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Abstract- This paper is the study of algebraic systems in an 
abstract way. We are already familiar with a number of 
algebraic systems from our earlier studies. For example, in 
number systems such as the integers Z = (….-3,-2,-1, 0, 1, 2, 

3…), the rational numbers Q =
n
m

; m; n € Z, the real 

numbers R, or the complex numbers C = (x +iy; x; y € R) 
(where i2 = -1) there are algebraic operations such as 
addition, subtraction, and multiplication. 
 
 This paper studies general algebraic systems in an 
axiomatic framework, so that the theorems one proves apply 
in the widest possible setting. The most commonly arising 
algebraic systems are groups, rings and flelds will be briefly 
discussed in this paper. 
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I. INTRODUCTION 
 

“Algebra is generous; she often gives more than is 
asked of her.” – D’Alembert 

 
Abstract algebra is the subject area of mathematics 

that studies algebraic structures, such as groups, rings, fields, 
modules, vector spaces, and algebras. The phrase abstract 
algebra was coined at the turn of the 20th century to 
distinguish this area from what was normally referred to as 
algebra, the study of the rules for manipulating formulae and 
algebraic expressions involving unknowns and real or 
complex numbers , often now called elementary algebra . 

 
In mathematics, a group is an algebraic structure 

consisting of a set of elements equipped with an operation that 
combines any two elements to form a third element. The 
operation satisfies four conditions called the group axioms, 
namely closure, associativity, identity and invertibility. One of 
the most familiar examples of a group is the set of integers 
together with the addition operation, but the abstract 
formalization of the group axioms, detached as it is from the 

concrete nature of any particular group and its operation, 
applies much more widely. It allows entities with highly 
diverse mathematical origins in abstract algebra and beyond to 
be handled in a flexible way while retaining their essential 
structural aspects. The ubiquity of groups in numerous areas 
within and outside mathematics makes them a central 
organizing principle of contemporary mathematics.  

 
Groups share a fundamental kinship with the notion 

of symmetry. For example, a symmetry group encodes 
symmetry features of a geometrical object: the group consists 
of the set of transformations that leave the object unchanged 
and the operation of combining two such transformations by 
performing one after the other. Lie groups are the symmetry 
groups used in the Standard Model of particle physics; 
Poincaré groups, which are also Lie groups, can express the 
physical symmetry underlying special relativity; and point 
groups are used to help understand symmetry phenomena in 
molecular chemistry 

 
The concept of a group arose from the study of 

polynomial equations, starting with Évariste Galois in the 
1830s. After contributions from other fields such as number 
theory and geometry, the group notion was generalized and 
firmly established around 1870. Modern group theory—an 
active mathematical discipline—studies groups in their own 
right. To explore groups, mathematicians have devised various 
notions to break groups into smaller, better-understandable 
pieces, such as subgroups, quotient groups and simple groups. 
In addition to their abstract properties, group theorists also 
study the different ways in which a group can be expressed 
concretely, both from a point of view of representation theory 
(that is, through the representations of the group) and of 
computational group theory. A theory has been developed for 
finite groups, which culminated with the classification of finite 
simple groups, completed in 2004. Since the mid-1980s, 
geometric group theory, which studies finitely generated 
groups as geometric objects, has become a particularly active 
area in group theory. 

  
II. DEFINITION 
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 A group is a set, G, together with an operation • 
(called the group law of G) that combines any two elements a 
and b to form another element, denoted a • b or ab. To qualify 
as a group, the set and operation, (G, •), must satisfy four 
requirements known as the group axioms: 
 

i. Closure:  For all a, b in G, the result of the operation, 
a • b, is also in G.  

ii. Associativity: For all a, b and c in G, (a • b) • c = a • 
(b • c). 

iii. Identity element: 
 

 There exists an element e in G such that, for every 
element a in G, the equation e • a = a • e = a holds. Such an 
element is unique, and thus one speaks of the identity element. 
 

iv. Inverse element: 
 
 For each a in G, there exists an element b in G, 
commonly denoted a−1 (or −a, if the operation is denoted 
"+"), such that a • b = b • a = e, where e is the identity 
element. 
 
Another Definition  
 
 A group is a non-empty set G with an associative 
binary operation ∗ with the following property: 
 
1) (Identity element) There exists an element e ∈ G such that 

for all a ∈ G, e ∗ a = a ∗ e = a. (Why is it called “e”? This 
comes from German “Einheit”.)  

