
IJSART - Volume 3 Issue 6 – JUNE 2017 ISSN [ONLINE]: 2395-1052

Page | 403 www.ijsart.com

Security Metrics in Web Services

Shabnam Kumari1, Deepak2, Sunita Kumari3

1A.P., Department of CSE, Sat Kabir Institute of Technology & Management, Bahadurgarh, Haryana, India
2Mtech scholar, Department of CSE, Sat Kabir Institute of Technology & Management, Bahadurgarh, Haryana, India

3A.P., Department of CSE, , G.B.Pant College of Engineering, Okhla, New Delhi, India

Abstract-Metrics are tools designed to facilitate decision-
making and improve performance and accountability through
collection, analysis, and reporting of relevant performance-
related data. Security metrics are valuable for measuring and
comparing the amount of security provided by different
systems and configurations. More applications are being
developed for the web instead of as native applications for an
operating system like Windows. Social networking is one
common phenomenon for these applications and allows people
to register, create own profiles, tune their application
preferences, and invite friends to join communities. The users
upload photos and other personal data and share information
about their life, like how they think, live, consume, and
connect with different people. This brings up security issues
like user’s privacy, data confidentiality, identity verification
(authentication), and access authorization for handling all this
personal data.

Keywords-Metrics, data confidentiality, web services.

I. SECURITY OVERVIEW

More applications are being developed for the web
instead of as native applications for an operating system like
Windows. Social networking is one common phenomenon for
these applications and allows people to register, create own
profiles, tune their application preferences, and invite friends
to join communities. The users upload photos and other
personal data and share information about their life, like how
they think, live, consume, and connect with different people.
This brings up security issues like user’s privacy, data
confidentiality, identity verification (authentication), and
access authorization for handling all this personal data. Who is
able or allowed to access the data? What is considered to be
private and public and how it is followed? It is crucial that
scalable security is taken into account and built into the
architecture of applications and services like these in the open
internet with billions of users. The current methods for
implementing security include user authentication and
Transport Layer Security (TLS) for protecting sessions over
the Internet. Certificates are used to authenticate the web site
URLs for the clients, but the scheme wrongly relies on human
understanding of the links and certificates and thus phishing
attacks have emerged.

Web cookies are used to e.g. transfer session
information and to carry authorization information in the
HTTP requests during the session lifetime. The personal data
of the users is usually stored and in many cases transferred
unencrypted. Furthermore, users have weak or no control over
the data that is once transferred to the services. If a malicious
user is able to access another person’s (victim) picture or
video and put it into the Internet the victim has small or no
chances to delete the content once it has spread around. The
only defense may be a secret URL, transferred in plain text
over the network, which may not be good enough in some
cases as the URLs can be sniffed by others. Actually, the users
may copy and publish the links by themselves. There are many
ways to design and implement web applications. Many
applications are implemented with the model of Remote
Procedure Calls (RPC over HTTP) that are executed on the
server side and thus increases the load. This does not help
service providers to easily scale up their services for a higher
number of clients, which is a crucial requirement for today’s
web applications.

One of the answers to this problem is Roy Fielding’s

Representational State Transfer (REST) architectural style for
web applications and has become an important set of
requirements for modern web application developers and
designers (e.g. REST APIs). REST style brings clarity on how
to build highly scalable web applications. For example, it
allows servers to be more stateless and utilizes the benefits of
caching with more static Uniform Resource Identifiers (URI).

In REST style applications the URIs can be

referenced after the session as well in contrast to many web
applications, where the dynamic URIs are used and their
relevance is low after the session ends. Even REST is
described as an architectural style, it implies multiple
requirements for web applications. It efficiently utilizes the
HTTP protocol (version 1.1) methods to handle data and
requests in contrast to web applications that use single GET
method to invoke remote scripts with arguments to modify and
read data. There is a gap between the REST architecture and
the current security features of today’s web. The security
architecture does not naturally align with the REST
architecture in the sense that secure sessions create session
specific keys but more static data that can be stored in web

IJSART - Volume 3 Issue 6 – JUNE 2017 ISSN [ONLINE]: 2395-1052

Page | 404 www.ijsart.com

caches can not be confidentiality protected and fetched from
the caches at the same time. This heavily reduces the
scalability of the REST architectural style for applications and
services that require access control to the data and for this
reason provide the data through e.g. TLS tunnels or require
HTTP authorization.

II. WEB SECURITY AND CACHING

HTTP version 1.1 has four main methods for client

requests, namely GET, PUT, POST, and DELETE (there are
also other methods like HEAD, CONNECT, and TRACE,
which we do not address in this paper). The REST handles all
data as URIs and the HTTP methods are applied to them. To
make this more general, the HTTP GET can be seen as similar
to read data, PUT similar to create/replace data, POST similar
to append to/create data, and DELETE similar to remove data.
GET (also HEAD) is a safe read method, which does not alter
the data, but all the other methods update the data in some
ways and can be thought as write methods (i.e. append,
replace, or remove).

