
IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 266 www.ijsart.com

Remote Integrity and Proof of Retrievability and
Recovery in Cloud Computing

Geetanjali Sharma1, Shubhangi Kale2, Ruchira Hagawane3, Sayali Dabhadkar4, Shamal Mundkar5

1, 2, 3, 4, 5 Department of Information Technology
1, 2, 3, 4, 5 D. Y. Patil College of Engineering, Akurdi

Abstract- Cloud computing is turning into very popular. Users
are deciding on cloud as repository for his or her statistics.
The statistics in the cloud ought to be reachable, correct,
consistent and excessive first-class. While considering cloud
as storage records security and integrity of stored statistics is
burning trouble. When customers keep their records on cloud
there may be a danger of amendment or updation of records.
Many researchers had worked and proposed algorithms to
clear up this trouble. This survey paper specializes in core
techniques of proof of garage (POS) that are Proof of records
Possession (PDP) and Proof of Retrievability (PoR). Both the
techniques are used to make certain the cloud consumer about
integrity of records garage on cloud. OPoR, any other
distributed garage plan consisting of a allotted storage server
and a TPA is proposed here. TPA is concept to be
semilegitimate. Specifically, we bear in mind the undertaking
of allowing the TPA, for the cloud customers, to pre-manner
the facts earlier than moving to the distributed storage server
and later confirming the statistics uprightness. OPoR
outsources the overpowering calculation of the label
generation to the cloud review server and takes out the
contribution of client in the examining and inside the
preprocessing ranges. Besides, we make stronger the Proof of
Retrievabiliy (PoR) model to bolster dynamic facts operations,
and similarly assure safety towards reset assaults dispatched
by using the allotted garage server in the transfer level.

Keywords- cloud computing, facts safety, records integrity,
evidence of information ownership, proof of retrievability.

I. INTRODUCTION

Cloud computing is a useful resource where we can
store all our data in order that some applications and software
can get full advantages by making use of this technology
without any server and regional hard disk for our data storage.
Day by day community bandwidth is growing .Due to this
bandwidth and riskless but flexible network connections users
can now use high pleasant offerings from information and
program located at remote information centers. There are
many advantages of cloud over local storage. Cloud server
provides facility to store users data on a cloud. So customers
can add their information on cloud and can access it without

any additional burden of time, location, and cost. Amazon,
Microsoft, EC2, Google and are some famous cloud storage
service providers that have attracted users to use cloud
storage. Users are enjoying use of these services due to ease of
access to their data which is hosted on another infrastructure.
With increased use of Internet technologies, the major obstacle
is to preserve the originality of data. Difficulty of outsourced
data may also be depend on the way by which the data owner
find an effective solution to participate in frequent checking
for integrity of data without the neighborhood reproduction of
data documents Users need to verify that their data remain as
they stored on cloud. Data saved on cloud can quite with ease
be misplaced or corrupted as a result of human errors and
hardware and software failures. Also data can be changed or
deleted by malicious cloud storage server.

The main objective of this work is to find out

whether the users outsourced data is original or whether it is
affected by some malicious intruder. For this auditing is
performed with the help of hash values. To reduce the
computational burden of making hash values and integrity
verification at client side, TPA(Third Party Auditor) is
introduced. Also public verifiability and dyanamic data
operation are SYNOPSIS provided. PoR model is the first to
support dynamic update operations and security against reset
attack in a verification scheme. The robustness against reset
attack ensures that a malicious storage server can never gain
any advantage of passing the verification of an incorrectly
stored file by resetting the client (or the audit server) in the
upload phase. Also recovery of deleted file is done by TPA.
All the process is transparent to user.AES algorithm is used
for encryption of file. And SHA1 is used for hashing purpose.
Use of these algorithms improves security of file.

II. LITERATURE REVIEW

[1] new scheme is proposed to check the integrity of

outsourced data. TPA is offered to scale down the
computational burden of client. TPA does the task of auditing
the data by challenging the CSS. Scheme provides public
verifiability along with dynamic data operation. This PoR
model provides safety against the reset attacks launched by

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 267 www.ijsart.com

cloud storage server within the upload phase.TPA stores the
tag of file to be uploaded and use these tags to check integrity.

