Study of Common Micro Organisms in Sputum Sample and Culture Sensitivity in Bilaspur City.

Rahul Kumar Banerjee¹, Dr. Shweta Sao²

^{1, 2} Department of Biotechnology and Microbiology ^{1, 2} Dr. C.V. Raman University Kargi road Kota Bilaspur (C.G.)

Abstract- Sputum is a thick fluid produced by the lungs after infection such as bacteria, fungus. Due to the infection sputum colour could be in different colour and appearance. In this research studied on different types of micro-organisms that are sputum produce in human being at Bilaspur city. Many the microscopically examination of expectorated sputum samples is the most commonly followed method in the Microbiological laboratory for diagnosis of lower respiratory tract infections (LRTIs). While pathogenic bacteria all time survive in the air and they are infected to respiratory tract such as streptococcus species, Klebsiella pneumoniae, Pseudomonas aeruginosa, Moraxella catrrhalis, and Morganella species. Enterobacter species, Lower respiratory tract infection are common in the general population, occurring with increased rate of recurrence in older persons and those with chronic diseases or compromised immune function. In this research 50 sputum samples have taken from different sites. The sample of sputum is inoculated in MacConkey agar and blood agar media. Then after the antibiotic susptibility test is performed and found different zone size.

Keywords- Sputum culture and sensitivity, Disc diffusion method, Indole test, Citrate agar test, Urease agar test, and Triple sugar iron agar test.

I. INTRODUCTION

Sputum is a thick fluid produced by the lungs after infection such as bacteria, fungus. Due to the infection sputum colour could be in different colour and appearance. In this research studied on different types of micro-organisms that are sputum produce in human being at Bilaspur city. Manv bacterial species (normal flora) are present in the sputum sample. While pathogenic bacteria all time survive in the air and they are infected to respiratory tract such as streptococcus, Klebsiella, Pseudomonas, Moraxella etc. Lower respiratory tract infection are common in the general population, occurring with increased rate of recurrence in older persons and those with chronic diseases or compromised immune function. A diagnosis is made by culture of respiratory tract secretions, by isolation of a compatible organism from sputum culture. With regard to bacteriological methods, all sputum

samples were examined by microscopy, and samples containing a preponderance of leukocytes and a few squamous epithelial cells were considered acceptable for culture, according to accepted criteria. (Bartlett JG et al., 2000).

• Respiratory Tract Infections

Upper respiratory tract is frequently the site of localized or generalized infections. Infections of the respiratory tract may be divided into four groups:

- 1. Infections of throat and pharynx
- 2. Infections of middle ear and sinuses
- 3. Infections of trachea and bronchi
- 4. Infections of lungs.
- Infections of the Lung

Pneumonia may be defined as inflammation and consolidation of the lung substance which may be caused by microorganisms and non infective physical and chemical agents.

Specimen: Sputum:

Early morning sample which is most purulent. A properly taken specimen with minimal salivary contamination is to be sent to the laboratory as early as possible. Specimen of blood for culture may be useful in diagnosis of lobar pneumonia (C. Dubey and D.K. Maheshwari 2005).

II. MATERIAL AND METHOD

A. Samples:

In this research four sites of sputum samples for the isolation of organisms in my research work. The total number of sputum samples is 50 from four sites. The name of the sites is

- Site- 1:- Shri Ram Care Hospital Bilaspur (C.G.)
- Site- 2:- Ramani Hospital, Bilaspur (C.G.)
- Site-3:- Mark Hospital, Bilaspur (C.G.)

• Site-4:- Walking patient in SRL Lab Bilaspur (C.G.)

B. Glasswares:

- Test Tubes
- Petri Dishes
- Microscope Slides
- Beakers
- Glass Rod

C. Laboratory Equipments

- Incubator (Manufacturer Date 2014, Company Name Digilab)
- Hot air oven (Manufacturer Date 2014, Company Name Digilab)
- Autoclave (Manufacturer Date 2014, Company Name Digilab)
- Laminar air flow (Manufacturer Date 2014, Company Name - Coslab)

D. Culture media:

- MacConkey agar
- Blood agar

E. Biochemical Reagents:

- Indole Reagents
- Citrate agar
- Urease agar
- Triple sugar iron (TSI) agar

Kirby–Bauer antibiotic testing or disc diffusion antibiotic sensitivity testing The agar diffusion test (Kirby–Bauer antibiotic testing, KB testing, or disc diffusion antibiotic sensitivity testing) is a test of the antibiotic sensitivity of bacteria. It uses antibiotic-impregnated wafers to test the extent to which bacteria are affected by those antibiotics. In this test, wafers containing antibiotics are placed on an agar plate where bacteria have been placed, and the plate is left to incubate. If an antibiotic stops the bacteria from growing or kills the bacteria, there will be an area around the wafer where the bacteria have not grown enough to be visible. This is called a zone of inhibition.

