
IJSART - Volume 3 Issue 6 – JUNE 2017                                                                                         ISSN [ONLINE]: 2395-1052 
 

Page | 213                                                                                                                                                                     www.ijsart.com 
 

Green Network - Cloud: Allocation of  Resources And 
Migration In Cloud Network 

 
J.Sivaranjani1, R.Malar2 

1, 2 Department of Computer Science and Engineering 
1, 2 Indira Institute of Engineering and Technology, Pandur, Thiruvallur 

 
Abstract- In computing clouds, burstiness of a virtual machine 
(VM) workload widely exists in real applications, where spikes 
usually occur aperiodically with low frequency and short 
duration. This could be effectively handled through 
dynamically scaling up/down in a virtualization-based 
computing cloud; however, to minimize energy consumption, 
VMs are often highly consolidated with the minimum number 
of physical machines (PMs) used. In this case, to meet the 
dynamic runtime resource demands of VMs in a PM, some 
VMs have to be migrated to some other PMs. i.e., reserving a 
certain amount of extra resources on each PM to avoid live 
migrations, and propose a novel server consolidation 
algorithm, QUEUE. We first model the resource requirement 
pattern of each VM as a two-state Markov chain to capture 
burstiness, then we design a resource reservation strategy for 
each PM based on the stationary distribution of a Markov 
chain. Finally, we present QUEUE, a complete server 
consolidation algorithm with a reasonable time complexity. 
Achieves a better balance between performance and energy 
consumption in comparison with other commonly-used 
consolidation algorithms. 
 
Keywords- Bursty workload, Markov chain, Resource 
reservation, Server consolidation. 
 

I. INTRODUCTION 
 
     CLOUD computing has been gaining more and more 
trac-tion in the past few years, and it is changing the way we 
access and retrieve information [1]. The recent emergence of 
virtual desktop [2] has further elevated the impor-tance of 
computing clouds. 
      
  As a crucial technique in modern computing clouds, 
virtualization enables one phys-ical machine (PM) to host 
many performance isolated vir-tual machines (VMs). It greatly 
benefits a computing cloud where VMs running various 
applications are aggregated together to improve resource 
utilization. It has been shown in previous work [3] that, the 
cost of energy consumption, e.g., power supply, and cooling, 
occupies a significant frac-tion of the total operating costs in a 
cloud.  
 

     Therefore, making optimal utilization of underlying 
resources to reduce the energy consumption is becoming an 
important issue [4], [5]. To cut back the energy consumption 
in clouds, server consolidation is proposed to tightly pack 
VMs to reduce the number of running PMs; however, VMs’ 
performance may be seriously affected if VMs are not 
appropriately placed, especially in a highly consolidated 
cloud.We observed that the variability and burstiness of VM 
workload widely exists in modern computing clouds, as 
evidenced in prior studies [4], [6], [7], [8], [9]. Take a typical 
web server for example, burstiness may be caused by flash 
crowed with bursty incoming requests.  
     
 We all know that VMs should be provisioned with 
resources commensurate with their workload requirements 
[10], which becomes more complex when considering 
workload variation. As shown in  Fig. 1, two kinds of resource 
provisioning strate-gies are commonly used to deal with 
workload burstiness provisioning for peak workload and 
provisioning for nor-mal workload. Provisioning for peak 
workload is favour-able to VM performance guarantee, but it 
undermines the advantage of elasticity from virtualization and 
may lead to low resource utilization [1], [8], [9]. 
    
  On the other hand, live migra-tion moves some 
VM(s) to a relatively idle PM, when local resizing is not able 
to allocate enough resources.  
     
 However, in a highly consolidated computing cloud 
where resource contention is generally prominent among 
VMs, live migra-tion may cause significant service downtime; 
furthermore, it also incurs noticeable CPU usage on the host 
PM [12], which probably degrades the co-located VMs’ 
performance. 
 



IJSART - Volume 3 Issue 6 – JUNE 2017                                                                                         ISSN [ONLINE]: 2395-1052 
 

Page | 214                                                                                                                                                                     www.ijsart.com 
 

 
Figure 1. An example of workload with bursty spikes. 

  
II. THE PROPOSED APPROACH 

 
     In this paper, we propose to reserve some extra 
resources on each PM to accommodate bursty workload [13]. 
In doing so, when a resource spike occurs, VMs can be 
quickly recon-figured to the new level of resource requirement 
through local resizing with minimal overheads, instead of 
being migrated to some other PMs. Hence, the number of live 
migrations could be reduced considerably and the overall 
performance of a computing cloud could be improved. 
 
