
IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 1407 www.ijsart.com

Comparison and Data migration of Relational
Database with NoSQL

Ravi Kumar V G1, Chethan K S2

Department of Computer Science and Engineering
1, 2Assistant Professor, GSSS Institute of Engineering and Technology for Women Mysuru, Karnataka, India

Abstract-Relational databases have been the dominant model
since 1980’s, for storing, retrieving and managing data in
computer industry. But relational databases do not fit into the
current scenario and losing its importance due to fixed
schema requirement and inability to scale well. NoSQL
databases were built in the need to deal with the increasing
amount of complex data (Big Data), required in real-time web
applications, and are mostly addressing some of these points:
the focus on availability over consistency, horizontally
scalable, distributed architecture, and open-source. The
purpose of this paper is to present the reasons for a transition
from RDBMS to NoSQL databases, to describe the main
characteristics of nonrelational databases and to compare and
analyze three popular NoSQL solutions –MongoDB, In this
paper we aim at comparing both the database options for
various operations namely Insert, Select, Update and Delete
for small and large datasets.

Keywords-NoSQL, Relational vs NoSQL, MongoDB, Data
Migration

I. INTRODUCTION

Relational databases are great for enforcing data

integrity [4]. They are the tool of choice for online transaction
processing (OLTP) applications like data entry systems or on-
line ordering applications. RDBMS requires that data be
normalized so that it can provide quality results and prevent
orphan records and duplicates. It uses primary and secondary
keys and indexes to allow queries to quickly retrieve data. But
all of the good intentions that the RDBMS has for ensuring
data integrity come’s with a cost. Normalizing data requires
more tables, which requires more table joins, thus requiring
more keys and indexes. As databases start to grow into the
terabytes, performance starts to significantly fall off. Often,
hardware is thrown at the problem, which can be expensive
both from a capital endpoint and from an ongoing
maintenance and support standpoint.

Database can accommodate a very large number of
users on an on-demand basis. The main limitations with
conventional relational database management systems
(RDBMS) are that they are hard to scale with Data
warehousing, Grid, Web 2.0 and Cloud applications, have

non-linear query execution time, have unstable query plans
and have static schema. Even though RDBMS’s have
provided database users with the best mix of simplicity,
robustness, flexibility, performance, scalability and
compatibility but they are not able to satisfy the present day
users and applications for the reasons mentioned above.

The next generation NonSQL (NoSQL) databases are

mostly non-relational, distributed and horizontally scalable
and are able to satisfy most of the needs of the present day
applications. The main characteristics of these databases are
schema-free, no join, non-relational, easy replication support,
simple API and eventually consistent. One of the popular
Document-oriented databases is MongoDB [5]. It is part of
the NoSQL family of database systems. Instead of storing data
in tables as is done in a "classical" relational database,
MongoDB stores structured data as JSON like documents
with dynamic making the integration of data in certain types
of applications easier and faster [2].

The aim of this paper is to illustrate how a problem

being solved using MySQL will perform when MongoDB is
used on a Big data dataset. The results are encouraging and
clearly showcase the comparisons made. Queries are executed
on a big data airlines database using both MongoDB and
MySQL. Select, update, delete and insert queries are executed
and performance is evaluated.

II. MODELING AND QUERYING DATA IN MONGODB

NoSQL databases were developed to deal with such
large scale data needs. The term “NoSQL” was first used by
Carlo Strozzi in 1998 for his RDBMS, Stozzi NoSQL.
Recently, the term NoSQL (Not Only SQL) has been used for
databases which don’t use SQL (Structured Query Language)
as its query language and which don’t require fixed table
schema.

A key feature of NoSQL systems is “Share nothing”

horizontal scaling-replicating and partitioning data over many
servers. Due to this feature, NoSQL systems can support a
large number of simple read/write operations per second.
NoSQL systems don’t provide ACID (Atomicity, Consistency,

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 1408 www.ijsart.com

Isolation, Durability) guarantees but follow BASE. BASE is
acronym for Basically Available, Soft state and eventually
consistent. Basically available means that most data is
available most of the time. Soft-state means data is not
consistent all the time but will be in eventually consistent
state. MongoDb by 10gen, Neo4j by Neo Technologies,
Cassandra by Facebook, HBase and Google’s Big Table are
examples of NoSQL databases. NoSQL solutions are divided
into four classes [1].

 Key-Value databases

In key value data stores, data is stored in the form of keys
and values. Each key is unique and keys are used to
retrieve the values. The query speed of these databases is
higher than the relational databases. Amazon’s Dynamo
and Riak are famous key value data stores. These are used
in applications where schema is continuously evolving.

 Column-oriented databases
In column oriented data stores data is stored by columns
and columns of related data is stored in same file which
are called column families. These data stores are mostly
used in read intensive applications. Hbase and Cassandra
are famous col-umn oriented data stores.

