
IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 1116 www.ijsart.com

Defining Standardized Goods in Cloud Computing
Markets using SLA Mapping Approach

Priyanka K R1, Manikantha K2

1, 2 Dept of CSE
1, 2 GSSSIETW, Mysore, BNMIT, Bangalore

Abstract- Due to the large variety in computing resources
and, consequently, the large number of different types of Ser-
vice Level Agreements (SLAs), any market for computing
resources faces the potential problem of a low market
liquidity. To counteract this problem, offering a set of
standardized computing resources is appropriate. Each of
these standardized computing resources is defined through an
SLA template. An SLA template defines the structure of an
SLA, the attributes, the names of the attributes, and the
attribute values. Since these SLA templates are currently
static, they cannot reflect changes in users' needs. To ad-dress
this shortcoming, we present the novel approach of adaptive
SLA matching. This approach adapts SLA tem-plates based on
SLA mappings by allowing Cloud users to define mappings
between public SLA templates, which are available in the
Cloud market, and their private SLA tem-plates, which are
used for various in-house business processes of the Cloud
user. Besides showing how public SLA templates adapt to the
demand of users, we also analyze the benefits and costs of this
approach. Costs are incurred every time a user has to define a
new SLA mapping to a public SLA template due to its
adaptation. In particular, within this paper, we investigate the
cost depending on the use of different public SLA template
adaptation methods. The simulation results show that the use
of heuristics within adaptation methods helps balancing the
cost and benefit of the SLA mapping approach.

I. INTRODUCTION

Computing resource allocations in Clouds are based
not only on functional requirements but also on different non-
functional requirements. These non-functional requirements
(e.g., application execution time, reliability, and availability)
are termed Quality of Service (QoS) requirements and are
expressed and negotiated by means of Service Level
Agreements (SLAs). In order to facilitate the creation and
management of SLAs, SLA templates have been introduced.
SLA templates, which represent popular SLA formats,
comprise elements such as names of trading par-ties, names of
SLA attributes, measurement metrics, and attribute values [1].

In Cloud computing markets, buyers and sellers of

computing resources face the problem of varying definitions

of computing resources. Computing resources are described
through different non-standardized attributes (e.g., CPU cores,
execution time, inbound bandwidth, outbound band-width, and
processor type). [4]. Sellers use them to describe their supply
of resources and buyers use them to describe their demand for
resources. As a consequence, a large variety of different SLAs
exists in the market. The success of matching asks (i.e., offers
of sellers) and bids (i.e., offers of buyers) become very
unlikely [1].

Approaches tackling this plethora of SLA attributes

include the use of standardized SLA templates for a specific
consumer base [5, 6], downloadable predefined provider-
specific SLA templates [7], and the use of ontology’s [8, 9].
These approaches clearly define SLA templates and require
users to agree a priori on predefined requirements. The SLA
templates are static.

However, the demand of users changes over time.

For example, the emergence of multi-core architectures in
computing resources required the inclusion of the new
attribute ”number of cores”, which was not present in an SLA
tem-plate a couple of years ago. However, the existing
approaches for the specification of SLA templates cannot
easily deal with demand changes. These approaches involve
heavy user-interactions to adapt existing SLA templates to
changing market conditions.

In this paper, we apply adaptive SLA mapping, a new

approach that can react to changing market conditions [1].
This approach adapts public SLA templates, which are used in
the Cloud market, based on SLA mappings. SLA map-pings,
which have been defined by users based on their needs, bridge
the differences between existing public SLA templates and the
private SLA template (i.e., the SLA tem-plate of the user).
Since a user cannot easily change the private SLA template
due to internal or legal organizational requirements, an SLA
mapping is a convenient workaround.

The benefits of SLA mappings for market

participants are threefold. Firstly, traders can keep their
private tem-plates, which are required for other business
processes. Secondly, based on their submitted mappings of

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 1117 www.ijsart.com

private SLA templates to public SLA templates, they
contribute to the evolution of the market's public SLA
templates, reflecting all traders' needs. Thirdly, if a set of new
products is introduced to the market, our approach can be
applied to find a set of new public SLA templates. All these
benefits result in satisfied users, who continue to use the
market, therefore in - creasing liquidity in the Cloud market.
However, these benefits come with some cost for the user.
Whenever a public SLA template has been adapted, the users
of this template have to re-define their SLA mappings.