The size of this zone depends on how effective the antibiotic is at stopping the growth of the bacterium. A stronger antibiotic will create a larger zone, because a lower concentration of the antibiotic is enough to stop growth.

The bacterium in question is swabbed uniformly across a culture plate. A filter-paper disk, impregnated with the compound to be tested, is then placed on the surface of the agar. The compound diffuses from the filter paper into the agar. The concentration of the compound will be highest next to the disk, and will decrease as distance from the disk increases. If the compound is effective against bacteria at a certain concentration, no colonies will grow where the concentration in the agar is greater than or equal to the effective concentration. This is the zone of inhibition. This along with the rate of antibiotic diffusion is used to estimate the bacteria's sensitivity to that particular antibiotic. In general, larger zones correlate with smaller minimum inhibitory concentration (MIC) of antibiotic for that bacterium. Inhibition produced by the test is compared with that produced by known concentration of a reference compound. This information can be used to choose appropriate antibiotics to combat a particular infection (Mohanty A 2010).

F. Antibiotics:

We are using following antibiotics:

- Ceftriaxone/tazobactam (30/10 mcg)
- Ceftazidime/tazobactam (30/10 mcg)
- Pipracillin/tazobactam (100/10 mcg)
- Cefoperazone/sulbactam (50/50 mcg)
- Amikacin (30 mcg)
- Gentamicin (10 mcg)
- Imipenem (10 mcg)
- Tobramycin (10 mcg)
- Tigecycline (15 mcg)
- Erythromycin (15 mcg)
- Azithromycin (15mcg)

٠

Chloramphenicol (30 mcg)

Table 1. Sample collection of different site

S.No.	Sample	Total samples	Sites of Samples
1	Sputum	20	Site- 1:- Shri Ram Care Hospital Bilaspur (C.G.)
2	Sputum	10	Site- 2:- Ramani Hospital, Bilaspur (C.G.)
3	Sputum	10	Site-3:- Mark Hospital, Bilaspur (C.G.)
4	Sputum	10	Site-4:- Walking patient in SRL Lab Bilaspur (C.G.)

Table 2. Zone size Interpretative chart for Antibiotics as per CLSI (Based on Results obtained using Mueller Hinton Agar)

S.N	Antimicrobial Agent	Symbol	Disc	Diameter of zone of inhibition in				
0.			Content	mm				
				Resistant	Intermediate	Sensitive		
				(mm or	(mm)	(mm or		
				less)		more)		
1.	Amikacin	AK	30 mcg	14	15-16	17		
2.	Azithromycin	AZM	15 mcg	13	14-17	18		
3.	Cefoperazone/sulbactam	CFS	50/50	23	24-25	28		
			mcg					
4.	Ceftazidime/tazobactam	CAT	30/10	17	18-20	21		
			mcg					
5.	Ceftriaxone/tazobactam	CIT	30/10	17	18-20	21		
			mcg					
б.	Chloramphenicol	С	30 mcg	12	13-17	18		
7.	Erythromycin	Е	15 mcg	13	14-22	23		
8.	Gentamicin	GEN	10 mcg	12	13-14	15		
9.	Imipenem	IPM	10 mcg	19	20-22	23		
10.	Pipracillin/tazobactam	PIT	100/10	17	18-20	21		
			mcg					
11.	Tigecycline	TGC	15 mcg	15	16-17	18		
12.	Tobramycin	TOB	10 mcg	12	13-14	15		

Note: In accordance to performance Standards for Antimicrobial Disc Susceptibility Test, CLSI (Formerly NCCLS).

III. OBSERVATION AND RESULTS

All samples are cultured on MacConkey agar, Blood agar. These plates are incubated at 370C aerobically and after overnight incubation, and then checked for bacterial growth. The organisms are identified by their colony morphology, staining characters, pigment production, motility and other relevant biochemical tests as per standard laboratory methods of identification.

Figure 1. After incubation of MacConkey agar plate

Figure 2. After incubation of Blood agar plate

Table 3. Antibiotic sensitivity zone size of Klebsiella pneumoniae in S1 Sample

S.No.	Name of antibiotics	Zone size	Resistant	Intermediate	Sensitive
1	Amikacin	17	14	15-16	17
2	Azithromycin	14	13	14-17	18
3	Cefoperazone/sulbactam	22	23	24-25	28
4	Ceftazidime/tazobactam	21	17	18-20	21
5	Ceftriaxone/tazobactam	24	17	18-20	21
6	Chloramphenicol	00	12	13-17	18
7	Erythromycin	11	13	14-22	23
8	Gentamicin	15	12	13-14	15
9	Imipenem	24	19	20-22	23
10	Pipracillin/tazobactam	22	17	18-20	21
11	Tigecycline	18	15	16-17	18
12	Tobramycin	14	12	13-14	15