 
2) (Inverse element) For every a ∈ G there exists b ∈ G such 

that a ∗ b = b ∗ a = e. We often write (G, ∗) to mean that 
G is a group with operation ∗. 

 
• If F is a field, like Q, R, C, then (F, +) is a group but 
(F, ·) is not.Furthermore (F/{0}, ·) is a group. Also, if V is a 
vector space over F , then (V, +) is a group.We can conclude 
(Z, +) is a group, but that (N, +) is not. 
 
 Here is a possibly new example: let G = {1, −1, i, 
−i}, and let ∗ be multiplication. Then G is a group, and we can 
write its multiplication table as follow (Cayley table): 
 
 
 
 
 
 
 
 

Table 1. 

 
 

 Associativity holds because we know that 
multiplication of complex numbers is associative. We can find 
the identity element and an inverse of each element.Also 
closure property holds here. 
  
Theorem 2.1 Let * be an associative binary operation on a 
non-empty set G. Then G has at most one element e satisfying 
the property that for all a ∈ G, e ∗ a = a ∗ e = a. 
 
Proof. If e′ is an element of G with e′ ∗ a = a ∗ e′ = a for all a ∈ 
G, then 
 
e′ ∗ e = e and e′ ∗ e = e′ 
 
by the defining properties of e and e, whence e = e′. 

 
In particular, a group (G, ∗) has exactly one element e 

that acts as an identity element, and it is called the identity 
element of G. Furthermore, the inverses of each element also 
unique. 
 
Theorem 2.2 Let (G, ∗) be a group, a ∈ G. Then there exists a 
unique element b ∈ G such that b ∗ a = a ∗ b = e. 
 
 . By the inverse element axiom, such an element b 
exists. Let c ∈ G such that c ∗ a = a ∗ c = e. Then 
 
 
c = c ∗ e = c ∗ (a ∗ b) = (c ∗ a) ∗ b = e ∗ b = b, 
 
 
by associativity and by the property of identity e. 
 

This unique inverse element of a is denoted as a−1.When 
the operation ∗ is +, then the inverse is written as −a. 

 
We also introduce another bit of notation: for a ∈ G, a0 

is the identity element, if n is a positive integer, then an is the 
shorthand for a ∗ a ∗ · · · ∗ a, where a is written n times. 
Clearly if n > 0, then an = an−1 ∗ a = a ∗ an−1.When the 
operation ∗ is +, then a ∗ a ∗ · · · ∗ a (with a being written n 
times) is usually denoted as na. 
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Group of symmetry: 
 
Two figures in the plane are said to be congruent if one 

can be changed into the other using a combination of rotations, 
reflections, and translations. Every figure is congruent to 
itself. However, some figures are congruent to themselves in 
more than one way, and these more congruences are called 
symmetries. A square has eight symmetries. These are: 

 
The elements of the symmetry group of the square 

(D4). Vertices are denoted by color or number. 
 

 
Figure 1.  

 the identity operation leaving everything unchanged, 
denoted id; 

 rotations of the square around its center by 90° clockwise, 
180° clockwise and 270° clockwise, denoted by r1, r2 and 
r3, respectively; 

 reflections about the vertical and horizontal middle line 
(fh and fv), or through the two diagonals (fd and fc). 

 These symmetries are represented by functions or 
transformations. Each of these functions sends a point in the 
square to the corresponding point under the symmetry. For 
example, r1 sends a point to its rotation 90° clockwise around 
the square's center, and fh sends a point to its reflection across 
the square's vertical middle line. Composing two of these 
symmetry functions gives another symmetry function. These 
symmetries determine a group called the dihedral group of 
degree 4 and denoted D4. The underlying set of the group is 
the above set of symmetry functions, and the group operation 
is function composition. Two symmetries are combined by 

composing them as functions, that is, applying the first one to 
the square, and the second one to the result of the first 
application. The result of performing first a and then b is 
written symbolically from right to left as b • a. 

 The group as in the above discussion is denoted by 
SX and is called the permutation group of X or symmetric 
group of X. 

 
 Definition 2.1: Order of group G 
 
 The total number of elements of a group G is called 
the order of G.It is denoted as |G|. We call group G finite if it 
has only finitely many elements; otherwise it is infinite.  
 
 Definition 2.2: Order of element  

 
  Let G be a group and a ∈ G. If there is a positive 
integer n such that an = e, then the smallest such positive 
integer n is the order of a. If no such n exists, we say that a has 
infinite order. The order of a is denoted |a|. 
 

III. THEOREMS 
 

Lemma 3.1 For any n ∈ N, (an)−1 = (a−1)n. 
 