[2] authors defined a PDP model. It gives
probabilistic proof that third party stored a file. User can
access small blocks of file for producing the proof. Challenge
and response method is used in this technique. Some constant
amount of metadata of clients data is stored at client side.
Locally stored metadata is used to verify proof which is given
by server .Client gives challenge to server for proving
possession and wait for response. Server then computes and
sent proof to client. Metadata is used to check correctness of
response. RSA based Homomorphic variable tags are used to
achieve goal. PDP accesses random sets of blocks and samples
servers storage. Limitation of PDP is it gives only
probabilistic proof not a deterministic proof. It cannot support
dynamic data possession.

[3] a new scheme known as proof of retrievability
(POR) is proposed. Using this scheme, verifier (user) can
determine that whether Prover (server) hacked his file or not.
Scheme uses sentinels (called disguised blocks). Sentinels are
hidden among usual file blocks for detecting data amendment
by way of the server. Verifier challenges prover by specifying
locations where sentinels are collected and asking to return
associated value. Values are compared then to check integrity
of data. In this approach single cryptographic key is computed
and stored by verifier. Key is computed using keyed hash
algorithm. Error resiliency of their system is improved due to
error correction codes. This scheme increases larger storage
requirement and computational overhead on prover.

[4] authors proposed new technique to obtain PoR.
Two schemes are proposed here. Pubic verifiability is
implemented in first scheme. Here shortest query response of
any POR is obtained which is secure in the random oracle
model. Second scheme provides shortest response with private
retrivability. It is secure in the standard model. Two
homomorphic authenticators are used. First is based on PRFs
and second based on BLS signature. Only one authentication
value is allowed in both schemes. Here, erasure encoded file is
broken up into n blocks by user. Each file block is
accompanied by way of authenticators of equal size. Use of
BLS signature give smaller sized proof as compared with
RSA. It also accept higher error rate. But this scheme still
works on static data only, dynamic data update is not
supported.

III. PROPOSED SYSTEM

This Framework contain three parties Clients, third
party auditor(TPA),Cloud storage server(CSS),Distributed
servers(DS)

Client :

Client has tremendous information files for

outsourced on cloud. Also depend upon cloud for preservation
and computation of information. Client may also be both any
group or individual person.

Third Party auditor (TPA):

It is trusted third party which can expose the hazard

of cloud storage services on behalf of Client. On this system
TPA generates tag for data in file earlier than uploading it to
cloud storage server.

Cloud storage server (CSS) :

This entity is managed by way of Cloud servicer

provider (CSP).It has computation useful resource and
cupboard space for maintenance of clients data.CSS have got
to provide integrity proof throughout integrity verification
segment.

Distributed Servers (DS) :

These servers are used to save another reproduction

of data saved on CSS. To recuperate the corrupted file,
information backed up on DS is used.

Figure 1. Proposed System

Client challenges the cloud storage server to ensure

integrity of data. Client can request to TPA integrity checking

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 268 www.ijsart.com

of any file block which is stored at cloud storage server. TPA
first computes and then stores the hash values of blocks. TPA
forwards challenge to storage server and storage server
response with proof in the form of hash values. TPA equates
the received hash of file block from proof with hash values
stored in his database. If the hash matches, then file is original
otherwise its corrupted. If the file is corrupted then TPA
recovers corrupted file from distributed server on which
backup is taken.

The main propose OPoR, a new PoR scheme with

two independent cloud servers. Particularly, one server is for
auditing and the other for storage of data. The cloud audit
server is not required to have high storage capacity. Different
from the previous work with auditing server and storage
server, the user is relieved from the computation of the tags
for files, which is moved and outsourced to the cloud audit
server. Furthermore, the cloud audit server also plays the role
of auditing for the files remotely stored in the cloud storage
server. A strengthened security model is develop by
considering the reset attack against the storage server in the
upload phase of an integrity verification scheme. It is the first
PoR model that takes reset attack into account for cloud
storage system. Present an efficient verification scheme for
ensuring remote data integrity in cloud storage. The proposed
scheme is proved secure against reset attacks in the
strengthened security model while supporting efficient public
verifiability and dynamic data operations simultaneously.