     Specifically, we investigate the problem of 
minimizing the amount of extra resources reserved on each 
PM during server consolidation while the overall performance 
is proba-bilistically guaranteed. By “probabilistically 
guaranteed”, we mean that, the fraction of time within which 
the aggre-gated workloads of a PM exceed its physical 
capacity is not larger than a threshold. Imposing such a 
threshold rather than conducting live migration upon PM’s 
capacity over-flow is a way to tolerate minor fluctuations of 
resource usage (like the case of CPU usage) and to break the 
tradeoff between utilization and performance. Then, our 
problem can be formulated as an optimization, wherein the 
goal is to minimize the amount of resource reserved on each 
PM, and the constraint is that the capacity violation ratio of 
every PM is not larger than a predetermined threshold.We use 
a two-state Markov chain to capture the bursti-ness of 
workload [7], and also shows how to learn the chain 
parameters. Inspired by the serving windows in queueing 
theory [14], we abstract the resources reserved on each PM for 
workload spikes as blocks. Denoting by uðtÞ the number of 
busy blocks at time t on a PM, we show that a sequence of 
uð0Þ, u ð1Þ, u ð2Þ; . . . has the Markov property, namely that, 
the next state only depends on the current state and not on the 
past sequence of states. Then we develop a novel server 
consolidation algorithm, QUEUE, based on the sta-tionary 
distribution of this Markov chain. We also show how to 
further improve the effectiveness of QUEUE with more 
careful treatment of heterogenous workload spikes. Simulation 
and testbed results show that, QUEUE improves the 

consolidation ratio by up to 45 percent with large spike size 
and around 30 percent with normal spike size compared with 
the strategy that provisions for peak workload, and achieves a 
better balance between perfor-mance and energy consumption 
in comparison with other commonly-used consolidation 
algorithms.  
 
The contribu-tions of our paper are three-fold. 
 
1) To the best of our knowledge, we are the first to 

quantify the amount of reserved resources with con-
sideration of workload burstiness. We propose to use 
the two-state Markov chain model to capture 
workload burstiness, and we present a formal prob-
lem description and its NP-completeness. 

2) We develop a novel algorithm, QUEUE, for bursti-
ness-aware resource reservation, based on the sta-
tionary distribution of a Markov chain. We also show 
how to cope with heterogeneous spikes to further 
improve the performance of QUEUE. 

3) Extensive simulations and testbed experiments. 
 

III. RELATED WORK 
 

Most of prior studies [3], [15], [16] on server 
consolidation focused on minimizing the number of active 
PMs from the perspective of bin packing (BP). A 
heterogeneity-aware resource management system for 
dynamic capacity provi-sioning in clouds was developed in 
[17]. Stable resource allocation in geographically-distributed 
clouds was consid-ered in [18]. Network-aware virtual 
machine placement was considered in [19]. Scalable virtual 
network models were designed in [8], [20] to allow cloud 
tenants to explicitly specify computing and networking 
requirements to achieve predictable performance. 

     
In a computing cloud, burstiness of workload widely 

exists in real applications, which becomes an inevitable 
characteristic in server consolidation [1], [4], [6], [7], [21. 
Different from them, in our model a lower limit of 
provisioning is set at the normal workload level which 
effectively prevents VM interfer-ence caused by unpredictable 
behaviors from co-located VMs. 

   
  Markov chain was used to inject burstiness into a 

tradi-tional benchmark in [7]. Several works [5], [28], [29] 
studied modeling and dynamic provisioning of bursty 
workload in cloud computing. A previous study [30] proposed 
to reserve a constant level of hardware resource on each PM to 
tolerate workload fluctuation; but how much resource should 
be reserved was not given. To the best of our knowl-edge, we 



IJSART - Volume 3 Issue 6 – JUNE 2017                                                                                         ISSN [ONLINE]: 2395-1052 
 

Page | 215                                                                                                                                                                     www.ijsart.com 
 

are the first to quantify the amount of reserved resources with 
consideration on various, but distinct, workload burstiness. 

