
IJSART - Volume 3 Issue 6 – JUNE 2017 ISSN [ONLINE]: 2395-1052

Page | 250 www.ijsart.com

Detection & Identification of Attacker Using Honey
Words In A Purchase Portal

S.Arthi1, D.Siva2

Department of Computer Science and Engineering
1M.E Student, IIET Anna University Chennai

2Assistant Professor, IIET Anna University Chennai

Abstract-Recently, Juels and Rivest proposed honeywords
(decoy passwords) to detect attacks against hashed password
databases. For each user account, the legitimate password is
stored with several honeywords in order to sense
impersonation. If honeywords are selected properly, a cyber-
attacker who steals a file of hashed passwords cannot be sure
if it is the real password or a honeyword for any account.
Moreover, entering with a honeyword to login will trigger an
alarm notifying the administrator about a password file
breach. In this study, we scrutinize the honeyword system and
present some remarks to highlight possible weak points. Also,
we suggest an alternative approach that selects the
honeywords from existing user passwords in the system in
order to provide realistic honeywords—a perfectly flat
honeyword generation method—and also to reduce storage
cost of the honeyword scheme.

Keywords- Authentication, honeypot, honeywords, login,
passwords, password cracking

I. INTRODUCTION

Disclosure of password files is a severe security
prob-lem that has affected millions of users and companies
like Yahoo, RockYou, LinkedIn, eHarmony and Adobe [1],

[2], since leaked passwords make the users target of

many possible cyber-attacks. These recent events have demon-
strated that the weak password storage methods are cur-rently
in place on many web sites. For example, the LinkedIn
passwords were using the SHA-1 algorithm with-out a salt and
similarly the passwords in the eHarmony sys-tem were also
stored using unsalted MD5 hashes [3]. Indeed, once a
password file is stolen, by using the pass-word cracking
techniques like the algorithm of Weir et al. [4] it is easy to
capture most of the plaintext passwords.

In this respect, there are two issues that should be

con-sidered to overcome these security problems: First,
passwords must be protected by taking appropriate pre-
cautions and storing with their hash values computed through
salting or some other complex mechanisms. Hence, for an

adversary it must be hard to invert hashes to acquire plaintext
passwords.

The second point is that a secure system should

detect whether a password file dis-closure incident happened
or not to take appropriate actions. Honeypot is one of the
methods to identify occurrence of a password database breach.
In this approach, the admin-istrator purposely creates deceit
user accounts to lure adversaries and detects a password
disclosure, if any one of the honeypot passwords get used [5],
[6]. This idea has been modified by Herley and Florencio [7]
to protect online banking accounts from password brute-force
attacks. According to the study, for each user incorrect login
attempts with some passwords lead to honeypot accounts, i.e.,
malicious behavior is recognized. For instance, there are 108
possibilities for a eight-digit pass-word and let system links
10,000 wrong password to hon-eypot accounts, so the
adversary performing the brute-force attack 10,000 times more
likely to hit a honeypot account than the genuine account.

Use of decoys for building theft-resistant was

introduced by Bojinov et al. in [8] called as Kamouflage. In
this model, the fake pass-word sets are stored with the real
user password set to conceal the real passwords, thereby
forcing an adversary to carry out a considerable amount of
online work before getting the correct information. Recently,
Juels and Rivest have presented the honeyword mechanism to
detect an adversary who attempts to login with cracked
passwords [9]. Basically, for each username a set of
sweetwords is constructed such that only one element is the
correct password and the others are honeywords (decoy pass-
words). Hence, when an adversary tries to enter into the
system with a honeyword, an alarm is triggered to notify the
administrator about a password leakage. The details of the
method will be given in the next section. In this study, we
analyze the honeyword approach and give some remarks about
the security of the system. The rest of this paper is organized
as follows. In Section 2, we review the honeyword approach
and discuss the honeyword generation procedures. Section 3
examines security of these procedures and Section 4 gives the
description of our proposed model. In Section 5, we ana-lyze
its security properties and demonstrate a comparison between

IJSART - Volume 3 Issue 6 – JUNE 2017 ISSN [ONLINE]: 2395-1052

Page | 251 www.ijsart.com

our approach and the original methods in Section 6. Finally, in
Section 7 we conclude this paper.

