
IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 1461 www.ijsart.com

A Mixture Distribution Based System Using Data
Chuncking & Compression On Cloud

Omkar Bhat1, Kunal Ahirrao2, Ankush Kshirsagar3, Aakash Ankush4, Prof.Kiruthika Arunkumar5

Department of Computer Enigneering
1, 2, 3, 4, 5 DYPIEMR,Akurdi,Pune.

Abstract-Big sensing data is extensively used in both industry
and scientific research applications where the data is
generated with huge volume. Cloud computing provides a best
platform for big sensing data processing and storage. It moves
around four important areas of analytics and Big Data,
namely (i) data management and supporting architectures; (ii)
model development and scoring;(iii) visualisation and user
interaction; and (iv) business models[7]. However, the storage
pressure on cloud storage system caused by the explosive
growth of data is growing by the day, especially a vast amount
of redundant data waste alot of storage space. Data
deduplication can effectively reduce the size of data by
eliminating redundant data in storage systems. In cloud data
storage, the deduplication technology plays a major role. In
the deduplication technology, data are broken down into
multiple pieces called “chunks”. The Two Thresholds Two
Divisors (TTTD) algorithm is used for chunking mechanism
and is used for controlling the variations of the chunk-size.

Keywords-cloud computing, data chunk, data compression, big
sensing data, scalability.

I. INTRODUCTION

It is becoming a big necessity that we need to
process big data from multiple sensing systems. Cloud storage
systems are able to give low-cost, convenient and good
network storage service for users, which makes them more
popular. However, the storage pressure on cloud storage
system caused by the huge growth of data is growing by the
day, especially a vast amount of repetitive waste plenty of
storage space. Data deduplication can operatively reduce the
size of data by excluding repetitive data in storage systems.
However, current researches on data deduplication, which
mainly concentrate on the static scenes such as the backup
and archive systems, are not suitable for cloud storage system
due to the dynamic nature of data[4]. Deduplication applied in
cloud storage systems can minimize the size of data and save
the network bandwidth, the dynamicity of data in cloud
storage systems are different from backup and archive
systems, which brings different approaches for the study of
data deduplication in cloud storage systems. Here, the
dynamic characteristics of data are caused by dynamic sharing
between multiple users. For example, the same data accessed

by different users and the access frequency of different data at
the same time is different, the access frequency of the same
data changes overtime and duplicated data appears again in
different (storage nodes)nodes for data modification by
users[6].There are many different deduplication approaches
depending on the range of deduplication (locally or globally),
the position of deduplication (at the client or server side), the
time of deduplication (inline or offline), and the granularity of
deduplication (file-level or chunk-level). The process of
deduplication mainly comprises four steps: (1) chunking; (2)
calculating fingerprint; (3) fingerprint lookup (finding out the
redundancy by fingerprint comparison); storing new data[6].
Chunking can break a file into small parts called chunks for
detecting more redundancy. There are several typical
chunking strategies of data deduplication [5], such as whole-
file chunking, fixed- size chunking, content-defined chunking,
and Two Thresholds Two Divisors(TTTD) chunking.

II. BACKGROUND

Some techniques have been proposed to process big
data with traditional data processing tools such as database,
traditional compression, machine learning, or parallel and
distributed system. Those current popular techniques for big
data processing on Cloud will be introduced and analyzed[1].
Nowadays, lots of big data sets or streams come from sensing
systems which are widely deployed in almost every corner of
our real world to assist our everyday life. In order to cope with
that huge volume big sensing data, different techniques can
have been developed, on-line or off-line, centralized or
distributed. Naturally, the computational power of Cloud
comes into the sight of scientist for big sensing data
processing. With increasing number of cores on a chip, the
demand of cache and main memory capacity is on rise.
However, due to energy and bandwidth constraints, using
large-size memory systems becomes infeasible and this has
led to decreasing memory-to-core ratio in recent
processors[2].

Compression can help in storing the data in smaller

amount of physical memory, thus, giving the impression of a
large size memory to the application or end-user. Cache
compression (CC) can reduce costly off-chip accesses and
memory compression can reduce page faults which trigger

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 1462 www.ijsart.com

disk accesses. Compression also helps in reducing the memory
bandwidth requirement, since multiple consecutive
compressed blocks can be fetched at the cost of accessing a
single uncompressed block [10][11][12]. Huffman coding
works by analyzing the data to determine the probability of
different elements. Afterwards, the most probable elements are
coded with fewer number of bits than those which are least
probable. Thus, Huffman coding uses a variable-length coding
scheme. LZ compression algorithm works by replacing
repeated occurrences of data elements with references to a
single copy of that element existing earlier in the
uncompressed data. Several variants of it have been proposed
in the literature, which are used by various techniques[2].