 
IV. MODELING VIRTUAL MACHINE WORKLOAD 

 
Two-State Markov Chain 

     
It has been well recognized in previous studies [4], 

[6], [7] that VM workload is time-varying with bursty spikes, 
as shown in Fig. 1. Several works [9], [10], [22], [23], [24], 
[25] modeled the workload of a VM as a random variable, 

 

 
Figure 2. Two-state Markov chain. The “ON” state represents 
peak work-load (Rp) while the “OFF” state represents normal 
workload (Rb). pon and poff are the state switch probabilities. 
 
 which follows the Bernoulli distribution in [9] or 
normal distribution in [10], [24], [25]. Different from these 
works, we model the workload of a VM as a two-state Markov 
chain, which takes the additional dimension of time into 
consideration, and thus describes the characteristics of spikes 
more precisely. 
 
    We denote the resource require-ments of peak workload, 
normal workload, and workload spike by Rp, Rb, and Re, 
respectively, where Re ¼ Rp Rb as demonstrated in Fig. 1. The 
“ON” state represents peak workload while the “OFF” state 
represents normal work-load. We use pon and poff to denote the 
state switch proba-bilities. More specifically, if a VM is in the 
ON state, then the probability of it switching to OFF at the 
next time is poff , and remaining ON is 1 poff . Similarly if a 
VM is in the OFF state, then the probability of it switching to 
ON at next time is pon and remaining ON is 1 pon. We 
emphasize that this model is able to describe the 
characteristics of spikes precisely—intuitively, Re denotes the 
size of a spike, and pon denotes the frequency of spike 
occurrence. Thus, each VM can be described by a four-tuple 

   

   Vi ¼  pon
i; poff

i ; Rb
i; Re

i  ; 81   i   n; (1) 
 
where n is the number of VMs. 

Learning Model Parameters 
  

This section provides a simple strategy for cloud 
tenants to generate model parameters for their VM workload. 
It con-sists of two phases. 
    
  First, a cloud tenant must have the workload traces 
and guarantees that they will be consistent with the realistic 
deployment in computing clouds.  
    
  Second, given a VM workload trace, a cloud tenant 
gen-erates a four-tuple. 
 

pon ¼ 

S
FN 

; and poff ¼ 

S
NF 

:
S

FN þ 
S

FF 
S

NF þ 
S

NN 

 
 

 
Figure 3. Given the predetermined Rb and Re, we 

conservatively round the solid black curve up to the dashed 
red curve, based on which we can calculate pon and poff . 

 
Potential Benefits 
     

The two-state Markov chain model allows cloud 
tenants to flexibly control the tradeoff between VM 
performance and deployment cost through adjusting Rb and 
Re. 
 
  When a tenant wants to maximize VM performance, 
the ten-ant should choose a large Rb and a small Re. As we 
will show later in this paper, there may be multiple workload 
spikes that share some common physical resources. Thus, 
when the aggregated amount of workload spikes that simulta-
neously occur is larger than the amount of the shared common 
resources, capacity overflow happens and VM per-formance is 
probably affected. 
 
     



IJSART - Volume 3 Issue 6 – JUNE 2017                                                                                         ISSN [ONLINE]: 2395-1052 
 

Page | 216                                                                                                                                                                     www.ijsart.com 
 

 When a tenant wants to minimize deployment cost, 
the tenant should choose a small Rb and a large Re. By 
”deployment cost”, we mean the fee which is paid by a cloud 
tenant to a cloud provider. Since physical resources are 
opportunistically shared among multiple workload spikes, the 
charge for workload spike should be smaller than that for 
normal workload [9]. Therefore, decreasing Rb helps tenants 
to reduce the deployment cost. 
     
 Our model is also a tradeoff between modeling 
complexity and precision. We could model time-varying 
workload by three-state or even more states of Markov chain, 
which should capture the workload bustiness more precisely; 
however, the complexity in learning model parameters and 
allocating physical resources increases as well, which may 
complicate the interactions between cloud providers and 
tenants. 
 

IV. PROBLEM FORMULATION 
 

     We consider a computing cloud with one-
dimensional resource; for scenarios with multi-dimensional 
resources, we provide a few remarks in Section 8. There are m 
physical machines in the computing cloud, and each PM is 
described by its physical capacity 
 

Hj ¼ ðCjÞ; 81   j   m: (2) 
 
 We use a binary matrix X ¼ ½xij&n m to represent the 
results of placing n VMs on m PMs: xij ¼ 1, if Vi is placed on 
Hj, and 0 otherwise. We assume that the workloads of VMs 
are mutually independent. Let WiðtÞ be the resource 
 

 
Figure 4. Main notations for quick reference. 

 
requirements of Vi at time t. According the Markov chain 
model, we have 
 

 
WiðtÞ ¼ 

Ri if Vi is in the “OFF” state at time t; 
b  

Rp
i if Vi is in the “ON” state at time t: 

Then, the aggregated resource requirement of VMs on PM 

Hj is i
n

¼1t
xijWiðtÞ.    