II. HONEYWORDS

In this section, we first briefly summarize the

honeyword password model proposed by Juels and Rivest in
[9]. Then, we overview the methods on generation of
honeywords given in the study and discuss some points that
can cause some security problems.

Review of Honeywords

Basically, a simple but clever idea behind the study is

the insertion of false passwords—called as honeywords—
associated with each user’s account. When an adversary gets
the password list, she recovers many password candi-dates for
each account and she cannot be sure about which word is
genuine.

Hence, the cracked password files can be detected by

the system administrator if a login attempt is done with a
honeyword by the adversary.

Honeyword Generation

Methods and Discussions

The authors in [9] categorize the honeyword

generation methods into two groups. The first category
consists of the legacy-UI (user interface) procedures and the
second one includes modified-UI procedures whose password-
change UI is modified to allow better password/honeyword
gen-eration. Take-a-tail method is given as an example of the
second category.

According to this approach a randomly selected tail is
produced for the user to append this suffix to her entered
password and the result becomes her new password. For
instance, let a user enter password games01, and then system
let propose ’413’ as a tail. So the password of the user now
becomes games01413. Although this method strengthens the
password, to our point of view, it is impractical—some users
even forget the passwords that they determined. Therefore in
the remaining parts, the analysis that we conducted is limited
with the legacy-UI procedures.

III. SECURITY ANALYSIS OF HONEYWORDS

In this part, we investigate the security of the

honeyword system against some possible scenarios.

3.1 Denial-of-Service Attack

In [9], a denial-of-service (DoS) attack is discussed
for the following scenario: Adversary knows the used GenðÞ
proce-dure and can produce all possible honeywords for a
given a password. For example, if the chaffing-by-tweaking-
digits is employed in the system and with a small t adversary
may generate whole possible honeywords from a known pass-
word.

3.2 Brute-Force Attack

In the previous attack, we point out that if a strict
policy is executed in a honeyword detection, system may be
vulnera-ble to DoS attacks affecting the whole system. On the
other hand, a soft policy weakens the influence of
honeywords. In this regard, we describe the following attack
to demonstrate an adversary can capture an amount of
accounts in case of a light policy.

We suppose an adversary has obtained a password
file F and cracked numerous user passwords. Then, she tries to
login with any accounts in the list instead of compromising a
specific account. Furthermore, we ass-ume that the adversary
has no advantage in guessing the correct password by
analyzing corresponding honey-words, i.e., Prðg ¼ piÞ ¼ 1=k.
Last, if one of the user’s hon-eywords is entered, the system
takes the appropriate action according to one of the example
policies as follows:

 Login proceeds as usual,
 User’s account is shut down until the user estab-

recognizes that each username is paired with k
numberslishes a new password.

3.3 Choosing Policy

By considering the described attacks and discussions,
one can infer that there are two major issues about
honeywords. The first issue is flatness of the generator

IJSART - Volume 3 Issue 6 – JUNE 2017 ISSN [ONLINE]: 2395-1052

Page | 252 www.ijsart.com

algorithm such that it is directly related to the chance of
distinguishing the correct password out of the respective
sweetwords. Thus, if the method is not flat enough, it
undermines the main task of the honeywords and an adversary
can easily perceive the correct password. Second issue is that
what is the chance of an adversary in hitting a honeyword
intentionally and trig-gering a false alarm to render the system
in a DoS state. Sig-nificance of this issue depends on the
adapted policy.Also a limit, as _, for the maximum number of
honeyword attempts in a period should be set to prevent the
brute-force attack.

IV. A NEW APPROACH

Our proposed model is still based on use of
honeywords to detect password-cracking. However, instead of
gener-ating the honeywords and storing them in the password
file, we suggest to benefit from existing passwords to sim-
ulate honeywords. In order to achieve this, for each account k
_ 1 existing password indexes, which we call honeyindexes,
are randomly assigned to a newly created account of ui, where
k _ 2. Moreover, a random index number is given to this
account and hash of the correct password is kept with the
correct index in a list. On the other hand, in another list ui is
stored with an integer set which is consisted of the
honeyindexes and the correct index.

