
IJSART - Volume 3 Issue 5 – MAY 2017 ISSN [ONLINE]: 2395-1052

Page | 736 www.ijsart.com

XSS attack Prevention using Ramp Secret Sharing

Mrs.Tejaswini H. Aware1, Prof. D. S. Kulkarni2

Department of Computer Engineering
1, 2 D. Y. Patil College of Engineering Ambi Pune.

Abstract-The web applications are developed and accessed by
millions of users for various services. These applications are
developed using various technologies like HTML, JavaScript,
AJAX, XML etc. But the vulnerabilities at the design level in
these technologies lead to security breach, resulting in theft of
the users credentials. Thus, the security of these applications
is becoming an important concern to ensure the users
authentication and privacy. Cross site scripting attack (XSS) is
also an exploitation of these vulnerabilities existing in the web
applications. XSS still remains a big problem for web
applications, despite the bulk of solutions provided so far.
Content Security Policy (CSP) is also an approach to prevent
this code injection. This paper studies the browser
compatibility issues in deploying CSP to mitigate XSS
vulnerabilities and also discusses how to resolve this
incompatibility. A content security policy (CSP) can help Web
application developers and server administrator’s better
control website content and avoid vulnerabilities to cross site
scripting (XSS). In experiments with a prototype website, the
authors CSP implementation successfully mitigated all XSS
attack types in four popular browsers. Among the many
attacks on Web applications, cross site scripting (XSS) is one
of the most common. An XSS attack involves injecting
malicious script into a trusted website that executes on a
visitors browser without the visitors knowledge and thereby
enables the attacker to access sensitive user data, such as
session tokens and cookies stored on the browser. With this
data, attackers can execute several malicious acts, including
identity theft, key logging, phishing, user impersonation, and
webcam activation. Content Security Policy (CSP) is an added
layer of security that helps to detect and mitigate certain types
of attacks, including Cross Site Scripting (XSS) and data
injection attacks.

Keywords-Cross site scripting attack, Content Security Policy
(CSP), Vulnerabilities at the design level, Data injection attack

I. INTRODUCTION

Avoid the web application attacks, the web browser
security model is built on the same origin policy that isolates
one origin from the other thus providing the developers a safe
sandbox environment to build these applications in which the
code from one origin (http://self.com) has access to only
http://self.com data and the code from other origin

(http://other.com) is not permitted to access http://self.com
data. But the attackers by-pass this policy by exploiting cross
site scripting vulnerabilities in the web applications. He injects
his own script into the web applications and later this injected
script will get embedded along with the actual intended
response from the website whenever any user visits that
particular web page. The victims browser executes all of the
code that shows up on a page as being legitimately part of that
pages security origin since the browser is not able to
differentiate between the injected and the intended code. Thus,
Cross-Site Scripting attack (XSS) is a code injection attack
performed to exploit the vulnerabilities existing in the web
applications by injecting html tag / JavaScript functions into
the web page so that it gets executed on the victims browser
when one visits the web page and successfully accesses to any
sensitive victims browser resource associated to the web
application (e.g. cookies, session IDs, etc.).

 Successful cross site scripting can result in serious

security violations for both the web site and the user. Web
Applications have become one of the most important ways to
provide a broad range of services to users. In the recent years,
web-based attacks have caused harm to the users of web
applications. Most of these attacks occur through the
exploitation of security vulnerabilities in the web-based
programs. So, the mitigation of these attacks is very crucial to
reduce its harmful consequence. The main issue is that if
malicious content can be introduced into a dynamic web page,
neither the web site nor the client is capable of recognizing
that anything like this happened and prevent it.

Fig.1: Block diagram of cross site scripting attack

IJSART - Volume 3 Issue 5 – MAY 2017 ISSN [ONLINE]: 2395-1052

Page | 737 www.ijsart.com

A) BASIC CONCEPTS

The security of internet functions is fitting a foremost
difficulty to make sure the persons authentication and privacy.
Cross site scripting attack (XSS) can be an exploitation of
these vulnerabilities existing within the net purposes. XSS
nonetheless remains a giant quandary for net functions,
regardless of the bulk of options furnished to this point.
Content security coverage (CSP) can be a method to hinder
this code injection. This paper reviews the browser
compatibility issues in deploying CSP to mitigate XSS
vulnerabilities and in addition discusses how to resolve this
incompatibility.