The five contributions of this paper are: (1) the

definition of an appropriate use case to exemplify the adaptive
SLA mapping approach; (2) the definition of three adaptation
methods for adapting public SLA templates to the needs of the
user; (3) the investigation of conditions under which SLA
templates should be adapted; (4) the formalization of measures
(i.e., utility and cost) to assess SLA adaptations and SLA
adaptation methods; and (5) the introduction of an emulation
approach for the use cases.

The remainder of the paper is organized as follows:

Section 2 describes related work. Section 3 introduces the
adaptive SLA mapping approach and the utility and cost
model. The simulation setup, the three adaptation methods,
and the simulation infrastructure are described in Section 4.
Section 5 presents the simulation results and a discussion.
Section 6 concludes the paper.

II. RELATED WORK

For putting this work in context of the state-of-the-

art, we briefly describe Cloud marketplaces and the existing
work on SLAs. Currently, a large number of commercial
Cloud providers have entered the utility computing market,
offering a number of different types of services. We
distinguish between computing infrastructure services, which
are pure computing resources on a pay-per-use basis [11, 12,
13], software services, which are computing resources in
combination with a software solution [6, 14], and platform
services, which allow customers to create their own services in
combination with the help of supporting services of the
platform provider. The first type of ser-vices consists of a
virtual machine, as in the case of Amazon's EC2 service, or in
the form of a computing cluster, as done by Tsunamic
Technologies. The number of re-sources offered by a provider
is low. For example, Amazon and EMC introduced only three
derivations of their basic resource type [5]. Examples for the
second type of ser-vices are services offered by Google
(Google Apps [6]) and Salesforce.com [14]. These companies
provide access to software on pay-per-use basis. These
Software-as-a-Service (SaaS) solutions can hardly be

integrated with other solutions, because of their large variety.
Examples for the third kind of Cloud services are Sun N1 Grid
[15], force.com [14], and Microsoft Azure [16]. In this
category, the focus lies on provisioning essential basic
services that are needed by a large number of applications.
These basic services can be ordered on a pay-per-use basis.
Although the goal of these offerings is a seamless integration
with the users applications, standardization of interfaces is
largely absent. Concluding, we can state that, apart from first
attempts in the service type infrastructure as a service,
standardization attempts do almost not exist.

The main SLA matching mechanisms are based on
OWL, DAML-S, or similar semantic technologies. [8] de-
scribe a framework for semantic matching of SLAs based on
WSDL-S and OWL. [9] present a unified QoS ontology
applicable to specific scenarios such as QoS based Web
services selection, QoS monitoring, and QoS adaptation. [17]
present an autonomic Grid architecture with mechanisms for
dynamically reconfiguring service center infrastructures. It is
exploited to fulfill varying QoS requirements. Besides those
mechanisms, [10] discuss autonomous QoS management,
using a proxy-like approach for defining QoS parameters that
a service has to maintain during its interaction with a specific
customer. The implementation is based on WS-Agreement,
using predefined SLA templates. How-ever, they cannot
consider changes in user needs, which is essential for creating
successful markets, as shown in our earlier work [1]. Several
works on current SLA management are presented in [2].
Besides, regardless of the type of approach used, these
approaches do not evaluate and ex-plain the benefit and costs
through the introduction of SLA matching mechanisms.

III. ADAPTIVE SLA MAPPING

In this section, we present a use case for adaptive
SLA mapping. Besides, we discuss the SLA life cycle and
intro-duce the utility and cost model for assessing SLA
matching approaches.

1. Use Case

Since resources can be exposed as services using

typical Cloud deployment technologies (i.e., SaaS/PaaS/IaaS),
we assume that the service provider of Figure 1 registers its re-
sources (e.g., infrastructure, software, platforms) to particular
public templates (step 1, Figure 1). If some differences
between its resources (private SLA template) and the public

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 1118 www.ijsart.com

Figure 1. Use case of SLA mapping

templates exist, the provider defines SLA mappings,

trans-forming the private template into the public template
(step 2, Figure 1). The management of SLA mappings, which
is performed with VieSLAF, is explained in detail in [3].

