abstract- This paper is DWPT based adaptive block algorithm 
with modified threshold for denoising the sounds of poultry 
birds is proposed. Wavelets have been widely applied in signal 
processing, sampling, coding and communications, filter bank 
theory, system modelling etc. The discrete wavelet packet 
transform provides more coefficients than the conventional 
discrete wavelet transform (DWT), representing additional 
subtle detail of the signal but decision of optimal 
decomposition level is very important. As the four domestic 
female chickens were determined from 2 Hz to 9 kHz using the 
method of conditioned suppression/avoidance. At a level of 60 
dB sound pressure level (re 20 μN/m(2)), their hearing range 
extends from 9.1 Hz to 7.2 kHz, with a best sensitivity of 2.6 
dB at 2 kHz. Chickens have better sensitivity than humans for 
frequencies below 64 Hz .When the sound signal corrupted 
with additive white Gaussian noise is passed through this 
algorithm, the obtained peak signal to noise ratio (PSNR) 
depends upon the level of decomposition along with shape of 
the wavelet. Hence, the optimal wavelet and level of 
decomposition may be different for each signal. The obtained 
denoised signal with this algorithm is close to the original 
signal. 
 
Keywords- Audio denoising, block thresholding, DWPT, MSE 
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I. INTRODUCTION 
 
 In the area of speech processing there are a lot of 
techniques that manipulate the signal in order to enhance the 
quality of the signal, to identify patterns, to classify sounds, to 
compress the signal or to change the some features of the 
voice. Pre-processing of the speech signal is vitally important 
for recognition. In order to compare the recognition 
performance with and without duration modelling, one needs a 
baseline recogniser. It is important then that the pre-processing 
part of the baseline recogniser is optimised. Audio signals are 
often disturbed by background  noise and buzzing or humming 
noise from manmade equipments. Audio denoising aims at 
removal of  the noise while restoring the underlying signals. 
such as music and speech denoising applications are 
numerous. Diagonal time-frequency audio denoising 
algorithms attenuate the noise by processing each window 

Fourier or wavelet coefficient independently, with empirical 
Wiener [2], power subtraction [3], [4], [5], or thresholding 
operators [6]. These algorithms create isolated time-frequency 
structures that are perceived as a “musical noise” [7], [8]. 
Ephraim and Malah [9], [10] showed that this musical noise is 
strongly attenuated with nondiagonal time-frequency 
estimators that regularize the estimation by recursively 
aggregating time-frequency coefficients. However, these 
parameters should be adjusted to the nature of the audio 
signal, which often varies and is unknown. The main step in 
the adaptation process is the relocation of the wavelet 
coefficients of the  Poultry Birds signals so that they resemble 
the behaviour of the wavelet coefficients of the target Poultry 
Birds signal. It is feasible because the distribution of the 
wavelet coefficients of the Poultry Birds can be similar to the 
distribution of the wavelet coefficients of the Types of Poultry 
Birds signal even if the  signals have different behaviour. To 
obtain an adapted-speech signal similar to the target speech 
signal (the purpose of the adaptation process) it is necessary to 
satisfy the requirements of adaptation. According to the 
previous study, it was found that the adaptation is feasible if 
and only if both signals have the same sampling frequency, 
time-scale and similar size of the non-silent time (or in other 
words, similar size of the non-zero wavelet coefficients). The 
two important types of thresholding, hard and soft have been 
used to denoise the signal. In hard thresholding the wavelet 
coefficients below the given threshold are set to zero but in 
soft thresholding the wavelet coefficients are reduced by a 
quantity equal to the threshold value The extension of discrete 
wavelet transform is discrete wavelet packet transform in  
which we split both low pass and high pass filters at all scales 
in filter bank implementation to obtain flexible and detail 
analysis transform for denoising the sound signals [11]. In 
[12], wavelet packet approach which deals with heterogeneous 
noise for pre-processing of mass spectrometry data is 
discussed which incorporate a variance change point detection 
method in thresholding. Wavelet packet method has been used 
to reduce the Additive White Gaussian Noise from the speech 
signal which shows significant SNR improvement [13]. The 
pure-tone thresholds of four domestic female chickens were 
determined from 2 Hz to 9 kHz using the method of 
conditioned suppression/avoidance. At a level of 60 dB sound 
pressure level (re 20 μN/m(2)), their hearing range extends 



IJSART - Volume 3 Issue 6 – JUNE 2017                                                                                         ISSN [ONLINE]: 2395-1052 
 

Page | 1322                                                                                                                                                                   www.ijsart.com 
 

from 9.1 Hz to 7.2 kHz, with a best sensitivity of 2.6 dB at 2 
kHz. Chickens have better sensitivity than humans for 
frequencies below 64 Hz[27].The rest of the article is 
organized as follows: In Section II, brief theory of discrete 
wavelet packet transform (DWPT) is given. Wavelet packet 
adaptive block denoising scheme is discussed in Section III, 
which is preceded by block denoising algorithm based on 
DWPT in Section IV. The various experimental results are 
discussed in Section V. Section VI gives the concluding 
remarks based on the experimental results. This paper 
introduces a new audio denoising algorithm through time 
frequency block thresholding to the types of Poultry Birds  
sound. 
 

