
IJSART - Volume 3 Issue 5 –MAY 2017 ISSN [ONLINE]: 2395-1052

Page | 71 www.ijsart.com

A Survey on Algorithm Design Techniques

A.Mahalakshmi1, Devi selvam2, L.Viji3
1, 2 Department of CSE

3 Department of IT
1, 2 Sri Shakthi Institute of Engineering and Technology,Tamilnadu,India

3 Velalar College of Engineering and Technology,Tamilnadu,India

Abstract- Algorithms are recognized as steppingstone of
computing. This survey describes different algorithm design
techniques such as Brute force, Greedy, Divide and Conquer,
Dynamic programming, Backtracking, Branch and Bound and
many more. It describes how a particular technique is used for
a specific problem by considering various parameters. This
survey compares different algorithm design strategies along
with applications.

Keywords- Brute force, Greedy, Divide and Conquer,
Dynamic programming, Backtracking, Branch and Bound.

I. INTRODUCTION

Algorithm is a step-by-step procedure, which defines
a set of instructions to be executed in a certain order to get the
desired output for any valid input. There exist a number of
algorithms, every algorithm is problem specific. The choice of
an algorithm may not just depend on computational
complexity; it also depends upon the characteristics,
advantages and disadvantages. This report shows how an
algorithm is best for a particular situation, based upon their
advantages and comparison with others. Some algorithm
design strategies are problem specific means they are well
suited for some specific problem and have disadvantage
against another problem. The basic question here is: How to
choose the approach? First, by understanding the problem, and
second, by knowing various problems and how they are solved
using different approaches.

Figure 1.

Figure 2.

II. PURPOSE OF ALGORITHM ANALYSIS

There are no well-defined standards for writing

algorithms. Rather, it is problem and resource dependent.
Algorithms are never written to support a particular
programming code.We should know the problem domain, for
which we are designing a solution.

The problem domain may belongs to one of the following
categories
1. Sorting
2. Searching
3. Combinatorial Problems
4. Numerical Problems
5. Graph Problems

A. problem can be solved in more than one ways.

Figure 3.

IJSART - Volume 3 Issue 5 –MAY 2017 ISSN [ONLINE]: 2395-1052

Page | 72 www.ijsart.com

Thus, we will have many solutions for a single issue.
Among that to choose the best solution, we are in need of
Analysis.

ALGORITHM COMPLEXITY

Figure 4.

Suppose A is an algorithm and n is the size of input

data, the time and space used by the algorithm A are the two
main factors, which decide the efficiency of A.

 Time Factor − Time is measured by counting the number

of basic operations, such as comparisons in the searching
algorithm.

 Space Factor − Space is measured by counting the
maximum memory space required by the algorithm.

 Asymptotic analysis refers to computing the running time
of any operation in mathematical units of computation.
Usually, the time required by an algorithm falls under
three types –

 Best Case − Minimum amount of time required for
program execution.

 Average Case − Average time required for program
execution.

 Worst Case − Maximum amount of time required for
program execution.

III. ALGORITHM DESIGN TECHNIQUES

Algorithm design technique is the systematic

approach for solving issues under various domains. They
provide templates suited to solving a broad range of diverse
problems. They can be translated into common control and
data structures provided by most high-level languages.

DESCRIPTION:

A BRUTE FORCE

Brute force is a problem solving approach in which
we will “generate all possible solutions and select the optimal
one “.It is a straightforward approach proceeds in simple and

obvious way usually based directly on problem’s statement
and definitions of the concepts involved.

A. Exhaustive search

It is a brute-force approach, applied to solve

combinatorial problems. The algorithm that tries every
possible solution is known as exhaustive search. Also known
as the British Museum algorithm. It can be used to reduce the
search space.