In step 3, Cloud users can look up Cloud services that

they want to use in their workflow. In Figure 1, we
exemplified a business process (i.e, workflow) for medical
treatments [18]. It includes various interactions with human
beings (e.g., the task of getting a second opinion on a
diagnosis) as well as interaction with different infrastructure
services. Some of these tasks (e.g., the reconstruction of 2-
dimensional SPECT images to 3-dimensional SPECT images)
can be outsourced to the Cloud [18]. Thereby, we assume that
the private SLA template (representing the task) cannot be
changed, since it is also part of some other local business
processes and has to comply with different legal guidelines for
electronic processing of medical data. There-fore, in case the
user decides to outsource a task and discovers differences
between the private SLA template and the public SLA
template, the user defines an SLA map-ping. The mapping
describes the differences between the two SLA templates (step
4). A typical mapping is the map-ping of an attribute name to
another attribute name (e.g., number of CPUs to cores) or the
inclusion of a new SLA attribute (e.g., parallel programming
models) into the SLA template.

The public SLA templates are stored in searchable
repositories using SQL and non-SQL-based databases (e.g.,
HadoopDB). The SLA mappings, which have been pro-vided
by users and providers to the entity managing the public SLA
templates, are evaluated after certain time periods, in order to
adapt the public SLA templates to the needs of the users. The
adapted public SLA templates replace the existing public SLA
templates in the repository, constituting our novel approach of
adaptive SLA mapping. The adaptation method, which adapts
the public SLA tem-plates, performs it such that the new
public SLA templates represent user needs better than the old
SLA templates (step 5). Besides the adaptation of attribute
names and attribute values, the adaptations can also include
definitions of new branches of templates (e.g., a medical SLA

template can be substituted by more specialized templates on
medical imaging and surgery support). The definition of
different versions of a particular template is also possible as
shown for the templates in the bioinformatics domain (step 6).

2. Public SLA Template Lifecycle

To illustrate the lifecycle of public SLA templates,

we give a short example as shown in Figure 2 first.

Figure 2. SLA mapping process.

Initially, the SLA template registry only holds the

initial public SLA template T0. In iteration 1, all users define
mappings from their private templates to T0. Since the at-
tribute of the public SLA template (A, B, C) and the attribute
names of each user differ, every user has to create 3 attribute
mappings. Based on these mappings, the new version T1 of
the public template is generated (according to the adaptation
method used), containing the attribute names A', B', C” . Since
the public template has changed, users need to change their
mappings as well (iteration 2). Consequently, user a only
needs one attribute mapping, user b can reduce the number of
attribute mappings to 2, and user c does not need to issue any
attribute mapping, since the public tem-plate is completely
identical to her private template. This example shows how our
adaptive SLA mapping approach adapts a public SLA
template to the needs of users. In addition to this, since
adapted public SLA templates represent the need of market
participants, it is most likely that new requests of users need
less attribute mappings, reducing the cost for users.

The formalized public SLA template lifecycle, which
consists of five steps, is shown in Figure 3.

Figure 3. Formalized public SLA template lifecycle.

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 1119 www.ijsart.com

An initial template is created in the beginning of the
life-cycle (step 1, Figure 3). Afterwards, consumers perform
SLA mappings (step 2). Based on their needs, inferred from
these mappings (step 3), and the predefined adaptation
method, the public SLA template is adapted (step 4).
Assuming that the demand of market participants does not
change, a final template is generated (step 5). If the demand
has changed during a fixed time period, the process continues
with step 2. In practice, the time between two iterations could
correspond to a time period of one week. During that time new
SLA mappings are solicited from consumers and users.

3. Adaptation Methods

The adaptation methods determine for every attribute name
separately, whether the current attribute name should be
adapted or not. The first adaptation method is the maxi-mum
method (which has been applied to the example shown in
Figure 2). The remaining two adaptation methods differ with
respect to their use of heuristics to find a balance be-tween
benefit and cost.

Maximum Method

Applying this method, the SLA attribute name, which
has the highest number of attribute name mappings, is selected
(maximum candidate). The selected attribute name will be-
come the next attribute name used by the next public SLA
template.