TABLE 2
Example Password File F1 for the Proposed Model

Username Honeyindex Set

agent-lisa ð93; 16; 626; . . . ; 94; 931Þ
Alexius ð15; 476; 51; 443; . . . ; 88; 429Þ
baba13 ð3; 62107; . . . ; 91; 233Þ
.
zack_tayland ð1; 009; 23; 471; . . . ; 47; 623Þ
zoom42 ð63; 51234; . . . ; 72; 382Þ

Initialization

First, T fake user accounts (honeypots) are created

with their passwords (see Appendix A for details). Also an
index value between ½1; N&, but not used previously is
assigned to each honeypot randomly. Then k _ 1 numbers are
randomly selected from the index list and for each account a
honeyindex set is built like Xi ¼ ðxi;1; xi;2; . . . ; xi;kÞ; one of
the elements in Xi is the correct index (sugarindex) as ci.
Now, we use two password files as F1 and F2 in the main
server: F1 stores username and honeyindex set, <hui; Xi>
pairs as shown in Table 2, where hui denotes a honeypot
account. Note that each entry has two elements. The first one
is the username of the account and the second element is
honeyindex set for the respective account. Also, the table is
sorted alphabetically by the username field.

On the other hand, F2 keeps the index number and
the corre-sponding hash of the password, < ci; HðpiÞ >, as
depicted in Table 3. In this case, each entry in the table has
two ele-ments. The first element is the sugarindex of the
account and the second one is the hash of the corresponding
pass-word. Notice that the table is sorted according to the
index values. Let SI denote the index column and SH
represent the corresponding password hash column of F2.
Then the function fðciÞ that gives password hash value in SH
for the index value ci can be defined as: fðciÞ ¼ fHðpiÞ 2 SH
: < ci; HðpiÞ > stored pair of ui and ci 2 SI g. In order to make
points clear, the initialization process is shown within the
following example.

Example 1. Suppose that a honeypot username/password pair
is generated like < macbeth; master2014 > by the system.
Then an index number is randomly selected, for instance
1,008, and assigned as the correct index of this account. Now
F2 file is updated according to this infor-mation as shown
below:

Index No Hash of Password

.
1,008 Hðmaster2014Þ

. . . .

. .

TABLE 3
Example Password File F2 for the

Proposed Model

SI SH

3 Hðp3Þ
7 Hðp7Þ
85 Hðp85Þ
.

100,000
Hðp10000

0Þ

100,004

Hðp100004
Þ

Then, k _ 1 numbers are randomly chosen from SI of

F2 and combined with correct index 1008 in a random manner
to produce the index group. For instance, if k ¼ 5, such a
group ð42; 96; 104; 1;008; 7;201; 23;008Þ may be generated.
In this case F1 file is seen as below:

Username Honeyindex Set

.
macbeth ð42; 96; 104; 1;008; 7;201; 23;008Þ

. . . .

. .

IJSART - Volume 3 Issue 6 – JUNE 2017 ISSN [ONLINE]: 2395-1052

Page | 253 www.ijsart.com

4.2 Registration

After the initialization process, system is ready for
user reg-istration. In this phase, a legacy-UI is preferred, i.e., a
user-name and password are required from the user as ui; pi to
register the system. We use the honeyindex generator algo-
rithm Genðk; SI Þ ! ci; Xi, which outputs ci as the correct index
for ui and the honeyindexes Xi ¼ ðxi;1; xi;2; . . . ; xi;kÞ. Note
that Genðk; SI Þ produces Xi by randomly selecting k _ 1
numbers from SI and also randomly picking a number ci 2= SI
. So ci becomes one of the elements of Xi. One can see that the
generator algorithm Genðk; SI Þ is different from the
procedure described in [9], since it outputs an array of inte-
gers rather than a group of honeywords.

4.3 Honeychecker

In our approach, the auxiliary service honeychecker
is employed to store correct indexes for each account and we
assume that it communicates with the main server through a
secure channel in an authenticated manner. Indeed, it can be
assumed that security enhancements for honeychecker and the
main server presented in [16] are applied, but it is out scope of
this study.