II. .DISCRETE WAVELET PACKET TRANSFORM 
(DWPT) 

 
Discrete wavelet packet transforms are used to get 

the advantage of better frequency resolution representation. 
When the wavelet transform is generalized to wavelet packet 
transform, not only the low pass filter output is decomposed 
through further filtering, but the high pass filter output 
decomposed as well. The ability to decom-pose the high pass 
filter outputs means that the wavelet packet allows for more 
than one basis function at a given scale, versus the wavelet 
transform which has one basis function at each scale other 
than the deepest level, where it has two. 

 
The set of wavelet packets collectively make up the 

complete family of possible basis, and many potential basis 
can be constructed from them. If only the low pass filter is 
decomposed, the result is wavelet basis. If all low pass and 
high pass filters are decomposed, the complete tree basis 
results. This basis has the time frequency partitioning like 
STFT. Between these two extremes lie a large number of 
possible basis and their associated sub trees. Nodes can be 
merged or split based on the requirement of application. In all 
cases, the leaves of each connected sub tree of the complete 
wavelet packet tree from the basis of initial space; they span 
the space in linearly independent fashion. The tree diagram of 
a depth-3 complete tree basis is shown in the Figure 1.  

 
As with the wavelet transform tree diagram in [14], 

denotes the depth within the transform and k the position of 
each node (j,k) but now the position index conveys more 
information, specifically which wavelet packet it corresponds 
to a given scale. It is supposed to refer to the associate wavelet 
packet as Wj,k,p  analogus to Wk,p..The tree diagram does not 
convey time domain information, so the index p is not used in 
node naming. Hence in wavelet packet, if all the packets are at 
the same scale, we may simply refer to them as as shown in 
the Figure 1. 

  

 
Figure1 Depth-3 discrete wavelet packet transform tree 

 
Furthermore, wj,k is either the scaling function, or 

derived from the scaling function. DWPT does not re-quire the 
explicit definition of wavelet, only filter definitions are 
enough. To see the wavelet packet at given level of 
decomposition, we can do a recursion of them at each node 
moving down the tree, to get the wavelet at next level. 
Specifically, if we split a wavelet packet node at level j and 
position k into two nodes at level j+1 and 2k & 2k+1  
locations and , we get the following two packets 

 
Then the wavelet packet transform coefficients Cj, k, p are 
given by: 

 
And the original signal can be expressed in terms of these 
coefficients and the corresponding wavelet packets as: 

 
j,k,p ϵ all leaf nodes of basis Where p ranges over all  time 
offsets at scale j for which signal s is defined 
 

III. WAVELET PACKET ADAPTIVE BLOCK 
DENOISING 

 
The wavelet packet based denoising technique 

employs the decomposition concept in adaptive base of 
wavelets. This technique is efficient in denoising the musical 
sound signal corrupted with additive white Gaussian noise 
(AWGN), which is evenly distributed over the entire signal, 
and removal of AWGN from noisy signal is difficult task. 
Donoho and Johnstone pioneered the work of filtering the 
additive white Gaussian noise using wavelet thresholding [15]. 
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The block denoising is explained in the following sub 
sections: 
 
1) Thresholding Based Denoising  

A noise reduction technique developed by donoho, uses 
the wavelet coefficients contraction and its principle 
consists of three steps;  
a)Apply discrete wavelet transform to noisy signal:  
         
         W.y=W.s + W.z         (5) 
 
Where y, s, z and W are the noisy bird sound, original 
clean sound signal, noise signal and the matrix associated 
to the discrete wavelet trans- form respectively. 
b) Threshold the obtained wavelet coefficients.  
c) Reconstruct the desired signal by applying the inverse 
wavelet transform to the threshold wavelet coefficients.  

 
The thresholding function which is also known as wavelet 

shrinkage function is categorized as hard thresholding and soft 
thresholding function. The hard thresholding function retains 
the wavelet coefficients which are greater than the threshold λ 
and sets all other to zero. The hard thresholding is defined as:  

 

 
 

The threshold � is chosen according to the signal energy 
and the standard deviation � of the noise. If the wavelet 
coefficient is greater than  � , then it is assumed that it is 
significant and contributes to the original signal. Otherwise it 
is due to the noise and discarded. The soft thresholding 
function shrinks the wavelet coefficients by � towards zero. 
Hence this function is also called as shrinkage function. The 
soft thresholding function is defined as 

 
 

In [15], we see that the soft thresholding gives lesser mean 
square error. Due to this reason soft thresholding is preferred 
over hard thresholding. 
 