Example: If we assume that all attribute names have
the same count, this method would select any of the four
possible attribute names randomly. If a public SLA template
already exists, the method will choose the attribute name that
is currently used in the public SLA template.

Threshold Method

In order to increase the requirements for selecting the
maximum candidate, this method introduces a threshold value.
If an attribute name is used more than this threshold (which
can be adapted) and has the highest count, then this attribute
name will be selected. If more than one is above the thresh-old
and they have the same count, the method proceeds as
described for the maximum method. If none is above the
required threshold, then the method sticks to the currently
used attribute name. Note, throughout the examples in this
paper, we fix the threshold to 60%.

Example: Assuming an example in which none of the
at-tribute names has a mapping percentage above 60% and all

counts are equal, the threshold method sticks to the attribute
name that is currently used in the public SLA template.

Maximum-Percentage-Change Method

This method is divided into two steps. In the first
step, the attribute name is chosen according to the maximum
method.

In the second step, which comprises iterations,
attribute names will be changed, only if the percentage
difference between the highest count attribute name and the
currently selected attribute name exceeds a threshold. The
threshold T is set to 15%. A low threshold leads to more
mappings, whereas a high threshold leads in average to fewer
map-pings. After iterations (e.g., = 10), the method re-
starts with executing the first step. It allows even slighter
change s to take effect.

Example: Let's suppose the mapping count resulted in
attribute name A′ having the highest count. By applying the
maximum method, A′ is selected. In the next itera-tion, the
number of mappings for each attribute name has changed.
Attribute name A accounted for 10%, A′ for 28%, A′′ for 32%,
and A′′′ for 30% of all mappings. Assuming a threshold of
15%, the chosen attribute does not change. The percentage
difference between attribute name A′ and the attribute name
A′′ with the highest count is only 13.3%.

4. Utility and Cost Model

Since the aim of this paper is to assess the benefit and
the cost of using the adaptive SLA mapping approach for
finding the optimal standardized goods in a Cloud market, we
define a utility model and a cost model. The utility function
and the cost function, which take attributes of the customer's
SLA template and the attributes of the public SLA template as
input variables, helps to quantify the benefit and cost. For our
utility model, we assume an increase in benefit, if an attribute
of both templates is identical. This is motivated by the fact
that the Cloud resource traded is identical to the need of the
buyer (or the provisioned resource of the provider) and,
therefore, no inefficiency through re-source over-provisioning
occurs. The cost model captures the effort of changing an SLA
mapping. A cost to the user is only incurred, if the user needs
to change its SLA mapping because of a change in the public
SLA template.

 To formally introduce these models, we introduce
some definitions. The set of SLA attributes is defined as Tvar .
As an example, we set Tvar = {, }, where represents

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 1120 www.ijsart.com

Number of Cores in one CPU and represents Amount of
CPU Time (Note, and could also represent attribute
values). All possible attribute names that a user can map to

a ∈ Tvar are denoted as Var(). Within our example, we set

Var() = {A, A′ , A′′ , A′′′ }, representing Var(“Number of

Cores in one CPU”) = {CPU Cores, Cores of CPU, Number
of CPUCores, Cores}, and Var() = {B, B′ , B′′ , B′′′ }.

Assuming a set of consumers' private templates C = {c1, c2,
. . . , cn}, we can now define the relationship of a specific SLA
attribute to a specific name of this SLA attribute at the

iteration i ∈ N for every private and public template p, p ∈ C ∪
{T } as names match or the public template attribute name did
not change since the last iteration. That means he does not
need any new mapping. Thus, for attribute , the consumer c
at iteration i gets the net utility

uo

c,i,= u+
c,i()−u−

c,i(). (4)

The net utility for all attributes at iteration i for
consumer c is defined as the sum of the net utilities uo

ci,:
uo

c,i = ∈Tvar= uo
c,i,. (5)

The overall utility and overall cost (i.e., the utility

and cost of all users C and attributes at iteration i) are
defined as:
U+

i = c∈C ∈Tvar u+
c,i() (6)

U−
i = c∈C∈Tvar u−

c,i() (7)

Consequently, the overall net utility at iteration i is
defined as the difference between the overall utilities minus
the overall cost:
Uo

i =U+
i −U−

i . (8)

IV. SIMULATION ENVIRONMENT

In order to analyze the performance of the three
adaptation methods with respect to balancing between
adapting the public SLA template to the current needs of all
user and the cost of making new SLA mappings, we set up a
simulation environment.