 
LetP  j indicate whether the capacity overflow happens 

CO      
on PM Hj at time t, i.e., 
    

¼  0 
N 

   
COj

t 
P 

     1 if
i¼1 

xijWiðtÞ > Cj; 

       otherwise: 
 
     Intuitively, the results of VM placement should 
guarantee that the capacity constraint is satisfied on each PM 
at the beginning of the time period of interest, i.e. 

 
CO0

j ¼ 0; 81 j m: 
     
  We now can define our metric for probabilistic 
perfor-mance guarantee—capacity overflow ratio (COR), 
which is the fraction of time that the aggregated workloads of 
a PM exceed its physical capacity. Denoting the capacity 
overflow ratio of PM Hj as Fj, we have 
 

1  
t  
T COj

t 

Fj ¼ P  T ; 
 
 

 
V. BURSTINESS-AWARE RESOURCE RESERVATION 
 
Overview of QUEUE 
     
 We propose reserving a certain amount of physical 
resour-ces on each PM to accommodate workload spikes. The 
main idea is to abstract the reserved spaces as blocks. 
However, we may find that a certain number of blocks are idle 
for the majority of the time in Fig. 5b, so we can reduce the 
number of blocks while only incurring very few capacity 
violations. 
 
 Therefore, our goal becomes reserving minimal 
number of blocks on each PM while the perfor-mance 
constraint in Eq. (3) is still satisfied. 
 
Resource Reservation Strategy for a Single PM 
   
   In this section, We focus on resource reservation for 
a single PM. For the sake of convenience, we set the size of 
each block as the size of the maximum spike of all co-located 
VMs on a PM. In Section 6, we will present how to cope with 
heteroge-nous workload spikes in an effort to further improve 



IJSART - Volume 3 Issue 6 – JUNE 2017                                                                                         ISSN [ONLINE]: 2395-1052 
 

Page | 217                                                                                                                                                                     www.ijsart.com 
 

the per-formance of QUEUE. We also assume that all VMs 
have the same state switch probabilities, i.e., pion ¼ pon and 
pioff ¼ poff , for all 1 i n. In Section 8, we will show how to 
cluster VMs when they have different state switch 
probabilities. 
 
 Suppose there are k VMs on the PM of interest and 
ini-tially each VM Vi occupies Rib resources. We initialize 
the number of blocks reserved on this PM as k, and our objec-
tive is to reduce the number of blocks to K (K < k), while the 
capacity overflow ratio F does not exceed the threshold r. Let 
uðtÞ be the number of busy blocks at time t, implying that, 
there are uðtÞ VMs in the ON state and ðk uðtÞÞ VMs in the 
OFF state. Let OðtÞ and IðtÞ denote the number of VMs that 
switch state from ON to OFF (i.e., VMs that leave the 
queueing system) and from OFF to ON (i.e., VMs that enter 
the queueing system) at time t, respectively. 
 

VI. COPING WITH HETEROGENOUS SPIKES 
 
 In this section, we present how to improve the 
consolidation performance of QUEUE through more careful 
treatment of heterogenous workload spikes. In doing so, a total 
of 28 units of resour-ces are reserved, which is less than that in 
the previous case.We, therefore, have the following intuition: 
on each PM, we can try to partition the co-located VMs into 
several groups and consider them separately, so as to improve 
QUEUE by reducing the amount of resources reserved for 
workload spikes.A key problem in achieving our goal is how 
to partition a set of k VMs into non-overlapped groups, i.e., 
how to parti-tion an integer k, which is an interesting and 
important problem in number theory [32]. 
 

VII. PERFORMANCE EVALUATION 
 
 In this section, we conduct extensive simulations and 
testbed experiments to evaluate the proposed algorithms under 
different settings and reveal insights of the proposed design 
performance. 
 