Figure 3. Antibiotic sensitive test of K. pneumonia

	sputum samples												
S.	Name of sputum		Name of Antibiotics										
No.	sample	AK	AZM	CFS	CAT	CIT	С	E	GEN	IPM	PIT	TGC	TOB
1	\$1	17	14	22	21	24	0	11	15	24	22	18	14
2	\$16	17	8	20	19	22	17	0	15	21	19	17	13
3	\$17	16	12	17	18	21	20	0	15	21	18	18	14
4	S20	0	0	0	12	12	14	0	0	0	0	16	0
5	\$22	18	16	24	25	25	0	12	24	24	24	23	18
6	\$26	16	17	21	21	23	21	9	16	21	19	21	17
7	\$32	15	15	22	21	23	13	8	17	21	17	19	15
8	\$38	17	11	20	21	22	20	9	15	18	19	21	14
9	\$39	16	13	20	21	22	21	0	15	22	18	22	16
10	S42	17	10	22	21	21	21	0	18	17	19	19	19
11	S46	18	15	25	25	27	22	0	17	24	21	20	22
12	S47	21	14	23	22	22	0	0	19	20	21	19	20
13	\$50	0	9	12	0	13	21	0	0	18	16	20	0

Figure 3. Finitestone sensitive test of Ri pheumonia

Note – Red colour box show high antibiotic sensitivity zone size in K.pneumoniae

Figure 5. raph No. 1.2 Graphical representation zone size of antibiotic sensitivity test of K.pneumoniae in sputum samples

Figure 6. raph No. 1.3 Graphical representation zone size of antibiotic sensitivity test of K.pneumoniae in sputum samples

On my research work we have found following biochemical reactions for the identification of microorganisms which is shows in table form:

 Table 5. shows biochemical reactions for the identification of microorganisms

	S.No.	Name of	Catalase	Coagulase	Indole	Citrate	Urease	TSI	Oxidase
		microorganisms							
	S1	<u>Klebsiella</u> pneumoniae	•		·	+	+	a/a	•
	S2	Pseudomonas	+		•	+		k/k	+
		aeruginosa							
		+Enterococcus							
		species							
	S3	Acinetobacter	•	•	·	•	•	k/a	·
		species							
(tazobactam" Point "K.pneumoniae (S26)"									
	00	LSUNERUNU UUN			+			a/a	
		+Enterococcus							
		species							
	S6	Klebsiella				+	+	a/a	
		pneumoniae							
	S7	Pseudomonas	+	•	•	+	•	k/k	+
		aeruginosa							
	S8	Moraxella	•	•					+
		catrchalis,							
	S9	Moraxella	·	·					+
		catribalis.							
	S10	Moraxella	•	•					+
		catribalis							
	SII	Negative							
	S12	Negative							
	\$13	Enterobacter			+	·	·	k/a	·
		species							
		+Enterococcus							
	014	Species				1		1.4.	1
	514	rseuaomonas	+	·	·	Ŧ	•	K/K	Ŧ
	\$15	Negative							
	\$16	Klahsialla				÷	÷	a/a	
	510	pneumoniae						aa	
	\$17	Klebsiella				+	+	a/a	
		pneumoniae							
	\$18	Enterobacter	•		+		•	k/a	
		species							
	S19	Escherichia coli							
	S20	Klebsiella pneumoniae	•	•	·	+	+	a/a	•

S21	Escherichia coli	-	-	+	-	-	a/a	
S22	Klehsiella. pneumoniae	-	-	•	+	+	a/a	-
S23	Pseudomonas aeruginosa	+	-	•	+		k/k	+
S24	Escherichia coli	-	-	+			a/a	
S25	Escherichia coli	-	-	+			a/a	
S26	Klebsiella	-	-		+	+	a/a	
	pneumoniae							
	+Enterococcus							
	species							
S27	Escherichia coli	-	-	+	-	-	a/a	
S28	Negative							
S29	Morganella species	-	-	-	-	+	k/a	•
S30	Negative							
S31	Escherichia coli	-	-	+	-	-	a/a	-
S32	Horizonta	l (Catego	ory) Axis		+	+	a/a	-
S33	Negative							
S34	Negative							
S35	Pseudomonas	+	-	-	-	÷	k/k	+
	aeruginosa							
S36	Acinetobacter species							
S37	Morganella species	-	-	-	-	+	k/a	
S38	Klebsiella	-	-	-	+	+	a/a	
	pneumoniae							
S39	Klebsiella	-	-		+	÷	a/a	
	pneumoniae							
S40	Pseudomonas	+	-		+	-	k/k	+
	aeruginosa							
S41	Moraxella	-	-	-	-	-		+
	catechalis.							
S42	Klebsiella.	-	-	-	+	+	a/a	-
	pneumoniae							
543	Pseudomonas	+	-	-	+	-	k/k	+
	aeruginosa							
544	Escherichia coli	-	-	+	•	•	3/3	•
545	Negative							
540	5468818468	-	-	-	+	÷	3/3	
S / 5	pneumoniae							
547	5168118168.	-	•	-	+	÷	2/2	
C 49	Nagatina							
S40	Negative							
549	Flabrialla				+	+	-/-	
220	5168616166	-	-		Ŧ	Ŧ	8/8	
	pneumoniae							