Figure 4. Adaptive SLA mapping architecture using VieSLAF.

1. Testbed

For our simulation, we use a testbed that is composed
of production-level software (i.e., VieSLAF) and software that
simulates SLA mappings of users. Figure 4 illustrates our
emulation test bed. The components that are drawn in white
are production-level software. It comprises the knowledge
base, components for managing SLA mappings provided by
consumers and providers, and the adaptation method. The grey
components indicate the simulated components. The SLA
mapping middleware, which follows a client/service design,
facilitates the access to registries and provides a GUI used for
browsing public SLA templates. The SLA mapping
middleware is based on different Windows Communication
Foundation (WCF) services, of which only a few are
mentioned here. For example, the SLA Mapping Service is
used for the management of SLA mappings (cf. (3), Figure 4)
by users (i.e., consumers and providers). Consumers may
search for appropriate services through SLA Querying Service
in the registry and define appropriate SLA mappings by using
the method create Attribute Mapping. With each query, it is
also checked whether a user has also specified SLA mappings.
The rules necessary for the transformations of SLA attributes
(or a set of SLA attributes) are stored in the database and can
be ap-plied by users to their private SLA templates.

For storing the SLA templates in a predefined data
model (cf. (4)), we implemented registries representing
search-able repositories. Currently, we have implemented an
MS-SQL 2008 database with a Web service frontend. To
handle scalability issues, we intend to utilize non-SQL DBs
(e.g., HadoopDB) with SQL-like frontends (e.g., Hive [22]).
SLA templates are stored in a canonical form, enabling the
comparison of these XML-based templates. The registry
methods are also implemented as WCF services and can be
accessed only with appropriate access rights. The access rights

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 1121 www.ijsart.com

distinguish three access roles: consumer, provider and registry
administrator.

Based on the submitted SLA mappings, public SLA
tem-plates are adapted, using an adaptation method (cf. (5)).

2. Simulation Parameter Settings

For our simulation, we define five scenarios on how often
attribute names occur in average. That means each scenario
defines an occurrence distribution of four different SLA at-
tribute names. The five scenarios, which have been chosen
such that they represent different situations, are defined a s
follows:

• Scenario a: All attribute name counts of an attribute

are equal.
• Scenario b: The counts of three attribute names are

equally large and larger than the remaining one.
• Scenario d: One attribute name, which has been

picked as the attribute name for the initial setting, has
a larger count than the remaining three attribute
names, which are equally large.

• Scenario e: One attribute name, which has not been
picked as the attribute name for the initial setting, has
a larger count than the remaining three attribute
names.

The actual values of each of the five scenarios are

shown in Table 1. The four attribute names chosen for this
example are: A, A′, A′′, A′′′.

Table 1: Average occurrence of attribute names in all
scenarios.

For example, if the attribute (CPU Time) is
distributed according to scenario c, then the four attribute
names oc-cur in average as follows: 10% of the attribute
names is A,

10% of the attribute names is A′, 40% of the attribute names is
A′′, and 40% of the attribute names is A′′′. However, as we
intend to account for slight changes in the demand for attribute
names by users, we draw randomly the attribute names
according to the distribution given in Table 1 instead of
generating the exact number of attribute names. Consequently,
the actual counts of attribute names might vary compared to
the average values shown in Table 1. As an ex-ample, the
attribute names generated according to the distribution of
scenario c might be 9%, 12%, 37%, and 42% instead of 10%,
10%, 40%, and 40%. This process of generation of attribute
names is executed for each iteration.

Furthermore, another three simulation parameters are
set. First, we limit the number of iterations to 20. At each
iteration, 100 users perform SLA mappings to all SLA at-
tributes. At the end of an iteration, a new public SLA tem-
plate is generated, which is based on the adaptation method
and the users' SLA mappings.

Table 2. summarizes these settings.

Scenario c: Two attribute name counts are equally
large and are larger than the other two, which are equally large
as well. We used these parameter settings for each of the
adaptation methods.