IV. IMPLEMENTATION

Cloud Computing moves the application software
and databases to the centralized large data centers, where the
management of the data and services may not be fully
trustworthy. In this work, we study the problem of ensuring
the integrity of data storage in Cloud Computing. To reduce
the computational cost at user side during the integrity
verification of their data, the notion of public verifiability has
been proposed. However, the challenge is that the
computational burden is too huge for the users with resource-
constrained devices to compute the public authentication tags
of file blocks. To tackle the challenge, we propose OPoR, a
new cloud storage scheme involving a cloud storage server
and a cloud audit server, where the latter is assumed to be
semi-honest. In particular, we consider the task of allowing the
cloud audit server, on behalf of the cloud users, to pre-process
the data before uploading to the cloud storage server and later
verifying the data integrity. OPoR outsources the heavy
computation of the tag generation to the cloud audit server and
eliminates the involvement of user in the auditing and in the
preprocessing phases. Furthermore, we strengthen the Proof of
Retrievabiliy (PoR) model to support dynamic data operations,

as well as ensure security against reset attacks launched by the
cloud storage server in the upload phase. Client challenges the
cloud storage server to ensure integrity of data. Client can
request to TPA integrity checking of any file block which is
stored at cloud storage server. TPA first computes and then
stores the hash values of blocks. TPA forwards challenge to
storage server and storage server response with proof in the
form of hash values. TPA equates the received hash of file
block from proof with hash values stored in his database. If
the hash matches, then file is original otherwise its corrupted.
If the file is corrupted then TPA recovers corrupted file from
distributed server on which backup is taken. This Framework
contain three parties Clients, third party auditor(TPA),Cloud
storage server(CSS),Distributed servers(DS) Client: Client has
tremendous information files for outsourced on cloud. Also
depend upon cloud for preservation and computation of
information. Client may also be both any group or indivisual
person. Third Party auditor (TPA): it is trusted third party
which can expose the hazard of cloud storage services on
behalf of Client. On this system TPA generates tag for data in
file earlier than uploading it to cloud storage server. Cloud
storage server(CSS):This entity is managed by way of Cloud
servicer provider (CSP).It has computation useful resource
and cupboard space for maintenance of clients data.CSS have
got to provide integrity proof throughout integrity verification
segment. Distributed Servers(DS):These servers are used to
save another reproduction of data saved on CSS. To
recuperate the corrupted file, information backed up on DS is
used. We present an efficient verification scheme for ensuring
remote data integrity in cloud storage. The proposed scheme is
proved secure against reset attacks in the strengthened security
model while supporting efficient public verifiability and
dynamic data operations simultaneously proposed a dynamic
version of the prior PDP scheme. However, the system
imposes a priori bound on the number of queries and do not
support fully dynamic data operation.Dynamic data storage in
distributed scenario, and the proposed challenge-response
protocol can both determine the data correctness and locate
possible errors.

Three different network entities can be identified as

follows: Client module: an entity that has large data files to be
stored in the cloud and relies on the cloud for data
maintenance and computation, can be either individual
consumers or organizations. Cloud Storage Server (CSS)
module: an entity, which is managed by Cloud Service
Provider (CSP), has significant storage space and computation
resource to maintain clients data. The CSS is required to
provide integrity proof to the clients or cloud audit server
during the integrity checking phase. Cloud Audit Server
(CAS) module: a TPA, which has expertise and capabilities
that clients do not have, is trusted to assess and expose risk of

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 269 www.ijsart.com

cloud storage services on behalf of the clients upon request. In
this system, the cloud audit server also generates all the tags of
the files for the users before uploading to the cloud storage
server. The basic goal of PoR model is to achieve proof of
retrievability. Informally, this property ensures that if an
adversary can generate valid integrity proofs of any file F for a
non-negligible fraction of challenges, we can construct a PPT
machine to extract F with overwhelming probability. It is
formally defined by the following game between a challenger
C and an adversary A, where C plays the role of the audit
server (the client) and A plays the role of the storage server:
Setup Phase: The challenger C runs the Setup algorithm to
generate its key pair (pk, sk), and forwards pk to the adversary
A. Upload Phase: C initiates an empty table called Rlist. A can
adaptively query an upload oracle with reset capability as
follows: Upload: When a query on a file F and a state index i
comes, C checks if there is an entry (i, ri) in the R-list. If the
answer is yes, C overwrites ri onto its random tape; otherwise,
C inserts (i, ri) into R-list where ri is the content on its random
tape. Then C runs (F, t) Upload(sk, F; ri), and returns the
stored file F and the file tag t. Here Upload(; ri) denotes an
execution of the upload algorithm using randomness ri.
Challenge Phase: A can adaptively make the following two
kinds of oracle queries: IntegrityVerify: When a query on a
file tag t comes, C runs the integrity verification protocol
Integrity VerifyA C(pk, t) with A. Update: When a query on a
file tag t and a data operation request update comes, C runs the
update protocol UpdateA C(sk, t, update) with A.

