
IJSART - Volume 3 Issue 5 – MAY 2017 ISSN [ONLINE]: 2395-1052

Page | 752 www.ijsart.com

2D Game With Procedurally Generated Levels

Sachin Hegde1, Satish Badhe2, Rohit Vijay3, Shubham Khanzode4
Department of Information Technology

1, 2, 3, 4 Sinhgad Institute of Technology, Lonavala, Pune, India

Abstract-This paper explores the idea of procedural
generation through a 2d game we developed. The idea of
procedural generation is touched upon and is explored a bit in
the context of world generation. Building huge worlds in video
games has grown increasingly difficult for small teams
because of the expectation of content among gamers.
Procedural generation methods like noise, perlin noise and
cellular automata are one of the options to provide content to
meet expectations of the gamers with smaller teams. However,
some challenges exist when using these methods of procedural
content generation (PCG) and this paper also touches upon
the various mistakes to be avoided when working with PCG
tools.

Keywords-PCG, procedural generation, content generation,
perlin noise, cellular automata

I. INTRODUCTION

Procedural Content Generation or PCG for short is a
broad term used to incorporate many similar and/or dissimilar
methods to computationally generate content or data. It is long
being used in computer games to generate maze levels or big
open areas and so on where generating content is more
feasible than actually designing it by hand.

More recently however PCG is all rage with new

games using it for generating everything in the game from
levels to objects, enemies and so on. When thought about, it
seems very practical to delegate the job to computers; but,
games are meant to be immersive. To be immersive, they must
seem believable. To seem believable they must look natural.
As any computer scientist will say, that is the hardest thing to
achieve.

II. BASICS MECHANICS OF PCG

1.) Rules Stack: Procedural generation as the name suggests

is procedures or rules to generate something. When
generating a simple object like a square, all we need is its
width/height and a simple procedure can generate it.
Generating Complex structures are a little different
because there might be various parameters that affect the
outcome. A stack or different rules for each of the
parameters is therefore required for such a case.

Figure II.1- Rule Stack

2.) Random Numbers: As said before, games are designed to

look as close to the real world as possible while keeping it
more exciting. The real world is not discrete and fixed as
computers are. Nature loves entropy and so, it is random
or we feel it is random. However, computers struggle with
random numbers as there is no way a normal pc can
generate true random numbers. So we turn to pseudo-
random numbers which are generated using many
different methods, the best known of which is linear
congruential method[3]. These “random” numbers
provide that essential sense of randomness when dealing
with content generation.

Figure II.2- Pseudo Random Generation Visualization

(khanacademy.org)

3.) Noise: Noise as we all know is garbled random set of
data. In most cases, noise is not really used for
constructive purposes, PCG makes use of noise heavily to
generate anything from wind patterns, rain and so many

Output

Rule n

Rule 2

Rule 1

Initial Condition

IJSART - Volume 3 Issue 5 – MAY 2017 ISSN [ONLINE]: 2395-1052

Page | 753 www.ijsart.com

other effects like fog and smoke. Although they are used
in most games they are still procedurally generated.

Figure II.3- Sample image of white noise (youtube.com)

III. PERLIN NOISE

What make basic noise undesirable are its abrupt data
changes that do not reflect how nature actually works. Nature
although random, changes are gradient. To solve this issue,
Perlin Noise is the best solution we have.

Ken Perlin came up with this algorithm[1] to

generate textures for a movie instead of actually drawing them
and that won him an Academy Award. All the disadvantages
of noise is resolved with Perlin Noise. The data we get can be
adjusted to whatever type of dataset we want. The gradient can
be smooth or discrete based on the scale of the noise.

Figure III.1- Gray- Scale 2D Perlin Noise

Unity engine which we used to develop our game has

an inbuilt function to get values of a Perlin Noise dataset. As
Perlin() function[2] is already defined, it requires a x and a y
value to return a float noise value for that map. Dividing x and
y value with scale will give the value according to the scale

assigned. Higher scale means more gradient while less scale
means fewer gradients.

For our project we used Perlin Noise for generating

the structure of the world itself. What point on the map will be
water and what will be land is decided using Perlin noise. As
we are developing a ship warfare game, generating huge
landmass is quite convenient for the project.

A Script will accept values like the height and width

of the map on an arbitrary scale. The scale of the Perlin Noise
and seed value is the initial value of x and y. The initial value
will determine what section of Perlin Noise will be returned.
To get a new set of values, all we need to do is generate a
“random” seed value or ask user for the same.

IV. SOME MISTAKES TO AVOID

Through some trial and error, we have had some

experience with PCG tools. Although by no means experts,
some things we did find were quite difficult with current
techniques. At the end of the day, making the game was our
goal, to make it immersive and playable we had to discard
many of the things we decided we would do with PCG.

1. Do not try to generate everything: while it can be

tempting to make a game fully procedural, it is quite
challenging. It somehow takes away the immersion
and game play smoothness from the player. While we
did try hard by adding more parameters or adjusting
all the rules, we fell flat.

2. Know what you want with PCG: Before starting the
project, always make sure you know what content to
generate and what to design and handcraft. Because
making a game is more important than writing a
thousand line procedure to generate a map.

3. Know before code: Before coding a procedure to
generate something, one must know how that
something works roughly. For example, our game has
a wind system where wind will push the player’s ship
in some direction; the direction of the wind is
procedurally generated and updated every now and
then. As wind does not blow all over the place,
understanding the system is the key.

4. Trial and error is fine: No matter how much you
plan, with PCG, you never know what you are going
t o get. With trillions of possible outcomes, the
developer is also an explorer of his own creation.

IJSART - Volume 3 Issue 5 – MAY 2017 ISSN [ONLINE]: 2395-1052

Page | 754 www.ijsart.com

Tinkering with values every now and then to get the
desired results is the only way to achieve the goal.

V. CONCLUSION

Our little project can surely serve as a tutorial for
PCG in video games as it is working game with pretty simple
mechanics. But at the same time uses all the major techniques
used in mainstream PCG games.

The main goal of the project was to develop a game

that is immersive and enjoyable which uses PCG as its basic
building block. We think we were fairly successful in doing
that although hoped we could have done more.

ACKNOWLEDGEMENTS

We take this opportunity to thank our project guide

Prof. A.P Kulkarni and Head of the Department Prof.
N.A.Dhawas for their valuable guidance and for giving all the
necessary facilities and resources which were indispensable
for the completion of this project report. Further, we are
thankful to our parents who have supported us throughout our
lives. We are also thankful to all the staff members of the
Department of Information Technology of Sinhgad Institute of
Technology for their valuable time, support, comments,
suggestions and persuasion. We would also like to thank the
Institute for providing the required facilities, Internet access
and required books.

REFERENCES

[1] Ken Perlin, Improving Noise, SIGGRAPH, 2002
[2] Unity Scripting Reference,

https://docs.unity3d.com/ScriptReference/Mathf.PerlinNo
ise.html

[3] Hui-Chin Tang, Modulus of Linear Congruential Random
Number Generator, Springer, 2005