V. EXPERIMENTAL RESULTS AND ANALYSIS

1. Net Utilities of Adaptation Methods

Using the SLA mapping approach, the user gets the
ben-efit of having access to public SLA templates that reflect
the overall market demand (i.e., the average user's demand).
This gain of some user is expressed with equation 2. How-
ever, this comes with the cost for defining new SLA map-
pings whenever the public SLA template changed (equation
3). Within this section, we investigate the cost of all users
(equation 7), the utility of all users (equation 6), and the net
utility of all users (equation 8) for different adaptation

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 1122 www.ijsart.com

methods. The net utility metric is used to decide which of the
three adaptation methods is superior.

The first adaption method that we investigate is the
maximum method. It is our reference method, since it does not
use any heuristics. The simulation results, which are shown in
this section, have been obtained from running the simulation
with parameter settings as described in section 4.2. The
simulation results shown are averages over all scenarios. The
advantage of this method is that the public SLA template
generated with this method minimizes the differences to all
private SLA templates of all users. This method requires,
however, many changes of SLA mappings.

Figure 5. Utility, cost, and net utility for the maximum method.

 Figure 5 shows, as expected, that the maximum
method generates a high utility, since it achieves many
matchings of attribute names of the public SLA template and
the private SLA templates. Its net utility stays around its initial
net utility value of about 170 for each iteration. However, as
expected as well, it requires many new mappings and, thus,
incurs high costs. Consequently, the net utility is far lower than
the utility.

 In order to address this issue of high cost, we use
heuristics in the following two adaptation methods. The
heuristics help to find a balance between the utility of having a
public SLA template, whose attribute names are identical to
most of the attribute names of the private SLA templates, and
the cost of creating new SLA attribute mappings. The first
heuristics-based adaptation method, which we investigate, is the
threshold method. The simulation results are shown in Figure 6.

Figure 6. Utility, cost, and net utility for the maximum-

percentage-change method with = 10

Figure 6 illustrates that the threshold method does not
incur any cost to users at all. This is due to the high thresh-old
(i.e., 60%), resulting in no changes of the SLA template
attribute names. Nevertheless, the utility (and net utility) is not
higher than the maximum method, just more stable across the
20 iterations. Therefore, the threshold method with a threshold
of 60% could be considered the other extreme strategy, in
which the initial public SLA template does not get adapted at
all. By lowering the threshold parameter such that the
threshold parameter in a few iterations is lower than the
highest count of an attribute name, it is expected that the net
utility improves. If the threshold parameter is lower than the
minimum count of an attribute name in all iterations, then this
method is identical to the maximum method.

The maximum-percentage-change method is the
second heuristics-based adaptation method, which we
investigate and the results are shown in Figure 7.

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 1123 www.ijsart.com

Figure 7. Utility, cost, and net utility for the maximum-

percentage-change method with = 10

The simulation results show that in the first iteration
and every tenth iteration (= 10) the overall net utility
decreases significantly due to the high amount of changes of
SLA mappings (Figure 7). The cost is very high. At these
iterations, this method chooses the attribute names with the
maximum number of counts (not considering the

2. Average Cost and Average Net Utility

Table 3 shows the average overall utility, average
overall cost, and the average overall net utility for all three
adaptation methods. The averages are calculated over all
iterations. The maximum method has achieved the highest
average overall utility. It satisfies the largest number of users.
However, since it also incurs the highest costs, it becomes the
method with the lowest average overall net utility.

Table 3. Overall utility, overall costs, and overall net utilities

aver-aged across all iterations (The best values are highlighted
in bold)

The threshold method does slightly better with
respect to the average net utility than the maximum method.
This is due to the zero cost. The threshold method (with a high

threshold) stays with a fixed set of SLA attribute names for the
public SLA template.

The best adaptation method with respect to the aver-
age overall net utility is the maximum-percentage-change
method. We observe that the average overall net utility is
better than the other two adaptation methods, although the
average overall utility is not the highest among the three
adaptation methods. The reason is that the cost is low. The low
cost is a result of the fact that the SLA attribute names of the
public SLA template are not changed frequently. They are
only changed in iterations k� + 1, k ∈ N0 (i.e., when the
method behaves like the maximum method) and whenever the
threshold of 15% is exceeded.