IV. DISCUSSION

In this research the K.pneumoniae micro-organisms show maximum zone size in all sputum samples such as antibiotic of Amikacin show 21 mm zone size in S31 sputum sample, the antibiotic of Azithromycin show 17 mm zone size antibiotic in S26 sputum sample, the of Cefoperazone/sulbactam show 25 mm zone size in S46 sputum sample, the antibiotic of Ceftazidime/tazobactam show 25 mm zone size in S22 and S46 sputum sample, the antibiotic of Ceftriaxone/tazobactam show 27 mm zone size in S46 sputum sample, the antibiotic of Chloramphenicol show 22 mm zone size in S46 sputum sample, the antibiotic of Erythromycin show 12 mm zone size in S22 sputum sample, the antibiotic of Gentamicin show 24 mm zone size in S22 sputum sample, the antibiotic of Imipenem show 24 mm zone size in S1, S22 and S46 sputum sample, the antibiotic of

Pipracillin/tazobactam show 24 mm zone size in S22, the antibiotic of Tigecycline show 23 mm zone size in S22 sputum sample, the antibiotic of Tobramycin show 22 mm zone size in S46 sputum sample.

V. CONCLUSION

In this research the respiratory specimen (sputum) is sensitive to broad spectrum antibiotics. Hospital acquired patient are mostly resistant to certain small and broad spectrum antibiotics which shows gram negative bacteria. When we used antibiotic culture and sensitivity method and found sensitive antibiotic which inhibit the growth of gram positive and gram negative bacteria. Mostly sensitive antibiotic are carbapenem and cephalosporin group of antibiotic in this research. In bilaspur city mostly gram negative bacteria are responsible for causing pulmonary disease in human beings. So we can help of such kind of patient that are infected with Tuberculosis and other respiratory disease by the process of antibiotic sensitivity test or disc diffusion method.

REFERENCES

- A text book of Microbiology by R.C. Dubey and D.K. Maheshwari S. Chand & Campany Ltd. (An ISO 9001: 2000 Company) Department of Botany & Microbiology Gurukul Kangri University, Haridwar, India Edition 2005.
- [2] Adam, George. Essays on the microscope. 1798.
- [3] Ananthanarayan, R; Paniker, C. J. (2006). Textbook of Microbiology (7th ed.). India: Orient Blackswan. pp. 2, 25–26.ISBN 978-8125028086.
- [4] Anderson, Cindy (2013). Great Adventures in the Microbiology Laboratory (7th ed.). Pearson. pp. 175–176. ISBN 978-1-269-39068-2
- [5] Annemarie Sykes, Patrick Mallia 2007 Diagnosis of Pathogens in Exacerbations of Chronic Obstructive Pulmonary Disease Proc Am Thorac Soc Vol 4. pp 642– 646, 2007 DOI: 10.1513/pats.200707-101TH Internet address: www.atsjournals.org.
- [6] "Archived copy". Archived from the original on 2013-07-31. Retrieved 2013-09-01.
- [7] Bartlett JG, Dowell SF, Mandell LA, File TM Jr, Musher DM, Fine MJ. Practice guidelines for the management of community-acquired pneumonia in adults, Clin Infect Dis, 2000, vol.312 (pg.347-382).

- [8] Bartlett, R. C. (1974). Medical Microbiology: Quality, Cost and Clinical Relevance, pp. 24-30. John Wiley, New York.
- [9] British Standard 6523 (1984) Glass beakers for original experiments use.
- [10] Brumfitt, W., Willoughby, M. L. N., and Bromley, L. L. (1957). An evaluation of sputum examination in chronic bronchitis. Lancet, 2, 1306-1309.
- [11] Cheesbrough, M. (2006) District Laboratory Practice in Tropical Countries—Part 2. 2nd Edition, Cambridge University Press, New York.
- [12] http://dx.doi.org/10.1017/CBO9780511543470.
- [13] Christopher D. Sibley, Michael D. Parkins 2008 A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients 15070–15075 PNAS September 30, 2008 vol. 105 no. 39 ,www.pnas.orgcgidoi10.1073pnas.0804326105.
- [14] Christensen W. B., 1946, J. Bacteriol., 52:461.