The role and primary processes of the honeychecker
are the same as described in the original study [9], except that
< i; ci> pair is replaced with < ui; ci> pair in our case. The
honeychecker executes two commands sent by the main
server:

 Set: ci,ui
 Sets correct password index ci for the user

ui. Check: ui; j

Checks whether ci for ui is equal to given j. Returns the
result and if equality does not hold, notifies system a
honeyword situation.

Thus, the honeychecker only knows the correct index for a
user-name, but not the password or hash of the password.

4.4 Login Process

System first checks whether entered password, g, is
correct for the corresponding username ui. To accomplish this,
first the Xi of the corresponding ui is attained from the F1 file.
Then, the hash values stored in F2 file for the respective
indices in Xi are compared with HðgÞ to find a match. If a
match is not obtained, then it means that g is neither the cor-
rect password, nor one of the honeywords, i.e., login fails. On
the other hand, if HðgÞ is found in the list, then the main

server checks whether the account is a honeypot. If it is a
honeypot, then it follows a predefined security policy against
the password disclosure scenario. Notice that for a honeypot
account there is no importance of the entered password is
genuine or a honeyword, so it directly manages the event
without communicating with the honeychecker. If, however,
HðgÞ is in the list and it is not a honeypot, the corresponding j
2 Xi is delivered to honeychecker with username as < ui; j > to
verify it is the correct index. Hon-eychecker controls whether j
¼ ci and returns the result to the main server. At the same
time, if it is not equal, then it assured that the proffered
password is a honeyword and adequate actions should be
taken depending on the policy.

V. SECURITY ANALYSIS OF THE PROPOSED
MODEL

In this section, we investigate the security of the

proposed model against some possible attack scenarios.
Before,however, we elaborate on the attack strategies, we will
first state a set of reasonable assumptions about our approach
and the related security policies. We suppose that the adver-
sary can invert most or many of the password hashes in file F2.
Notice that the introduction of this scheme comes with a DoS
attack sensitivity in which an adversary deliberately tries to
login with honeywords to trigger a false alarm. Hence, the
suggested policies given below mostly focuses on minimizing
the DoS vulnerabilities.

5.1 DoS Attack

Under this attack scenario as described in Section
3.1, the adversary does not have the password files and their
con-tents. Her main purpose is to trigger a false alarm and to
raise a honeyword alarm situation, i.e., depending on the
policy some or all parts of the system may be out of service or
disabled unnecessarily. We suppose that the adversary has
knowledge m þ 1 username and respective passwords in the
system as ðua; pa; . . . ; uaþm; paþm Þ; maybe she inten-tionally
created all of these accounts. In this case, a plausible method
for attacking the system is creating m accounts with the same
password as pz, while a single account, uy, has dif-ferent
password like py and entering the system with the username uy
and the password pz. If pz is assigned by the system as a
honeyword, then the adversary mounts a DoS attack by
entering with the system < uy; pz> pair. Let Prðpz 2 WyÞ
denote the probability that pz is assigned as one of the
honeywords for uy; it is also the success probability of the
adversary for this attack. Since there are N _ m pass-words
different from pz

1 and k honeywords are assigned to each
account:

IJSART - Volume 3 Issue 6 – JUNE 2017 ISSN [ONLINE]: 2395-1052

Page | 254 www.ijsart.com

Pr pz

2

Wy

Þ ¼
1

_
_ N _ m _k : (1)

ð N

As an illustrative example for N ¼ 1;000;000, k ¼ 20 and m ¼
100, from Eq. (1) an adversary succeeds in realizing the
described attack with a probability of 0:002. Note that, the
success of the adversary directly depends on ðm=NÞ, so for
large values the chance of the adversary will be increased. For
instance if N ¼ 1;000, m ¼ 10 and k ¼ 20 (as an extreme
example, one out of 100 accounts is created by the adver-
sary), the success probability of the adversary will be 0:18.

5.2 Password Guessing

In this attack, we assume that the adversary has
plundered password files F1 and F2 from the main server and
also obtained plaintext passwords by inverting the hash values.
Extracted F2 file (after inverting hashes) gives < indexnumber;
password > pairs to the adversary, but they are not directly
connected to a specific username. By just analyzing this, she
cannot exactly determine which pass-word belongs to which
user. On the other hand, F1 gives username; indexset pairs
such that for each username k pos-sible passwords exist.