 Document databases
Document data stores are similar to key value data stores
but the value is stored in JSON or XML format. It is used
for applications in which data is changed occasionally like
Customer Relationship Management System

 Graph databases
Graph Database uses graph structure with nodes, edges
and properties of the edges to store the data. They are
suited for the applications in which there are more
interconnections between the data like social networks.
OrientDB and neo4j are popular open source graph
databases.

III. DOCUMENT DATABASES

Document database stores data in the form of

documents rather than as normalized relational table in
relational databases. Data format of these documents can be
JSON, BSON or XML. Documents are stored into collections.
The relational equivalent of document and collection are
record (tuple) and relation (table).But like relation collection
does not enforce fixed schema. It can store documents with
completely different set of attributes. Documents can be
mapped directly to the class structure of programming
language but it is difficult to map RDBMS entity relationship
data model. This makes easier to do programming with
document databases. There is no need of JOINS in document
databases as in RDBMS due to embedded document and
arrays. That is why today a growing number of developers are

moving to document databases. CouchDB by Apache
Software Foundation and MongoDB by 10gen are open source
databases built for scalability and ease of use. MongoDB is an
open source NoSQL document database, initiated by 10gen
Company [6]. It was designed to handle growing data storage
needs. It is written in C++ and its query language is
JavaScript. MongoDB stores data in the form of collections.
Each collection contains documents. MongoDB documents are
stored in binary form of JSON called BSON format. BSON
supports Boolean, float, string, integer, date and binary types.
Due to document structure, MongoDB is schema less. It is
easy to add new fields to a document or to change the existing
structure of a model. MongoDB offers a technique named
Sharding to distribute collections over multiple nodes. When
nodes contains different amount of data, MongoDB
automatically redistribute the data so that load is equally dis-
tributed across the nodes. MongoDB also support Master-
slave replication. The slave nodes are copies of Master nodes
and used for reads or backups.

IV. DATA MIGRATION FROM MYSQL TO
MONGODB

The purpose of data migration i.e. transfer existing

data into a new environment, is to preserve all the data in the
old system. Database migration tool helps to transform
traditional applications into user-friendly applications [7]. Fig.
1 shows the approach.

Fig. 1 Flow diagram of migration.

The implementation has two major steps:

A. Extracting the data from MySQL to csv files

Algorithm:
Step1: Select the particular table for migration.
Step2: Generate the csv file for the particular table selected.
Step3: Save the generated csv file in the project folder.

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 1409 www.ijsart.com

Step4: If successful then go to step 6.
Step5: Else go to step 7.
Step6: Move the generated csv file to the next major step for
migrating it to MongoDB.
Step7: Ask the user to once again identify the table for
migration.
Step8: End.

B. Dumping the extracted data in the csv files to MongoDB

Input: csv file
Output: Collection of migrated data in MongoDB. Algorithm:
Step1: Start the MongoDB server.
Step2: Start the MongoDB client.
Step3: Set the path of the MongoDB bin file.
Step4: Import the data from csv file.
Step5: Display the imported data to user.
Step6: End.

After executing step A we can view the csv files and the data
in the MongoDB after the execution of step B.

V.COMPARISON BETWEEN MYSQL AND MONGODB

A huge airlines database [11] with 1050000 records

is considered. The attributes are Year, Month, DayofMonth,
DayOfWeek, DepTime, CRSDepTime, ArrTime,
CRSArrTime, UniqueCarrier, FlightNum, TailNum,
ActualElapsedTime, CRSElapsedTime, AirTime, ArrDelay,
DepDelay, OriginDest, Distance, TaxiIn, TaxiOut, Cancelled,
CancellationCode, Diverted, CarrierDelay, WeatherDelay,
NASDelay, SecurityDelay, LateAircraftDelay. The table/
collection is named as project 2016.

A. Relational table insert vs. MongoDB insert

 In MongoDB,

db.project2016.insert ();

 In SQL,

Insert into project2016
 Values ();

B. Relational table select vs. MongoDB select

 In MongoDB,

db.project2016.find ();

In SQL,

select * from project2016;

C. Relational table update vs. MongoDB update

In Mongodb, db.project2016.update ();

In SQL,

Update from project2016 set deptime=”957”;

D. Relational table delete vs. MongoDB delete

In MongoDB, db.project2016.remove ();

In SQL,

delete flightno from project2016 where deptime=”957”;

VI. QUERYING MONGODB

As data modeling is important, it is also important to
know how queries are executed in MongoDB. This section
describes how queries are written in MongoDB. Six Queries
are designed to describe syntax in MongoDB and to show how
same queries are written in MySQL [2].