B. GREEDY TECHNIQUE

A greedy algorithm, as the name suggests, always

makes the choice that seems to be the best at that moment. A
greedy algorithm always makes the next available best choice.
Here at each step, decision made must be
 Feasible - The solution should

satisfy the given constraints
 Locally Optimal - Best among all possible

feasible solutions
 Irrevocable - Once made, it cannot be

changed

Example-Change Making Problem

This problem is to count to a desired value by
choosing the least possible coins and the greedy approach
forces the algorithm to pick the largest possible coin. If we are
provided coins of Rs 1, 5, 10 and 20 and we are asked Rs 48
then the greedy procedure will be −
• 1 − Select 3 coins of 1 Rs, the remaining count is 45
• 5 − Then select one 5 Rs coin, the remaining count is 40
• 20 – And finally, selection of two 20 Rs, solves the

problem

Figure 5. Various algorithm design techniques are

C. DIVIDE AND CONQUER

IJSART - Volume 3 Issue 5 –MAY 2017 ISSN [ONLINE]: 2395-1052

Page | 73 www.ijsart.com

There are three steps.

• Divide: Breaking the problem into several sub-problems

that are similar to the original problem but smaller in size.
• Conquer: Solve the sub-problem recursively (successively

and independently). If the sub problems are small enough,
solve them in brute force fashion.

• Combine: Combine these solutions to sub-problems to
create a solution to the original problem.

Divide and conquer algorithms have several
appealing properties that make them a good match for modern
parallel machines.

Figure 6.

D. DYNAMIC PROGRAMMING

Dynamic programming is the method of solving the
issue by overlapping of sub-problems.

Dynamic programming is used where we have
problems, which can be divided into similar sub-problems, so
that their results can be re-used. It uses the concept called
“Principle of Optimality”, which can be stated as” in a optimal
sequences of choices, each subsequence must also be
optimal”.

There are two ways of doing this.

1.) Top-Down : Start solving the given problem by breaking

it down. If you see that the problem has been solved
already, then just return the saved answer. If it has not
been solved, solve it and save the answer. This is referred
to as Memorization.

2.) Bottom-Up : Analyze the problem and see the order in
which the sub-problems are solved and start solving from
the trivial subproblem, up towards the given problem. In

this process, it is guaranteed that the subproblems are
solved before solving the problem. This is referred to as
Dynamic Programming.

Knapsack problem

Given a set of n items, each with a weight and a
value, determine the number of each item to include in a
collection so that the total weight is less than or equal to a
given limit and the total value is as large as possible.

Figure 7.

E. BACKTRACKING

The principle idea of backtracking is to construct
solutions on component at a time and evaluate such partially
constructed candidates as follows. If a partially constructed
solution can be developed further without violating the
problem's constraints, it is done by taking the first remaining
legitimate option for the next component. If there is no
legitimate option for the next component, no alternatives for
any remaining component need to be considered. In this case
the algorithm backtracks to replace the last component of the
partially constructed solution with its next option. Recur¬sion
is the key concept in back¬track¬ing.

State space tree

This method is based on construction of state space
tree. It is the tree organization of entire solution space(which
has complete solution path and dead ends) . Where the root
represents the initial state before the search for a solution
begins. The nodes at each nth level represent the choices for
the nth component.

N Queens Problem

The N Queen is the problem of placing N chess
queens on an N×N chessboard so that no two queens attack
each other. For example, following is a solution for 4 Queen
Problem.

State Space Tree

IJSART - Volume 3 Issue 5 –MAY 2017 ISSN [ONLINE]: 2395-1052

Page | 74 www.ijsart.com

Figure 8.

Figure 9.

F. BRANCH AND BOUND

In this method, based on the bound (Lower/Upper)
values, the state space tree will be expanded.

Figure 10.

We know that maximum valuable subset should be

identified to solve knapsack problem. Hence, it comes under

upper bound. But in case of travelling salesman problem,
minimum distance should be identified. Hence it belongs to
lower bound.

Figure 11.

Figure 12.

S salesman wants to visit all cities A, B, C and D.

What is the best way to do this (cheapest airline tickets, and
minimal travel time)?