Simulation Setup 
 
     Two commonly-used packing strategies are 
considered here, which both use the First Fit Decrease 
heuristic for VM placement. The first strategy is to provision 
VMs for peak workload (FFD by Rp), while the second is to 
provision VMs for normal workload (FFD by Rb). 
Provisioning for peak workload is usually applied for the 
initial VM place-ment [1], where cloud tenants choose the 
peak workload as the fixed capacity of the VM to guarantee 
application per-formance. On the other hand, provisioning for 
normal workload is usually applied in the consolidation 

process, since at runtime the majority of VMs are in the OFF 
state, i.e., most of the VMs only have normal workloads. 
     
 We consider both the situations without and with live 
migration, where different metrics are used to evaluate the 
runtime performance. For experiments without live migra-
tion, where only local resizing is allowed to dynamically 
provision resources, we use the capacity overflow ratio 
defined in Section 4 as the performance metric. Next, in our 
testbed experiments, we add live migration to our system to 
simulate a more realistic computing cluster, in which the 
number of migrations reflects the quality of performance, and 
the number of active PMs reflects the level of energy 
consumption. 
 
Simulation Results 
 
     We first evaluate the computation cost of our 
algorithm briefly, and then quantify the reduction of the 
number of running PMs, as well as compare the runtime 
performance with two commonly-used packing strategies.To 
investigate the performance of our algorithm in vari-ous 
settings, three kinds of workload patterns are used for each 
experiment: Rb ¼ Re, Rb > Re and Rb < Re, which denote 
workloads with normal spike size, small spike size, and large 
spike size, respectively. It will be observed later that, the 
workload pattern of VMs does affect the packing result, 
number of active PMs, and number of migrations.According 
to the results in Section 5.3, the time complex-ity of QUEUE 
is Oðd4 þ n log n þ mnÞ. In 
 
  Fig. 10, we present the experimental computation 
cost of QUEUE with reason-able d and n values. We see that, 
our algorithm incurs very few overheads with moderate n and 
d values. The cost vari-ation with respect to n is not even 
distinguishable in the mil-lisecond-level. 
     
 We mention that, there are very few PMs with CORs 
slightly higher than r in each experiment. This is because a 
Markov chain needs some time to enter into its stationary 
distribution. Though we did not theoretically evaluate whether 
the chain constructed in Section 5 is rapid-mixing, in our 
experiments, we find that the time period before the chain 
enters into its stationary distribution is very short. 
 
Testbed Experiment 
 
     We use Xen Cloud Platform (XCP) 1.3 [35] as our 
testbed to enable live migration in our system. XCP is an 
open-source cloud platform of its commercial counterpart 
XenServer. Our proposed scheme can be easily integrated into 
any existing enterprise-level computing cloud since it simply 



IJSART - Volume 3 Issue 6 – JUNE 2017                                                                                         ISSN [ONLINE]: 2395-1052 
 

Page | 218                                                                                                                                                                     www.ijsart.com 
 

computes the amount of reserved resources on each PM. A 
total of 15 machines (Intel Core i5 Processor with four 2.8 
GHz cores and 4 GB memory) are used. Ubuntu 12.04 LTS 
Server Edition is installed both on the PMs and VMs. The 
resource type in QUEUE can be any one-dimen-sional 
resource such as CPU, memory, disk I/O, network bandwidth, 
or any combination of them that can be mapped to one 
dimension. The architecture of our testbed. We developed 
three main modules: consolidation module, per-formance 
monitor, and schedule module. QUEUE is imple-mented in 
the consolidation module. To construct the MinN array, 
QUEUE gets VM specifications from cloud users and the 
predetermined system parameters (e.g., r, and d) from XCP 
API. The MinN array can be reused as long as all of k, pon, 
poff , and r remain unchanged. The FidOptPat algorithm 
(Algorithm 3) may be time-consuming. 
 
 We are also interested in studying the effect of 
different workload patterns, thus, Rb and Re are classified into 
three types: small (S), medium (M), and large (L). A certain 
amount of users can be accommodated for each size—400 for 
small, 800 for medium and 1,600 for large. Fig. 15 shows the 
details of various workload patterns in our testbed experiments 
 

 

Figure 5. The architecture of our testbed 
 

VIII. IMPLEMENTATION 
 

A modular design reduces complexity, facilities 
change  and results in easier implementation by encouraging 
parallel development of different part of system.  Software 
with effective modularity is easier to develop because function 
may be compartmentalized and interfaces are simplified.  
Software architecture embodies modularity that is software is 
divided into separately named and addressable components 
called modules that are integrated to satisfy problem 
requirements. 