2.1 Huffman Coding:

 Huffman Encoding Algorithms use the probability
distribution of the alphabet of the source to develop the code
words for symbols. The frequency distribution of all the
characters of the source is calculated in order to calculate the
probability distribution. According to the probabilities, the
code words are assigned. Shorter code words for higher
probabilities and longer code words for smaller probabilities
are assigned. For this task a binary tree is created using the
symbols as leaves according to their probabilities and paths of
those are taken as the code words. Two families of Huffman
Encoding have been proposed: Static Huffman Algorithms and
Adaptive Huffman Algorithms. Static Huffman Algorithms
calculate the frequencies first and then generate a common
tree for both the compression and decompression processes.
Details of this tree should be saved or transferred with the
compressed file. The Adaptive Huffman algorithms develop
the tree while calculating the frequencies and there will be two
trees in both the processes. In this approach, a tree is generated
with the flag symbol in the beginning and is updated as the
next symbol is read[9].

2.2 TTTD:

The TTTD algorithm was proposed by HP laboratory
at Palo Alto, California. This algorithm use same idea as the
BSW algorithm does. In addition, the TTTD algorithm uses
four parameters, the maximum threshold, the minimum
threshold, the main divisor, and the second divisor, to avoid
the problems of the BSW algorithm. The maximum and
minimum thresholds are used to eliminate very large-sized and
very small-sized chunks in order to control the variations of
chunk-size. The main divisor plays the same role as the BSW
algorithm and can be used to make the chunk-size close to our
expected chunk-size. In usual, the value of the second divisor
is half of the main divisor. Due to its higher probability,
second divisor assists algorithm to determine a backup

breakpoint for chunks in case the algorithm cannot find any
breakpoint by main divisor[5].

III. MODULE STRUCTURE

our framework is divided into six modules.
1) User Registration
2) Compression
3) Decompression
4) Cloud Connectivity
5) Authentication
6) Performance Analyzer

3.1. SYSTEM ARCHITECTURE:

 fig 3.1 – System Architecture

Our system will be working on processing big data
on cloud by using compression technique working Huffman
algorithm, by overcoming some drawbacks of Map Reduce
used in existing system. The data which is to be stored on
cloud after compression will be available in its original size on
local server. This data on local server on time of processing
will be divided into chunks so that the data will be processed
parallel and faster. To divide big data into chunks we will be
using TTTD algorithm. The compression will be applied on
every single chunk on cloud server and we will be showing
that till which level the big data is being compressed and what
the compression level bar will show that till what extent the
file size has been compressed while storing on cloud. One of
the best advantage of out proposed system will be that
compression will be applied on any type of file such as audio,
video or text present in user’s system by applying Huffman
algorithm , while in existing system the compression is
applied only on text data using Map Reduce Algorithm.

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 1463 www.ijsart.com

3. 2. Architectural Techniques Use For Compression :

3.2.1 Huffman Coding:

Huffman Encoding Algorithms use the probability
distribution of the alphabet of the source to develop the code
words for symbols. The frequency distribution of all the
characters of the source is calculated in order to calculate the
probability distribution. According to the probabilities, the
code words are assigned. Shorter code words for higher
probabilities and longer code words for smaller probabilities
are assigned. For this task a binary tree is created using the
symbols as leaves according to their probabilities and paths of
those are taken as the code words. Two families of Huffman
Encoding have been proposed: Static Huffman Algorithms and
Adaptive Huffman Algorithms. Static Huffman Algorithms
calculate the frequencies first and then generate a common
tree for both the compression and decompression processes.
Details of this tree should be saved or transferred with the
compressed file. The Adaptive Huffman algorithms develop
the tree while calculating the frequencies and there will be two
trees in both the processes. In this approach, a tree is generated
with the flag symbol in the beginning and is updated as the
next symbol is read[9].

IV. CHUNKING MECHANISM

There are two approaches in partitioning a file into chunks:
fixed size chunking and variable size chunking.

4.1 Fixed Size Chunking:

In fixed size chunking, a file is partitioned into fixed
size units, e.g., 8 KByte blocks. It is simple, fast, and
computationally very cheap. A number of proceeding works
have adopted fixed-size chunking for backup applica-tions
[42] and for large-scale file systems [18]. However, when a
small amount of content is inserted to or deleted from the
original file, the fixed size chunking may generate a set of
chunks that are entirely different from the original ones even
though most of the file contents remain intact.

4.2 Variable Size Chunking:

Variable size chunking partitions a file based on the

content of the file, not the offset. Variable size chunking is
relatively robust against the insertion/deletion of the file. The
Basic Sliding Window (BSW) algorithm [19] is widely used in
variable size chunking.