B) ADVANTAGES OF PROPOSED SYSTEM

1. Since the requests with waiting time D are all assigned to

temporary servers, it is apparent that all service requests
can guarantee their deadline and are charged based on the
workload according to the SLA. Hence, the revenue of the
service provider increases.

2. Increase in the quality of service requests and maximize

the profit of service providers.

3. This scheme combines short-term renting with long-term

renting, which can reduce the resource waste greatly and
adapt to the dynamical demand of computing capacity

C) SYSTEM METHODOLOGY

A combination of client side and server side solution

which detects and prevents cross site scripting attacks based
on the OWASP prevention guidelines. For this XSS checker
function is added on both client and server. If an attack is
detected at client side only it will not be forwarded to server
thus saving runtime overhead which was not possible with
server side solution and attacks occurring when requestis
forwarded from client to server will also be detected and
prevented which was not possible with client side solution.

II. REVIEW OF LITERATURE

The main motive for performing XSS attack is to

execute malicious JavaScript in the victims browser to steal
victims authentication details. Various prevention measures
have been suggested to counter XSS vulnerabilities. It
includes encoding, sanitization, blacklisting, white listing
approaches etc. [4]. A survey has been done on the detection
and prevention techniques proposed by various researchers to
mitigate XSS risks. XSS vulnerabilities can be detected by
performing static and dynamic analysis on the web

applications. Many researchers have carried out their study in
this domain and some are working on the server side solutions
and some are working in client side solutions. Some
researchers also carried out their study in the CSP domain [5]
[6]. Z. Mao et. al. [7] introduced a technique known as BEAP
(Browser-Enforced Authenticity Protection) that enabled the
web browsers to limit the users credentials (cookies, session
Id, authentication tokens etc.) to get transmitted with the
requests on the basis of the policy that is interpreted on the
basis of details surrounding the action that caused the HTTP
request and it denies the transmission of users credentials
when they arent deemed needed by BEAP, but the requests are
still transmitted in a safer way. M. T. Louw et. al. [8]
introduced a server side prevention technique against XSS
attacks. This technique known as BEEP (browser enforced
embedded policies) where a web site can embed a policy in its
pages to specify which scripts are allowed to run. The
browser, which knows exactly when it will run a script, can
enforce this policy perfectly. O. Hallaraker and G. Vigna [9]
proposed a mechanism for detecting malicious JavaScript. The
system consists of browser embedded script auditing
component and IDS to process the audit logs and compare
them to signature of already known malicious behavior or
attacks. H. J. Wang et. al. [10] introduced an operating
systemmechanism, known as Mashup OS which improved the
same origin policy by implementing granularity that does not
exist in the same origin policy. This approach enables a site to
specify a policy for an entire page that is then worked into the
page regardless of the content injected by proposing a trio of
new HTML tags that help a site express its relationship to
other sites it may want to use as content libraries. C. Reis et.
al. [11] suggested an approach to draw boundaries around
programs, unintended code, programs in the browser, and
other pieces of web sites and also discussed the reasons for
non-applicability of uniform security policies to the entire web
page. J. Burke et. al. [12] developed a policy to allow a web
page to specify the URLs from where scripts are allowed to be
loaded and where they are not allowed. This approach
modifies the way that XML Http Requests (AJAX) can behave
much in a similar way to how we address all resources, not
just scripts. S. Shalini and S. Usha [13] provided a client-side
solution to mitigate XSS attack that employs a three step
approach to protect cross site scripting. This technique found
to be platform independent and it blocks suspected attacks by
preventing the injected script from being passed to the
JavaScript engine rather than performing risky transformations
on the HTML. Engine Kirda et. al. [14] presented Noxes, a
client-side solution to mitigate cross-site scripting attacks.
Noxes acts as a web proxy and uses both manual and
automatically generated rules to mitigate possible cross-site
scripting attempts. Stefano Di Paola and Giorgio. F [15]
described a universal XSS attack against the Acrobat PDF

IJSART - Volume 3 Issue 5 – MAY 2017 ISSN [ONLINE]: 2395-1052

Page | 738 www.ijsart.com

plug-in. When the client clicks the link and the data is
processed by the page (typically by a client side HTML
embedded script such as JavaScript), the malicious
JavaScriptpayload gets embedded into the page at runtime.
Kailas Patilet. al. [17] had done measurement study of CSP on
real world applications to understand the difficulties from site
developers point of view to adopt CSP policy. They also
implemented User CSP tool as a firefox extension that uses
dynamic analysis to automatically infer CSP policies to
enforce client-side policies on websites. They found 27
websites including Twitter implementing CSP in their
respective web pages.