Query1
:

Find the tag names which have been used in
the post under which a particular user has
commented. (user=’a1’)

MySQ
L

mysql> select t.name from comment c,post
p,user u,tag t where p.pid=c.postid an
d c.userid=u.uid and p.pid=t.pid and
u.username='a1';

Mongo
DB

> var u=db.user.findOne({username:"a1"})
>var
tag1=db.post.find({"comments.userid":u._id
})
>
db.tag.find({_id:tag1.tagid},{_id:0,name:1}
)

The find () method selects documents from a

collection that meets the <query> argument. <Projection>
argument can also be passed to select the fields to be included
in result set. The find () method returns a cursor to the results.
This cursor can be assigned to variable.

db.collection.find(<query>,<projection>)

The findOne() method is similar to find() method but it selects
only one document from a collection.

In this query first the document with username ‘a1’ is
extracted from User collection and stored in variable u. Then
the comments corresponding to that user are found by
matching u. id field with userid field of subdocument
comments (com-ments.userid) in Post Collection and returned

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 1410 www.ijsart.com

cursor is stored in the variable tag1. Then _id is matched in
Tag collection. To exclude _id field {_id:0} is written in
projection field and the fields which needs to be included like
here name is to be in-cluded is written as {name: 1} in
projection argument .

Query2 Find the tag(s) which have been used in the

posts of each user.

MySQ
L

mysql>select u.uid,t.tagid from user u,post
p,tag t where u.uid=p.uid and p.pid
=t.pid;

Mongo
DB

db.post.find({},{_id:0,uid:1,tagid:1})

Query3: Given a cid of a comment find its related

post, parent comment and tags associated
with the post.

MySQL mysql> select c.cid, c.postid, c.parentid,
t.tagid from comment c,post p ,tag t where
c.postid=p.pid and p.pid=t.pid and
c.cid='c2';

Mongo
DB

db.post.find({"comments.cid":"c2"},{"com
ments.cid":1,
"comments.parentid":1,tagid:1});

Query4: Find the time of the post under which some

user has commented. (user=’a1’)
MySQL mysql> select p.time from comment c,post

p,user u where p.pid=c.postid and c.
erid=u.uid and u.username='a1';

Mongo
DB

> var u=db.user.findOne({username:"a1"})
> db.post.find({uid:u._id},{time:1,_id:0})

Query5: List the Posts of each user.
MySQL mysql> select u.uid,p.pid from user

u,post p where u.uid=p.uid;
MongoD db.post.find({},{_id:1,uid:1})

Query6: Find the total number of posts by a

particular user. (uid =102)
MySQL mysql> select count(p.pid) from post

p,user u where u.uid=p.uid and
u.uid=102;

MongoDB > db.post.count({uid:102})

VII. CONCLUSION

In this paper data modeling in MongoDB has been

shown by using Class diagram and JSON format. It also has
been shown that how queries are written in MongoDB.
MongoDB does not use JOINs to relate documents like
Relational Databases. If it is required to use medium data
without complex queries and normal day to day functioning,

then MySQL is a better but if the data is non-relational and
may involve complex queries and joins if used in SQL, then
MongoDB gives better performance for big data.

REFERENCES

[1] Arora, Rupali, and Rinkle Rani Aggarwal. "Modeling and

querying data in mongodb." International Journal of
Scientific and Engineering Research 4.7 (2013).

[2] Aghi, Rajat, et al. "A comprehensive comparison of SQL
and MongoDB databases." International Journal of
Scientific and Research Publications 5.2 (2015).

[3] G. Eason, Lara Nichols,“A comparison of object-
relational and relational databases”, presented to the
Faculty of California , chapter 4, pp. 6-7.

[4] Jae Jin Koh,(3-6 October, 2007), Relational database
schema integration by overlay and redundancy
elimination methods, in International Forum on Strategic
Technology(2007), Institute of Electrical and Electronic
Engineers, IEEE Computer Society.

[5] https://en.wikipedia.org/wiki/MongoDB . Last Accesses
on: Dec 30 2016

[6] “MongoDB” http://www.mongodb.org/. Last Accessed
on: Dec 30, 2016

[7] Department of Education Office of Federal Student Aid,
Data Migration Roadmap, “A Best Practice Summary”,
pp.5-6

[8] Satyadhyan Chickerur, “Comparison of Relational
Database with Document-Oriented Database (MongoDB)
for Big Data Applications”, 8th International
Conference on Advanced Software Engineering & Its
Applications, 2015

[9] Strozzi, Carlo: NoSQL-A relational database management
sys-tem.2007-2010-http://www.strozzi.it/cgi-
bin/CSA/tw7/I/en_US/nosql /Home%2520 page

[10] R. Cattell. Scalable sql and nosql data stores. SIGMOD
Rec., 39(4):12–27, May 2011.

[11] “The Airline Data Set; http://stat-computing.org/
dataexpo/2009/.