4.3Concept of TTTD:

The TTTD algorithm was proposed by HP laboratory
at Palo Alto, California. This algorithm use same idea as the
BSW algorithm does. In addition, the TTTD algorithm uses
four parameters, the maximum threshold, the minimum
threshold, the main divisor, and the second divisor, to avoid
the problems of the BSW algorithm. The maximum and
minimum thresholds are used to eliminate very large-sized and
very small-sized chunks in order to control the variations of
chunk-size. The main divisor plays the same role as the BSW
algorithm and can be used to make the chunk-size close to our
expected chunk-size. In usual, the value of the second divisor
is half of the main divisor. Due to its higher probability,
second divisor assists algorithm to determine a backup
breakpoint for chunks in case the algorithm cannot find any
breakpoint by main divisor[5].

Fig-TTTD Workflow

V. FILE SHARING MECHANISM

In the file sharing network, each peer is responsible

for attempting to maximize its own download rate and obtain
new pieces quickly. In BitTorrent, peers achieve this by
downloading from whoever they can and deciding which
peers to upload to via the TFT strategy. Our system differs
from BitTorrent in which peers can only make a request to
others for downloading. Meanwhile they should contribute to
others according to the choking algorithm, so that they can
upgrade their contribution coefficient to help them get new
pieces. We propose the file sharing mechanism which
includes the choking algorithm for peers to share file and the
peer selection algorithm to decide which peers to unchoke.

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 1464 www.ijsart.com

VI. EXPERIMENTAL RESULT

6.1 Dataset 1:

Sr.no Document Type Extension
1 Word document .doc
2 Word document .doc
3 Word document .doc

 Table-6.1: Dataset 1

6.2 Dataset 2:

Sr.no Document Type Extension
1 Image document .jpg
2 Image document .jpg
3 Image document .jpg

Table-6.2: Dataset 2

6.3 Dataset 3:

Sr.no Document Type Extension
1 Pdf document .pdf
2 Pdf document .pdf
3 Pdf document .pdf

 Table-6.3: Dataset 3

6.4 Performance Evaluation:

Data Set Original Data Size Compressed data size
DS1 153 KB 85 KB
DS2 7110 KB 6053 KB
DS3 1813 KB 1418 KB

 Table-6.4: Performance Evaluation

VII. CONCLUSION

On the basis of our experiments we conclude that

using compression and decompression technique we can
efficiently utilize the available cloud space. Storing the
compressed data over cloud manages the cloud space
efficiently and also while the data is to be accessed the data is
decompressed and can be used.This helps in maintaining the
exact quality of data.

ACKNOWLEDGMENT

It gives me an immense pleasure and satisfaction in

submitting this paper. In this endeavor of preparing this paper
many people gave a helping hand, I would thank them all. I
heartily pay gratitude to my guide Prof.Kiruthika Arunkumar
and Prof. Nareshkumar R.M/ Prof. Ishwar Kalbandi, Project

Coordinator of Academic Research who gave me this
opportunity to work upon this topic. I am also grateful to Prof.
P.P. Shevatekar, Head of Computer Engineering Department,
DYPIEMR for her indispensable support and suggestions.

REFERENCES

[1] Chi Yang, Jinjun Chen, “A Scalable Data Chunk

Similarity based Compression Approach for Efficient Big
Sensing Data Processing Cloud”, IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA
ENGINEERING, February 2016.

[2] Sparsh Mittal, Member, IEEE and Jeffrey S. Vetter,Senior
Member, IEEE ”A Survey Of Architectural Approaches
for Data Compression in Cache and Main Memory
Systems” IEEE TRANSACTIONS ON PARALLEL
AND DISTRIBUTED SYSTEMS, VOL. 27, NO.
5, MAY 2016.

[3] Santoshi Tsuchiya, Yoshinori Sakamoto, Yuichi
Tsuchimoto, Vivian Lee, “Big Data Processing on Cloud
Environment”, FUJITSU Science and Technology
Journal, 48(2):159-168, 2012.

[4] Venish and K. Siva Sankar, “Study of chunking algorithm
in Data Deduplication”, Proceedings of the
International Conference on Soft Computing Systems,
Advances in Intelligent Systems and Computing 398, DOI
10.1007/978-81-322-2674-1_2.

[5] Chang, BingChun, "A Running Time Improvement for
Two Thresholds Two Divisors Algorithm"
(2009).Master's Projects. Paper 42.

[6] K. Tanaka and A. Matsuda, “Static energy reduction in
cache memories using data compression,” in Proc. IEEE
TENCON, 2006,pp. 1–4.

[7] S. Roy, R. Kumar, and M. Prvulovic, “Improving system
performance with compressed memory,” in Proc. Int.
Parallel Distrib. Process. Symp., 2001, pp. 7–13

[8] J.-S. Lee, W.-K. Hong, and S.-D. Kim, “Design and
evaluation of a selective compressed memory system,” in
Proc. Int. Conf. Comput. Des., 1999, pp. 184–191.M.
Young, The Technical Writer’s Handbook. Mill Valley,
CA: University Science, 1989.