V. PROPOSED METHODOLOGY

RC6

RC6 proper has a block size of 128 bits and supports
key sizes of 128, 192, and 256 bits, but, like RC5, it may be
parameterised to support a wide variety of word-lengths, key
sizes, and number of rounds. RC6 is very similar to RC5 in
structure, using data-dependent rotations, modular addition,
and XOR operations; in fact, RC6 could be viewed as
interweaving two parallel RC5 encryption processes, although
RC6 does use an extra multiplication operation not present in
RC5 in order to make the rotation dependent on every bit in a
word, and not just the least significant few bits.

”’Encryption Procedure:”’

B = B + S[0]
D = D + S[1]
 for i = 1 to r
 do
 {
 t = (B*(2B + 1)) XOR lg w

 u = (D*(2D + 1)) XOR lg w
 A = ((A t) XOR u) + S[2i]
 C = ((C u) XOR t) + S[2i + 1]
 (A, B, C, D) = (B, C, D, A)
}
 A = A + S[2r + 2]
 C = C + S[2r + 3]

”’Decryption Procedure:”’

C = C - S[2r + 3]
A = A - S[2r + 2]
for i = r downto 1
do
(A, B, C, D) = (D, A, B, C)
 u = (D*(2D + 1)) XOR lg w
 t = (B*(2B + 1)) XOR lg w
 C = ((C - S[2i + 1]) XOR t) u
 A = ((A - S[2i]) XOR u) t
D = D - S[1]
 B = B - S[0]

VI. RESULT ANALYSIS

Outputs / Snap shots of the results In this section we
will provide a thorough experimental evaluation of the
construction proposed. Existing system only provides
information about whether the outsourced file is corrupted or
not. This system provides recovery for deleted file. given
below shows that Verification time is less than tag generation
time because tag generation is required for whole file but for
verification, comparison of some part of file is efficient. Shows
that system require small amount of extra time with extra
feature of recovery.

Figure 2. Performance Measure

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 270 www.ijsart.com

Table 1. Result

Data in KB

time complexity
for decrypt
[Proposed
system] in second

time complexity for
decrypt [Exisitng
system] in second

128 0.51 1
256 0.63 1.2
384 0.76 1.42
512 0.91 1.6
640 1 1.79

Figure 3. Result Analysis

VII. CONCLUSION

In this paper, a new proof of retrievability for cloud

storage is introduced, in which a trustworthy audit server is
introduced to preprocess and upload the data on behalf of the
clients. In OPoR, the computation overhead for tag generation
on the client side is reduced significantly. The cloud audit
server also performs the data integrity verification or updating
the outsourced data upon the clients request. Besides, we
construct another new PoR scheme proven secure under a PoR
model with enhanced security against reset attack in the
upload phase. The scheme also supports public verifiability
and dynamic data operation simultaneously. There are several
interesting topics to do along this research line. For instance,
we can (1) reduce the trust on the cloud audit server for more
generic applications, (2) strengthen the security model against
reset attacks in the data integrity verification protocol, and (3)
find more efficient constructions requiring for less storage and
communication cost. We leave the study of these problems as
our future work.

VIII. ACKNOWLEDGMENT

We take this opportunity to thank Mr. A. J. Patankar,

the Head of the Department (Information Technology) and
Mr. K. D. Bamane the project coordinator and our project
guide Mrs. Geetanjali Sharma, for their valuable guidance and
for providing all the necessary facilities, which were

indispensable in the completion of this project report. We are
thankful to all the staff members of the Department of
Information Technology of D. Y. Patil College of
Engineering, Akurdi for their valuable time, support,
comments, suggestions and persuasion. We would also like to
thank the Institute for providing the required facilities, internet
access and important books.

REFERENCES

[1] J.Li,X.Tan.XChen and D.S.Wong,”OPoR : Enabling
proof of retrievability in cloud computing with Resource
constrained Devices,” IEEE transactions on cloud
computing on volume:XX No:2015

[2] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.
Kissner, Z. Peterson, and D. Song, “Provable data
possession at untrusted stores,” in CCS ’07: Proceedings
of the 14th ACM conference on Computer and
communications security. New York, NY, USA: ACM,
2007, pp. 598–609.

[3] A. Juels and B. S. K. Jr., “Pors: proofs of retrievability for
large files,” in CCS ’07: Proceedings of the 14th ACM
conference on Computer and communications security.
New York, NY, USA:ACM, 2007, pp. 584–597.

[4] H. Shacham and B. Waters, “Compact proofs of
retrievability,”in ASIACRYPT ’08: Proceedings of the
14th International Conference on the Theory and
Application of Cryptology and Information Security.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 90–107.