Table 1.
Algorithm

Design
Techniques

Applications

Brute Force

Selection sort,
Bubble sort, String
matching and
Convex-hull
problems.

Exhaustive
Search

Travelling Salesman
Problem, Job
Assignment
Problem.

Greedy
Technique

Graph Coloring,
Huffman Coding,
Dijkstra's Shortest
Path
Algorithm,Container
Loading
Problem,Prim's &
Kruskal’s Minimum
Spanning Tree
Algorithm.

Divide and Merge Sort, Quick

IJSART - Volume 3 Issue 5 –MAY 2017 ISSN [ONLINE]: 2395-1052

Page | 75 www.ijsart.com

Conquer Sort, Binary Search,
Strassen’s Matrix
Multiplication,
Closest pair and
Convex Hull
Problems.

I. DYNAMIC

PROGRAMMING
Computing
Binomial
Coefficient ,
Knapsack Problem,
Floyd, Warshall,
Optimal Binary
Search Tree.

Backtracking

N Queens Problem,
Subset Sum
Problem,
Hamiltonian Circuit
Problem

Branch and
Bound

Knapsack Problem,
Travelling Salesman
Problem, Job
Assignment
Problem

Table 2.

Algorithm
Design
Technique
s

Advantages

Disadvantages

Brute
Force

- High speed

- Very Simple

- Fairly simplistic
attack
 that doesn't
require a
 lot of work to
setup or
 initiate.

-Very
hardware
intensive.

-Requires a lot
of processing
power.

Exhaustive
Search

-It’s widely
applicable.

-It’s simple.

-Reliable and
universal
 method.

-Cost of
generating
candidate
solutions.

-Impractical
(intractable) on
problems that
are too big.

Greedy
Technique

-Easy to
implement.

-Repeatedly taking
the next available
best choice is
usually linear work.

-Much cheaper than
most other
algorithms.

-Don't work for
some problems.

-Much slower.

-It is not an
automatic.

Divide and
Conquer

-Parallelism.

-Cache
Performance.

-Memory Access.

-Used to solve
difficult
 problems.

-High Efficiency.

-Recursion
Overhead.

-For efficiency
reasons,
programs often
use pointers
into arrays and
pointer
arithmetic to
identify sub
problems.

II. DYNA

MIC

PROGRAMM

ING

III. -USED TO

AVOID

CALCULATING

SAME STUFF

TWICE.

-Used only for
overlapping of
sub problems.

-It’s very
tough task to
identify
recursive
formula.

Backtracki
ng

-It is a step-
by-step
representatio
n of a
solution- very
easy to
understand.

-It is
independent
of
programming
language.

-Simple to
code.

-Multiple
function calls
are used, so
expensive.

-Inefficient
when there is
lots of
branching from
one state.

-Requires large
amount of
storage space

IJSART - Volume 3 Issue 5 –MAY 2017 ISSN [ONLINE]: 2395-1052

Page | 76 www.ijsart.com

- Easy to
debug .

Branch
and Bound

-It is used to
solve
optimization
problem.

-It may
traverse the
tree in any
manner, DFS
or BFS.

-It
completely
searches the
state space
tree to get
more number
of optimal
solutions.

-Finding
pruning
strategies
require clever
thinking
technologies

III. METHODOLOGY

The main key of the study to make an attempt of

solving the material handling station with the implementation
of the discrete even simulation i.e. modeling the entire
procedural steps exactly by using queues and the probability
and statistic functions the simple model of 3 station material
handling system is considered and the steps which as the
intermediate process elements such as the machining centers
inspection stations, packing, conveyor belts etc. are part of this
study.

IV. COMPARISON BETWEEN A LGORITHM DESIGN

TECHNIQUES

Table 3.

GREEDY TECHNIQUE BRUTE FORCE

Very Fast Slower than Greedy
method.