IV. DENOISING ALGORITHM 
 
 The proposed wavelet packet based block 
denoising algorithm for reduction of white Gaussian noise is 
ex-plained in the following steps:  
 
1) Take a bird sound signal of suitable length.  
2) Add White Gaussian Noise to the original signal de-

pending upon the standard deviation . 

3) Divide the noisy signal into blocks of different length 
depending upon the length of the signal in time do-main, 
and the number of samples should be to a power of two.  

4) Determine the optimal block size based on minimum 
mean square error criteria.  

5) Compute the discrete wavelet packet transform (DWPT) 
of one block of the noisy signal at level 1.  

6) Estimate the standard deviation of the noise using 
Equation                                            (8) and determine the 
threshold value using Equation (9), then apply the 
different thresholding techniques for time and level 
dependent wavelet coefficients using Equations (6) and 
(7).  

7) Take inverse discrete wavelet packet transform (IDWPT) 
of the coefficients obtained through step 6, which has 
reduced noise.  

8) Calculate mean square error (MSE), peak signal to noise 
ratio (PSNR) for denoised signal.  

9) Repeat steps 4 to step 7 for other level of decomposition 2 
- 5.  

10) Concatenate all the blocks of the denoised signals 
obtained through step 8 and do averaging operation for 
MSE and PSNR of the musical instrument sound signal. 

 
 The complete DWPT based denoising algorithm is 
shown graphically in Figure 2.. 
 

 
Figure2 DWPT based block denoising algorithm with  

modified threshold. 
 

V. EXPERIMENTS AND RESULTS 
 

The experiments presented below have been 
performed on 3 types of Poultry Birds sound signals( Kalinga 
brown, Japanese  quail, Guinea fowl ). Matlab7 is used in 
simulation for denoising. They were corrupted by Gaussian 
white  noise of different amplitude over almost all the original 
noise. For comparing the performance of the various wavelets 
for poultry bird sound signals, four wavelets db4, db10, sym 3 
& sym 8 are taken. Besides observing the performance of the 
wavelets, the effect of decomposition is also discussed. For 



IJSART - Volume 3 Issue 6 – JUNE 2017                                                                                         ISSN [ONLINE]: 2395-1052 
 

Page | 1324                                                                                                                                                                   www.ijsart.com 
 

comparing the performance and measurement of quality of 
denoising, the peak signal to noise ratio (PSNR) is determined 
between the original signal Si and the signal denoised  Sd by 
our algorithm. 
 

              (3) 

 
Where Smax  is the maximum value of the signal and is given 
by,  
 

Smax =max (max (si), max (sd))          (4) 
 
And MSE is mean square error, given by: 
 

2      (5) 

 
where N is the length of the signal. The PSNR values 

obtained for different wavelets applied on poultry bird signals 
at different level of decomposition are shown in Tables 1 
 

The additive white Gaussian noise is taken  which is 
approximately 50% of the signal value. It is observed from 
Tables 1 that the PSNR values are dependent upon the shape 
of the wavelet, type of thresholding and the level of 
decomposition. Sometimes Hard thresholds are better than soft 
thresholds for denoising the bird  sound signals. The selection 
of level of decomposition plays a significant role, and should 
be optimal for best denoising results. Hence, the kalinga 
brown sound will give best results when denoised with db10 
wavelet at level 5, Japanese Quail sound with sym3 at level 5 
and Guinea Fowl sound with db10 at level5, respectively. The 
different signals denoised with optimal wavelet and level of 
decomposition are shown in the figure 3,4,5. 
 

The best result is found in Kalinga brown poultry 
bird is db10 using thresholding selection rule Minimaxi  with 
soft thresholding  having PSNR 5.0074 and MSE 2.74. The 
best result is found in Japanese quail poultry bird  is sym3 
using thresholding selection rule Minimaxi  with soft 
thresholding  having PSNR 4.9963  and MSE 4.4356 in 
Japanese quail poultry bird. . The best result is found in 
Guinea fowl db10 using thresholding selection rule Sqtwolog 
with hard thresholding having PSNR 5.0072 and MSE 1.4690 
 

 
Figure 3 represents  bird Kalinga brown, Japanese  quail, 

Guinea fowl sound. 
 