III. EXISTING SYSTEM AND PROPOSED SYSTEM

A) EXISTING SYSTEM

An XSS attack involves injecting malicious script

into a trusted website that executes on a visitors browser
without the visitors knowledge and thereby enables the
attacker to access sensitive user data, such as session tokens
and cookies stored on the browser.1 With this data, attackers
can execute several malicious acts, including identity theft,
key logging, phishing, user impersonation, and webcam
activation. Content Security Policy(CSP) is an added layer of
security that helps to detect and mitigate certain types of
attacks, including Cross Site Scripting (XSS) and data
injection attacks. These attacks are used for everything from
data theft to site defacement or distribution of malware. CSP is
designed to be fully backward compatible; browsers that don’t
support it still work with servers that implement it, and vice-
versa. Browsers that don’t support CSP simply ignore it,
functioning as usual, defaultingto the standard same-origin
policy for web content. If the site doesn’t offer the CSP
header, browsers likewise use the standard same-origin policy.

Fig.2: Existing System

B) PROPOSED SYSTEM

A client-side tool that acts as a Web proxy, disallows
requests that do not belong to the website and thus thwarts
stored XSS attacks. Browser-enforced embedded policies
(BEEPs) let the Web application developer embed a policy in
the website by specifying which scripts are allowed to run.
With a BEEP, the developer can put genuine source scripts in
a white list and disable source scripts in certain website
regions. Document Structure Integrity (DSI) is a client-server
architecture that restricts the interpretation of entrusted
content. DSI uses parser-level isolation to isolate inline
entrusted data and separates dynamic content from static
content. However, this approach requires both servers and
clients to cooperatively upgrade to enable protection.

Fig.3: Block Diagram proposed System

C) SCOPE OF PROPOSEDWORK

1) Persistent XSS

A persistent XSS attack does not need a malicious

link for successful exploitation; simply visiting the webpage
will compromise the user. Persistent XSS is often difficult to
detect and is considered more harmful than the other two
attack types. Because the malicious script is rendered
automatically, there is no need to target individual victims or
lure them to a third party website. Consequently, attackers can
easily hide their activity; for example, in a blog, they could
embed the script in a seemingly innocuous comment. All
visitors to that site would then unknowingly put their brow
strand the sensitive data stored on it at risk.

2) Non-persistent XSS

A non-persistent, or reflected, XSS attack, which

occurs when a website or Web application passes invalid user
inputs. Usually, an attacker hides malicious script in the URL,
disguising it as user input, and lures victims by sending emails
that prompt users to click on the crafted URL. When they do,

IJSART - Volume 3 Issue 5 – MAY 2017 ISSN [ONLINE]: 2395-1052

Page | 739 www.ijsart.com

the harmful script executes in the browser, allowing the
attacker to steal authenticated cookies or data. In the figure,
we assume that victims have authenticated themselves at the
vulnerable site.

3) Non-persistent XSS

A webpage is composed of various elements, such as

forms, paragraphs, and tables, which are represented in an
object hierarchy. To update the structure and style of webpage
content dynamically, all Web applications and websites
interact with the DOM, a virtual map that enables access to
these webpage elements. Compromising a DOM will cause the
client-side code to execute in an unexpected manner. ADOM-
based, or Type-0, XSS attack executes in the same manner as
a non-persistent XSS attack except for step 3.In a DOM-based
attack, rather than having the server carry the malicious
payload in its HTTP response, the attacker encodes a
malicious value in a URL and sends it to the victim. The
attack occurs when the victim’s browser executes the
malicious code from the modified DOM. On the client side,
the HTTP response does not change but the script executes
maliciously. This exploit works only if the browser does not
modify the URL characters. A DOM-based XSS attack is the
most advanced type and is not well known. Indeed, much of
the vulnerability to this attack type stems from the inability of
Web application developers to fully understand how it works.