Web content caching with the URIs assigned to the

data items is an important part of RESTful thinking and
applies to the HTTP GET method. Data that needs to be
presented to the user via the browser is fetched with the HTTP
GET method from the web servers. Between the client and the
server there can be web proxies and web caches that may
already contain the requested URI presented in the GET
request. Caches reduce bandwidth usage and especially the
server load, and shows as smaller lag to the user. On the other
hand the freshness of the fetched data needs to be known.

There are multiple web caching models. User agent

caches are implemented in the web browsers in the clients
themselves and are user specific. Proxy caches (also known as
forward proxy caches) are most known to normal users as they
require configuration of the browser (i.e. proxy settings).
Interception proxy caches or transparent caches are variants
that do not require setting up the clients. On the other hand
gateway caches, reverse proxy caches, surrogate caches, or
web accelerators are closer to or inside the server site and not
visible to the clients either. There are protocols to manage the
contents of the web caches in a distributed manner, such as
Internet Cache Protocol (ICP) and Hypertext Caching Protocol
(HTCP). Further on, the web caches can work together to
implement Content Delivery (or Distribution) Networks
(CDN). These become very important when the scalability of
video on demand services like YouTube (www.youtube.com)
etc. is considered.

HTTP protocol includes mechanisms to control
caching. Freshness ("cache lifetime") allows the cache to
provide the response to the client without re-checking it on the
origin server. Validation is used in the cache to check from the
origin server whether the expired cache entry is still valid.
Then, an important feature for the RESTful architectural
model is the way how cache entries may become invalidated.
Invalidation happens usually as a side effect when HTTP
PUT/ POST/ DELETE request is applied for the respective
cached URI. Since these requests modify the respective URI
the cache can not provide the cached version of the URI back
to the client but let the origin server handle the write operation
and provide the response (note that there may be other web
caches on the routing path that are not traversed, especially
user agent and proxy caches). On the other hand if the HTTP
GET method is designed to be used as an RPC method to call
a script in the server for writing data, the cache may think it
has a valid response in the cache already for the URI and
return an old response. This may be ok for the application or
service logic. REST architectural style of implementing web
applications gives a good guidance for the designer and
developers. It is about understanding the nature of the web and
not misusing it. It also discourages the usage of scripting for
all user session specific data handling as the content based on
the results from scripts are not generally cached.

The REST style encourages having a separate URI

for each data item, like a single photo or entry in a database.
One of the reasons is that different data items can be cached
separately, e.g. a user’s image in the cache does not expire
even if the user changes the profile data information in the
web application database. This encourages developers to apply
HTTP PUT/ POST/ DELETE to a most accurate URI in
question. In contrast one might design the web application in
such a way that all PUT/ POST/ DELETE queries go to the
same root URI but with different arguments for the script. This
may flush the cache as the data is updated with these methods
and the current cached entry may become invalid. Using
scripts also makes effective caching hard for all entries
addressed with the root URI if for example the mod_cache is
used with Apache web server.

Take this search query URI as an example:
http://mypics.com/?cmd=create&cat=music&sub=rock&title=
acdc
and compare it with the following examples:
http://mypics.com/music/rock/?title=acdc
http://mypics.com/music/rock/acdc

We see that the first example, if used with PUT/

POST, may disable cached copies of all entries for the
mypics.com (write operation on that URL updating the

IJSART - Volume 3 Issue 6 – JUNE 2017 ISSN [ONLINE]: 2395-1052

Page | 405 www.ijsart.com

content), whilst the second only for the rock subcategory in
the music category. The last example row is the simplest and
follows the RESTful design, e.g. if used with PUT. All GET,
PUT, POST, and DELETE can be invoked with the same URI
and the web application knows what to do with it.

III. CHOOSING RIGHT PROTOCOL

Industry standard authentication protocols help

reduce the effort of securing your API. Custom security
protocols can be used, but only under very specific
circumstances. Here is a brief overview of the benefits and
drawbacks of the top protocols.

3.1. Basic API Authentication w/ TLS

Basic API authentication is the easiest of the three to
implement, because the majority of the time, it can be
implemented without additional libraries. Everything needed
to implement basic authentication is usually included in your
standard framework or language library. The problem with
basic authentication is that it is, well “basic”, and it offers the
lowest security options of the common protocols. There are
no advanced options for using this protocol, so you are just
sending a username and password that is Base64 encoded.
Basic authentication should never be used without TLS
(formerly known as SSL) encryption because the username
and password combination can be easily decoded otherwise.