     
Modularity is the single attribute of software that 

allows a program to be intellectually manageable.  The five 

important criteria that enable us to evaluate a design method 
with respect to its ability to define an effective modular design 
are: Modular decomposability, Modular Comps ability, 
Modular Understandability, Modular continuity, Modular 
Protection. 

     
Our implementation of the proposed scheme consists 

of six modules: User Registration, Cloud Server Deployment, 
Intermediate Server Deployment, Green Computing Setup, 
Migration of Virtual Server, Cache Server Implementation. 

 
IX. CONCLUSION 

 
    In a highly consolidated computing cloud, the VM 

performance is prone to degradation without an appropriate 
VM placement strategy, if various and distinct burstiness 
exists. To alleviate this problem, we have to activate more 
PMs, leading to more energy consumption. To balance the 
performance and energy consumption with respect to bursty 
workload, we propose to reserve a certain amount of resources 
on each PM that form a queuing system to accommodate 
burstiness. To quantify the amount of reserved resources is not 
a trivial problem. In this paper, we propose a burstiness-aware 
server consolidation algorithm based on the two-state Markov 
chain. We use a probabilistic performance constraint and show 
that the proposed algorithm is able to guarantee this 
performance constraint. 

 
X. FUTURE ENHANCEMENT 

 
Possible future research topics for the dynamic 

migration problem in the cloud computing platform include, 
the generation, learning and mutation method of Bucket Code 
can be further improved to reduce its asymmetry property. 
One example is calculating proper probability for generating 
the first part of the Bucket Code, proposing a better way for 
codes to learn from each other instead of just learn from the 
best one. 

 
REFERENCES 

 
[1]  M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, 

A.Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, 
and M. Zaharia, “A view of cloud computing,” Commun. 
ACM, vol. 53, no. 4, pp. 50–58, 2010. 
 

[2] M.-H. Oh, S.-W. Kim, D.-W. Kim, and S.-W. Kim, 
“Method and architecture for virtual desktop service,” 
U.S. Patent 20 130 007 737, 2013. 
 

[3] M. Marzolla, O. Babaoglu, and F. Panzieri, “Server 
consolidation in clouds through gossiping,” in Proc. IEEE 



IJSART - Volume 3 Issue 6 – JUNE 2017                                                                                         ISSN [ONLINE]: 2395-1052 
 

Page | 219                                                                                                                                                                     www.ijsart.com 
 

Int. Symp. World Wireless, Mobile Multimedia Netw., 
pp. 1–6. 
 

[4] W. Vogels, “Beyond server consolidation,” ACM Queue, 
vol. 6, no. 1, pp. 20–26, 2008. 
 

[5] N. Bobroff, A. Kochut, and K. Beaty, “Dynamic 
placement of virtual machines for managing SLA 
violations,” in Proc. IFIP/IEEE Int. Symp. Integr. Netw. 
Manag., 2007, pp. 119–128. 
 

[6] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. 
Chaiken, “The nature of data center traffic: Measurements 
& analysis,” in Proc. ACM 9th ACM SIGCOMM Conf. 
Internet Meas. Conf., 2009, pp. 202–208. 
 

[7] N. Mi, G. Casale, L. Cherkasova, and E. Smirni, 
“Injecting realistic burstiness to a traditional client-server 
benchmark,” in Proc. IEEE 6th Int. Conf. Auton. 
Comput., 2009, pp. 149–158. 
 

[8] D. Xie, N. Ding, Y. C. Hu, and R. Kompella, “The only 
constant ischange: Incorporating time-varying network 
reservations in data centers,” in Proc. ACM SIGCOMM, 
2012, pp. 199–210. 
 

[9] S. Zhang, Z. Qian, J. Wu, S. Lu, and L. Epstein, “Virtual 
network embedding with opportunistic resource sharing,” 
IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 3, pp. 
816–827, Mar. 2014. 
 

[10] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual 
machines with dynamic bandwidth demand in data 
centers,” in Proc. IEEE INFOCOM, 2011, pp. 71–75. 
 

[11] A. Verma, G. Kumar, and R. Koller, “The cost of 
reconfiguration in a cloud,” in Proc. 11th Int. Middleware 
Conf. Ind. Track, 2010, pp. 11–16. 
 