IV. DETAILED DESIGN DOCUMENT

To avoid the web application attacks, the web

browser security model is built on the same origin policy that
isolates one origin from the other thus providing the
developers a safe sandbox environment to build these
applications in which thecode from one origin (http://self.com)
has access to only http://self.com data and the code from
other origin (http://other.com) is not permitted to access
http://self.com data. But the attackers by-pass this policy by
exploiting cross site scripting vulnerabilities in the web
applications. He injects his own script into the web
applications and later this injected script will get embedded
along with the actual intended response from the website
whenever any user visits that particular web page. The victims
browser executes all of the code that shows up on a page as
being legitimately part of that pages security origin since the
browser is not able to differentiate between the injected and
the intended code. Thus, Cross-Site Scripting attack (XSS) is a
code injection attack performed to exploit the vulnerabilities
existing in the web applications by injecting html tag /
JavaScript functions into the web page so that it gets executed
on the victims browser when one visits the web page and
successfully accesses to any sensitive victims browser

resource associated to the web application (e.g. cookies,
session IDs, etc.). Successful cross site scripting can result in
serious security violations for both the web site and the user.
Web Applications have become one of the most important
ways to provide a broad range of services to users. In the
recent years, web-based attacks have caused harm to the users
of web applications. Most of these attacks occur through the
exploitation of security vulnerabilities in the web-based
programs. So, the mitigation of these attacks is very crucial
toreduce its harmful consequence. The main issue is that if
malicious content can be introduced into a dynamic web page,
neither the web site nor the client is capable of recognizing
that anything like this happened and prevent it.

Cross Site Scripting allows an attacker to embed

malicious scripts into a dynamic web page which can be
vulnerable and can result in hijacking of user sessions,
defacing web sites, or redirecting the user to malicious sites. A
high level view of typical XSS attack is Depending on the
ways HTML pages reference user inputs, XSS attacks can be
classified as reflected, stored, or DOM-based. Content
Security Policy (CSP) is a browser security mechanism to
allow developers and server administrators to white list the
locations from which applications can load the resources. By
default, CSP is disabled in the browsers. To enable CSP in
web applications, site developer must define an HTTP header
representing the trusted locations or sites from which various
sources can be downloaded. Any page served with this header
will have its own security policy enforced by the browser
loading it, provided that the browser supports CSP.

Cross-site scripting (XSS) is a computer security

vulnerability that found in web applications that insert input
from the user into the dynamic pages sent back to the user’s
browser without filtering special characters largely used in
software programming. In such cases, malicious code called
scripts can be inserted into the dynamic page of a targeted site.
The malicious script runs in the user’s browser as if the script
came from the trusted Web site. As a result, the attacker gains
access to the same information and privileges as the user on
the targeted site. For this attack to occur, the attacker targets a
Web site and the people who visit it. Most of attackers initiate
the attack by enticing a web user to click on a hyperlink. The
hyperlink contains a request for the targeted Web site and the
malicious script. The targeted Web site sends the users
browser a dynamic page in response to the request that
includes the malicious script. The malicious script can read,
alter, and send any sensitive information accessible to the
user’s browser. The attacker gains access to private user
information. XSS attack exploits the trust a user has in a
particular Web site. E-commerce sites are candidates for XSS
attacks.

IJSART - Volume 3 Issue 5 – MAY 2017 ISSN [ONLINE]: 2395-1052

Page | 740 www.ijsart.com

V. RESULT

Differentiate output results of enc-dec (Base 64,
Hexadecimal) results are given in Fig. for Existing and
Proposed System, Fig. shows the results at base 64 encoding
while It gives the results of hexadecimal base encoding. We
can notice that there is significant difference at both system.

The primary execution measurements used to Files in

the proposed systems are shown the files found in malicious
content, unique cases and duplicate cases while measures the
content of file. It gives the calculation time at the server and
the customer, still on the grounds that the time required for
exchange of last and transitional results in the middle of user
and server.

V. CONCLUSION

Through performing the above experiments, it has

been concluded that CSP can mitigate XSS assaults. However
the difficulty in imposing CSP within the internet sites is
observed to be browser compatibility disorders as there is no
one single typical CSP header that may be outlined for all of
the browsers. Also, the website developer does now not
comprehend about the browser where customer is going to
open the net web page of his internet site. The consumer can

use chrome, IE, safari, firefox or any different browsers. If the
developer use header (content material-safety-
coverage:default-src self), then XSS attack can be mitigated in
case of Chrome, Opera and Firefox; but code injection can
also be carried out in Safari, IE and other browsers. In a
similar fashion, if the developer use header(X-content
material-protection-policy: sandbox ..) , then XSS attack may
also be mitigated in case of most effective IE however code
injection can also be applied in different browsers. As a result,
to resolve this incompatibility, a code is written in personal
home page that’s to be deployed in commencing of the
webpage where CSP is to be implemented.