3.2. OAuth1.0a

OAuth 1.0a is the most secure of the three common
protocols. OAuth1 is a widely-used, tested, secure, signature-
based protocol. The protocol uses a cryptographic signature,
(usually HMAC-SHA1) value that combines the token secret,
nonce, and other request based information. The great
advantage of OAuth 1 is you never directly pass the token
secret across the wire, which completely eliminates the
possibility of anyone seeing a password in transit. This is the
only of the three protocols that can be safely used without SSL
(although you should still use SSL if the data transferred is
sensitive). However, this level of security comes with a price:
generating and validating signatures can be a complex process.
You have to use specific hashing algorithms with a strict set of
steps. However, this complexity isn’t often an issue anymore
as every major programming language has a library to handle
this for you.

3.3. OAuth2

OAuth2 sounds like an evolution of OAuth1, but in
reality it is a completely different take on authentication that

attempts to reduce complexity. OAuth2’s current specification
removes signatures, so you no longer need to use
cryptographic algorithms to create, generate, and validate
signatures. All the encryption is now handled by TLS, which
is required. There are not as many OAuth2 libraries as there
are OAuth1a libraries, so leveraging this protocol for REST
API security may be more challenging.

Last year, the lead author and editor of the OAuth2

standard resigned, with this informative post.. Because of this
instability in the spec committee and because OAuth2’s
default settings are less secure than OAuth1 (no digital
signature means you can’t verify if contents have been
tampered with before or after transit), we recommend OAuth1
over OAuth2 for sensitive data applications. OAuth2 could
make sense for less sensitive environments, like some social
networks.

IV. CUSTOM PROTOCOLS

Custom API authentication protocols should be

avoided unless you really, really know what you are doing and
fully understand all the intricacies of cryptographic digital
signatures. Most organizations don’t have this expertise, so
we recommend OAuth1.0a as a solid alternative.

Even if you are willing to take this potentially

perilous road, there is another reason to avoid it: because it is
custom, no one other than you will be able to use it easily.
Only use custom authentication protocols if you are willing to
support client libraries you can give to your REST API callers
(Java, Ruby, PHP, Python, etc) so your users can use these
protocols with little or no effort. Otherwise the API will be
ignored.

V. CONCLUSION

As Web services are still relatively new in terms of

their practical implementation, web architects and developers
need to be careful in how they deploy Web services. In
addition to the protective measures discussed in this
document, standard recommendations for the security of web
applications should also be followed.

Some best practices are:
1. Harden underlying servers according to security

guidelines.
2. Apply the latest security patches to all system

components.
3. Ensure that strict validation is applied to all input.
4. Ensure proper authentication and authorisation is enforced

to restrict privileges and access rights to only valid
personnel.

IJSART - Volume 3 Issue 6 – JUNE 2017 ISSN [ONLINE]: 2395-1052

Page | 406 www.ijsart.com

In addition, when firewalls do not provide adequate
security when it comes to the deployment of Web services, a
WS-Security or XML-aware gateway should be considered.

REFERENCES

[1] Scott Berinato, A Few Good Information Security

Metrics, CSO Magazine, July 01, 2005,
http://www.csoonline.com/article/220462/A_Few_Good_
Information_Security_Metrics?contentId=220462&slug=
&

[2] The CIS Security Metrics Service, The Center for Internet
Security (CIS), July 1, 2008,
http://securitymetrics.org/content/attach/Metricon3.0/metr
icon3-kreitner%20handout.pdf

[3] Maxwell Dondo, A Fuzzy Risk Calculations Approach for
a Network Vulnerability Ranking System, Technical
Memorandum 2007-090, Defence R&D Canada – Ottawa,
May 2007, http://www.ottawa.drdcrddc.gc.ca/
docs/e/TEO-TM-2007-090.pdf

[4] Colin Wong and Daniel Grzelak, "A Web Services
Security Testing Framework", SIFT SPECIAL
PUBLICATION, Information security services, Version
1.

[5] john Steven and Gunnar Peterson,"A Metrics Framework
to Drive Application Security Improvement", IEEE
Security & Privacy, vol. 1, no. 4, 2003, pp. 88–91. H. F.
Tipton and M. Krause, Information Security Management
Handbook, CRC Press, 2004.

[6] effreyR. Williams and George F. Jelen, "A Practical
Approach to Measuring Assurance",Document Number
ATR 97043, Arca Systems, Inc. , 23 April 1998

[7] Bachar Alrouh and Gheorghita Ghinea, "A Performance
Evaluation of Security Mechanisms for Web services",
2009 Fifth International Conference on Information
Assurance and Security