Tries to find a localized
optimum solution, which may
eventually lead to globally
optimized solutions

Used to solve small
class of problems

BACKTRACKING BRUTE FORCE

In each step, this method
checks- if it satisfies all the
conditions. If it does :
continues generating
subsequent solutions. If not :
goes one step backward to
check for another path

This method generates
all possible
combinations and then
checks if any of them is
the exact solution

Table 4.

DIVIDE AND
CONQUER

DYNAMIC
PROGRAMMING

Inputs are divided at
prespecified deterministic
points.

It tries every possible split
points.

Principle of Optimality
concept is not used.

Principle of Optimality
concept is used.

Solutions are combined to
achieve an overall
solution

Use the output of a smaller
sub-problem and then try to
optimize a bigger sub-
problem.

1) Memory access

Divide-and-conquer
algorithms naturally tend
to make efficient use
of memory caches.

Here, each sub-problem is
solved only once. There is no
recursion. The key in dynamic
programming is remembering.

2) The sub-problems are
independent of each
other.

Here, the sub-problems are not
independent of each other.

D&C algorithms that are
time-efficient often have
relatively small recursion
depth.

3)

DP gives a better performance
for many NP complete
problems like TSP. Though
the space needed is large, it
reduces the complexity well.

Table 5.

BACKTRACKING BRANCH AND
BOUND

Applicable to both
Optimization and Non-
optimization problems.

Applicable only to
Optimization problems.

State space tree is generated by
using depth first search method.

State space tree is
generated by using
breadth first search
method.

It don’t consider any bound
values.

State space tree is
generated based on
bound values.

IJSART - Volume 3 Issue 5 –MAY 2017 ISSN [ONLINE]: 2395-1052

Page | 77 www.ijsart.com

V. CONCLUSION

The main goal of this survey is to compare various
algorithm design techniques based on the advantages,
disadvantages and applications. Usually a given problem can
be solved using various approaches however it is not wise to
settle for the first that comes to mind. More often than not,
some approaches result in much more efficient solutions than
others. In future, the best algorithm design technique suitable
for all types of problems can be identified.

REFERENCES

[1] Shailendra Nigam, Dr. Deepak Garg “Choosing Best

Algorithm Design Strategies For a Particular Problem”, In
Proceedings of the IEEE International Advance
Computing Conference (IACC 09), Thapar University
Patiala, India (6-7 March 2009)

[2] Exhaustive Search, Chapter 38 in Algorithms by Robert
Sedgewick; Addison- Wesley, 1983.

[3] A New Road Map of Algorithm Design Techniques by
Anany Levitin in Dr. Dobb’s Journal, April 2008.

[4] Greedy Algorithms, Chapter 17 in Introduction to

Algorithms by Thomas Cormen, Charles Leiserson, and
Ronald Rivest, MIT Press, 1999.

[5] Greedy Algorithms, Chapter 5 in Algorithms by Sanjoy
Dasgupta, Christos Papadimitriou, and Umesh Vizirani,
McGraw-Hill, 2008

[6] http://ignou.ac.in/userfiles/SandeepFINAL_Unit1_Intro_2

1-03-2013.pdf

[7] http://faculty.simpson.edu/lydia.sinapova/www/cmsc250/
LN250_Weiss/L28- Design.htm

[8] https://gradeup.co/algorithm-design-techniques-i-
6c2dec3e-c0da-11e5-abd0-9e294d44e4af

[9] http://gdeepak.com/thesisme/Thesis-
Choosing%20Best%20Algorithm%20Design%20Strategi
es%20For%20a%20Particular%20Problem.pdf

[10] https://en.wikipedia.org/wiki/Divide_and_conquer_algorit
hm

[11] http://stackoverflow.com/questions/30025421/difference-
between-backtracking-and-branch-and-bound

[12] http://www.algorithmist.com/index.php/Exhaustive_Searc
h

[13] https://people.csail.mit.edu/rinard/divide_and_conquer/

[14] [https://en.wikipedia.org/wiki/Bellman_equation