5.3 Brute-Force Attack

In this part, we consider the attack described in
Section 3.2. We suppose that if a honeypot entrance is
detected by the system, it responds with a strong reaction,
while a light pol-icy (not suggested) is executed in case of a
honeyword detection. So, we assume that even in a honeyword
detec-tion the adversary may proceed to make her trials due to
light local policies. If, however, a honeypot account is
attempted then system follows a strong policy.

VI. COMPARISON OF HONEYWORD
GENERATION MODELS

In this section, we give a comparison of the

generation methods including our proposed model with
respect to storage cost, DoS resistance and flatness of each
algorithm. Before discussing these issues in detail, we would
like to talk about how the proposed model changes total hash
inversion effort of an adversary who has a leaked password
file (F1 and F2 files for our case). In fact, as mentioned in
Section 1, defending and detecting are two different issues
from the point of password security. For example, by realiz-
ing the salted-high iteration password storage techniques,
inverting a hash from a captured password file becomes time
consuming.

VII. CONCLUSION

In this study, we have analyzed the security of the
honey-word system and addressed a number of flaws that need
to be handled before successful realization of the scheme. In
this respect, we have pointed out that the strength of the
honeyword system directly depends on the genera-tion
algorithm, i.e., flatness of the generator algorithm determines
the chance of distinguishing the correct pass-word out of
respective sweetwords. Another point that we would like to
stress is that defined reaction policies in case of a honeyword
entrance can be exploited by an adversary to realize a DoS
attack. This will be a serious threat if the chance of an
adversary in hitting a honey-word given the respective
password is not negligible.

REFERENCES

[1] D. Mirante and C. Justin, “Understanding password
database compro-mises,” Dept. of Comput. Sci. Eng.
Polytechnic Inst. of NYU, New York, NY, USA: Tech.
Rep. TR-CSE-2013-02, 2013.

[2] K. Brown, “The dangers of weak hashes,” SANS Institute
InfoSec Reading Room, Maryland US, pp. 1–22, Nov.
2013, [Online]. Available: http://www.sans.org/reading-
room/ whitepapers/authentication/dangers-weak-hashes-
34412

[3] M. Weir, S. Aggarwal, B. de Medeiros, and B. Glodek,
“Password cracking using probabilistic context-free
grammars,” in Proc. 30th IEEE Symp. Security Privacy,
2009, pp. 391–405.

[4] F. Cohen, “The use of deception techniques: Honeypots
and decoys,” Handbook Inform. Security, vol. 3, pp. 646–
655, 2006.

[5] M. H. Almeshekah, E. H. Spafford, and M. J. Atallah,
“Improving security using deception,” Center for
Education and Research Information Assurance and
Security, Purdue Univ., West Lafayette, IN, USA: Tech.
Rep. CERIAS Tech. Rep. 2013-13, 2013.

[6] H. Bojinov, E. Bursztein, X. Boyen, and D. Boneh,
“Kamouflage: Loss-resistant password management,” in
Proc. 15th Eur. Conf. Res. Comput. Security, 2010, pp.
286–302.

[7] A. Juels and R. L. Rivest, “Honeywords: Making
password-cracking detectable,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Security, 2013, pp. 145–160.

[8] M. Burnett. The pathetic reality of adobe password hints.
[Online]. Available: https://xato.net/windows-
security/adobe-password-hints, 2013.

[9] L. V. Ahn, M. Blum, N. J. Hopper, and J. Langford,
“CAPTCHA: Using hard ai problems for security,” in

IJSART - Volume 3 Issue 6 – JUNE 2017 ISSN [ONLINE]: 2395-1052

Page | 255 www.ijsart.com

Proc. 22nd Int. Conf. The-ory Appl. Cryptographic Tech.,
vol. 2656, 2003, pp. 294–311.

[10] L. Zhao and M. Mannan, “Explicit authentication
response con-sidered harmful,” in Proc. Workshop New
Security Paradigms Work-shop, 2013, pp. 77–86.

[11] Z. A. Genc, S. Kardas, and M. S. Kiraz, “Examination of
a new defense mechanism: Honeywords,” IACR
Cryptology ePrint Archive, Report 2013/696, 2013.