ACKNOWLEDGMENT

At the outset, I thank the Lord Almighty for the

grace, strength and hope to make my endeavour a success. I
also express my gratitude to Prof. D. S. Kulkarni , Head of the
Department and my project Guide for providing me with
adequate facilities, ways and means by which I was able to
complete this Paper. I express my sincere gratitude to him for
his constant support and valuable suggestions without which
the successful completion of this project would not have been
possible. I thank Prof. Anupkumar Bhongale, of PG
Coordinator for his boundless cooperation and helps extended
for this Paper. I express my immense pleasure and
thankfulness to all the teachers and staff of the Department of
Computer Engineering for their cooperation and support. Last
but not the least, I thank to IJSART convener and especially
my family members who in one way or another helped me in
the successful completion of this work. I wish you the best of
success. Thank You

REFERENCES

[1] www.html5rocks.com/en/tutorials/Security/Content-

Security- Policy/.
[2] Content-Security-Policy.com
[3] Sid Stamm et. al., Reining in the Web with Content

Security Policy, Proceedings of the 19th international
conference on WWW , ACM, USA :921-930.

[4] Haneet kour and LalitSen Sharma, Tracing out cross site
scripting vulnerabilities in modern scripts, IJANA Vol7
Issue5,2016: 2862-2867.

[5] Isatou Hydara and et al.Current state of research on cross-
site scripting (XSS) A systematic literature review,
ELSEVIER Information and Software Technology 58
(170186) 2015.

[6] Amit Singh and S Sathappan, A Survey on XSS web-
attack and Defense Mech- anisms IJARCSSE, Vol 3 issue
4, March 2014 .

IJSART - Volume 3 Issue 5 – MAY 2017 ISSN [ONLINE]: 2395-1052

Page | 741 www.ijsart.com

[7] Z. Mao, N. Li, and I. Molloy, Defeating cross-site request
forgery attacks with browser-enforced authenticity
protection, In Financial Cryptography and Data Se-
curity: 13th International Conference, FC 2009, Accra
Beach, Barbados, February 23-26, 2009. Revised Selected
Papers, Springer-Verlag, Berlin, Heidelberg, 2009.238-
255.

[8] M. T. Louw and V N. Venkatakrishnan, Blueprint: Robust
Prevention of Cross- Site Scripting Attacks for existtng
browser. Proc. 30th IEEE Symp Security and Privacy (SP
09), IEEE CS, 2009: 331-346.

[9] O.Hallaraker and G.Vigna, Detecting Malicious
JavaScript Code in Mozilla, In Proceedings of the IEEE
International Conference on Engineering of Complex
Com- puter Systems, 2005.

[10] YH. J. Wang, X. Fan, J. Howell, and C. Jackson,
Protection and communication abstractions for web
browsers in mashupos, In SOSP 07: Proceedings of
twenty-first ACM SIGOPS symposium on
Operatingsystems principles, New York, NY, USA,
2007:1-16.

[11] C. Reis, S. D. Gribble, and H. M. Levy, Architectural
principles for safe web programs, In Sixth Workshop on
Hot Topics in Networks (HotNets) 2007, Atlanta,
Georgia, November 2007.

[12] CJ. Burke. Jsonrequest, part 2 (cross domain policy for
all). Blog,(http://tagneto.blogspot.com/2 March 2006.

[13] S.Shalini and S.Usha, Prevention of XSS attacks on web
applications in the client side, IJCSI, Vol. 8, Issue 4, No1,
July 2011.

[14] Engin Kirdaa, Nenad Jovanovicb, Christopher Kruegelc,
Giovanni Vignac,Client- side cross-site scripting
protection, ELSEVIER, Computers security 28, 2009:
592-604.

[15] SubvertingAjax StefanoDiPaola, GiorgioFedon
http://events.ccc.de/congress/2006/Fahrplan/att 1158 -
Subverting Ajax.pdf.

[16] Jake Meredith, Content security policy best
practices,https://www.isecparteners.com, July 14, 2013.

[17] Kailas Patil and Braun Frederik, A Measurement Study of
the Content Security Policy on Real-World Applications,
International Journal of Network Security, Vol.18, No.2,
Mar.2016: 383-392.