 
Figure 4 represents true bird sound, noisy bird sound & 

denoised bird sound 
 

 

 
Figure 5 Denoised Bird Sound Approximation and 

Spectrogram Representation of Kalinga brown, Japanese  
quail, Guinea fowl 
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Table 1 for Denoising of  Kalinga Brown ,Japanese Quail , Guinea Fowl bird sound using Daubechies and symmlet  wavelet 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Kalinga 
brown 

THRESHOLD THRESHOLD 
SELECTION 

RULE 

WAVELET PSNR MSE 

 
 
 
 
 
 

Soft 
 

Heursure Db4 5.0028 4 
Db10 5.0028 3.2 
Sym3 4.995 4.11 
Sym8 5.0045 3.13 

Rigrsure Db4 3.9989 4.99 
Db10 5.0060 2.9 
Sym3 4.9967 4.08 
Sym8 4.9959 4.9959 

Minimaxi Db4 5.0070 4.04 
Db10 5.0074 2.74 
Sym3 5.0004 3.81 
Sym8 5.0025 3.7833 

Sqtwolog Db4 4.9967 3.8134 
Db10 5.0024 2.89 
Sym3 5.0039 4.1684 
Sym8 4.9981 3.320 

 
 
 
 
 
 

Hard 
 

Heursure Db4 4.9985 4.0694 
Db10 5.0100 2.9768 
Sym3 5.0072 3.9530 
Sym8 4.9976 3.0708 

Rigrsure Db4 5.0033 4.1348 
Db10 5.0034 3.0926 
Sym3 4.9910 3.8962 
Sym8 5.0010 3.3309 

Minimaxi Db4 4.9971 4.0975 
Db10 5.005 2.9366 
Sym3 4.9954 3.9739 
Sym8 4.9967 3.1415 

Sqtwolog Db4 4.9908 4.7650 
Db10 4.9916 3.0171 
Sym3 4.9997 3.8408 
Sym8 5.0027 3.6239 

 
 
 
 
 
 
 
 
 
 
 

Japanese 
quail 

 
 
 
 
 
 

Soft 

Heursure Db4 5.0048 4.8718 
Db10 4.9908 4.9405 
Sym3 4.9989 4.7702 
Sym8 5.0078 4.9989 

Rigrsure Db4 5.0006 4.5689 
Db10 5.0108 4.9113 
Sym3 4.9970 4.6047 
Sym8 4.9914 4.6818 

Minimaxi Db4 5.0018 4.6061 
Db10 5.0129 4.6378 
Sym3 4.9963 4.4356 
Sym8 5.0116 4.5334 

Sqtwolog Db4 5.0021 4.7320 
Db10 5.0036 4.5735 
Sym3 4.9971 4.4970 
Sym8 4.9944 4.6718 

 
 
 
 
 
 

Hard 

Heursure Db4 5.0097 4.7826 
Db10 4.9972 4.7427 
Sym3 5.0013 4.5927 
Sym8 4.9988 4.9488 

Rigrsure Db4 4.9983 4.7757 
Db10 5.0069 4.9671 
Sym3 5.0100 4.5175 
Sym8 5.0010 5.3752 

Minimaxi Db4 4.9986 4.6658 
Db10 4.9932 4.6331 
Sym3 5.0111 4.7418 
Sym8 5.0039 4.7359 

Sqtwolog Db4 4.9947 4.9758 
Db10 4.9970 5.0195 
Sym3 4.9957 4.8265 
Sym8 4.9934 4.5855 

  Heursure Db4 5.0075 1.7809 
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VI.  CONCLUSION  

 
Adaptive wavelet packet transform has been widely 

used in denoising the sounds of Poultry and Providing better 
performance in terms of PSNR values than the other denoising 
techniques. In this paper, discrete wavelet packet transform is 
used for denoising Kalinga brown, Japanese  quail & Guinea 
fowl Poultry Bird  sound signal corrupted with additive white 
Gaussian noise, 50% of the signal strength. First, sound signal 
is divided into multiple blocks de-pending upon the optimal 
block size for each signal. De-noising of signal is performed 
with these optimal block sizes in wavelet packet domain by 
thresholding the wavelet coefficients at different level of 
decomposition. It is observed that hard thresholding gives 
better PSNR than soft thresholding at all the decomposition 
levels. The choice of the optimal level of decomposition is 
important, and different for each sound signal. If the level of 
decomposition is not optimal then the PSNR value will not be 
maximum, hence denoising will not be the best. Maximum 
PSNR value for Kalinga Brown bird sound is at level 5 with 
db40 wavelet, Japanese quail at level 5 with dmey and Guinea 
fowl at level 4 with db10 respectively. When each block is 
denoised, all the blocks are concatenated to form the final 
denoised signal. It is also observed that when modified 
threshold with is used, the PSNR values are in-creased. Higher 
thresholds remove the noise well but some parts of the original 
signal are also removed because it is not possible to remove 
the noise without affecting the original signal. 
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