Proof. By definition, (an)−1 is the unique element of G whose 
product with an in any order is e. But by associativity,we have  
 
an ∗ (a−1)n = (an−1 ∗ a) ∗ (a−1 ∗ (a−1)n−1) 
= an−1 ∗ (a ∗ (a−1 ∗ (a−1)n−1))  
 
= an−1 ∗ ((a ∗ a−1) ∗ (a−1)n−1))  
 
= an−1 ∗ (e ∗ (a−1)n−1))  
= an−1 ∗ (a−1)n−1, 
 
which by induction on n equals e (the cases n = 0 and n = 1 are 
trivial). Similarly, the product of an and (a−1)n in the other 
order is e. This proves that (a−1)n is the inverse of an, which 
proves the lemma.  

 
With this, if n is a negative integer, we write an to stand for 
(a−n)−1. 
 
Theorem 3.2 (Cancellation) Let (G, ∗) be a group, a, b, c ∈ G 
such that a ∗ b = a ∗ c.  
Then b = c. 
 
Similarly, if b ∗ a = c ∗ a, then b = c. 
 
Proof. By the axioms and the notation, 
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b = e ∗ b = (a−1 ∗ a) ∗ b = a−1 ∗ (a ∗ b) = a−1 ∗ (a ∗ c) = 
(a−1 ∗ a) ∗ c = e ∗ c = c. 

 
Similarly we can proove second part. 
 
Exercise *  Prove that for every a ∈ G, (a−1)−1 = a. 
 
Exercise *  Let a, b ∈ G. Prove that (a ∗ b)−1 = b−1 ∗ a−1. 
 
Exercise * Let G be a group, a ∈ G. Then the left translation or 
the left multi-plication by a is the function La : G → G defined 
by L a(x) = a ∗ x. Prove that La is a one-to-one and onto 
function. 
 
Exercise * Let G be a group, a ∈ G. Then the conjugation by a 
is the function Ca : G → G defined by Ca(x) = a∗x∗a−1. Prove 
that Ca is a one-to-one and onto function and that its inverse is 
Ca−1 . 
 
Lemma 3.3 If a ∗ b = b ∗ a, then for all/any one n ∈ Z, (a ∗ b)n 
= an ∗ bn. 
 
Proof. If n = 0 or n = 1, this holds trivially. Now let n > 1. By 
commutativity, bm ∗ a = a ∗ bm for all m ≥ 0. Then by 
induction on n, 
 
(a ∗ b)n = (a ∗ b)n−1 ∗ (a ∗ b) = (an−1 ∗ bn−1) ∗ (a ∗ b) 
= ((an−1 ∗ bn−1) ∗ a) ∗ b = (an−1 ∗ (bn−1 ∗ a)) ∗ b  
 
= (an−1 ∗ (a ∗ bn−1)) ∗ b = (an−1 ∗ a) ∗ bn−1) ∗ b  
= an ∗ (bn−1 ∗ b) = an ∗ bn. 
 
Thus the lemma holds for all n ∈ N. If n < 0, then by the 
positive case and commutativity, (a ∗ b)n = (b ∗ a)n = ((b ∗ 
a)−n)−1 = (b−n ∗ a−n)−1, whence from Exercise 2.6, (a ∗ b)n = 
(a−n)−1 ∗ (b−n)−1, which is an ∗ bn.  

 
A partial converse also holds (why is this only a partial 
converse?): 
 
Proposition 3.4 Let a, b ∈ G such that (a ∗ b)2 = a2 ∗ b2. Then a 
∗ b = b ∗ a. 
 
Proof. By assumption, 
 
a ∗ b ∗ a ∗ b = (a ∗ b)2 = a ∗ a ∗ b ∗ b, 
 
so that by cancellation, b ∗ a = a ∗ b. 

 
IV. CONCLUSION 

 

The concept of a group arose from the study of 
polynomial equations, symmetries of polygons  starting with 
Évariste Galois in the 1830s. After contributions from other 
fields such as number theory and geometry, the group notion 
was generalized and firmly established around 1870. Modern 
group theory—an active mathematical discipline—studies 
groups in their own right. To explore groups, mathematicians 
have devised various notions to break groups into smaller, 
better-understandable pieces, such as subgroups, quotient 
groups and simple groups. 

 
This paper is the revision of abstract algebra. A 

Journey of conversion of algebraic structure to a Group  
 
 when certain properties are satisfied which are 

closure, associativity, identity, inverse. 
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