Based on the result shown in this section, we can
state the adaptive SLA mapping approach is a good way of
generating standardized goods, which address the needs of the
market. To reduce the cost for creating SLA mappings
frequently, the introduction of heuristics into the adaptation
methods is helpful. Results show that a significant reduction
of costs can be achieved, balancing the benefit and the cost of
SLA mapping.

VI. CONCLUSION

In this paper, we have investigated cost, utility, and

net utility of the adaptive SLA mapping approach, in which
market participants may define SLA mappings for translating
their private SLA templates to public SLA templates. Contrary
to all other available SLA matching approaches, the adaptive
SLA mapping approach facilitates continuous adaptation of
public SLA templates based on market trends. However, the
adaptation of SLA mappings comes with a cost for users in the
form of effort for generating new SLA mappings to the
adapted public SLA template. To calculate the cost and
Benefits of the SLA mapping approach, simulated different
market situations. Our findings show that the cost for SLA
mappings can be reduced by introducing heuristics into the
adaptation methods for generating adapted public SLA
templates. The methods show cost reduction and increase in
average overall net utility.

VII. ACKNOWLEDGMENT

The authors would like to thank Marcel Risch for his
valuable discussions. The research was partially supported by
the National Research Foundation of Korea (grant number
K21001001625-10B1300-03310) and the Vienna Science and
Technology Fund (grant agreement ICT08-018).

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 1124 www.ijsart.com

REFERENCES

[1] M. Risch, I. Brandic, J. Altmann. Using SLA Mapping to
Increase Market Liq-uidity. NFPSLAM-SOC 2009. In
conjunction with The 7th International Joint Conference
on Service Oriented Computing, Stockholm, Sweden,
November 2009.

[2] R. Buyya, K. Bubendorfer. Market Oriented Grid and
Utility Computing. John Wiley & Sons, Inc., New Jersey,
USA, 2008

[3] I. Brandic, D. Music, P. Leitner, S. Dustdar. VieSLAF
Framework: Enabling Adaptive and Versatile SLA-
Management. GECON2009. In conjunction with Euro-Par
2009, 25- 28 August 2009, Delft, The Netherlands.

[4] M. Risch, J. Altmann. Enabling Open Cloud Markets
Through WS-Agreement Extensions. Service Level
Agreements in Grids Workshop, in conjunction with
GRID 2009, CoreGRID Springer Series, Banff, Canada,
October 2009.

[5] Amazon Elastic Compute Cloud (Amazon EC2),
http://aws.amazon.com/ec2/, 2010.

[6] Google Apps, http://www.google.com/apps/, March 2010.

[7] Business Objective Driven Reliable and Intelligent Grids
for Real Business (BREIN), http://www.eu-brein.com/,
February 2010.

[8] N. Oldham, K. Verma, A. P. Sheth, and F. Hakimpour.
Semantic WS-agreement partner selection. 15th
International Conference on World Wide Web, WWW
2006, Edinburgh, Scotland, UK, May 2006.

[9] G. Dobson, A. Sanchez-Macian. Towards Unified
QoS/SLA Ontologies . IEEE Services Computing
Workshops (SCW), Chicago, Illinois, USA, pp.18-22,
September 2006.

[10] B. Koller, L. Schubert. Towards Autonomous SLA
Management Using a Proxy-Like Approach. Multiagent
Grid Systems. vol.3, no.3, IOS Press, Amsterdam, The
Netherlands, 2007.

[11] M. Risch, J. Altmann, L. Guo, A. Fleming, C.
Courcoubetis. The GridEcon Platform: A Business
Scenario Testbed for Commercial Cloud Services. 6th
international Workshop on Grid Economics and Business
Models, Delft, The Netherlands, August 2009.

[12] Tsunamic Tech. Inc., http://www.clusterondemand.com/,
2010.

[13] EMC Atmos Online, https://mgmt.atmosonline.com/,
2010.

[14] Salesforce.com, http://www.salesforce.com, March 2010.

[15] Sun Grid, http://www.sun.com/service/sungrid/index.jsp,
2010.

[16] Microsoft Azure,
http://www.microsoft.com/windowsazure/, 2010.

[17] D. Ardagna, G. Giunta, N. Ingraa, R. Mirandola, and B.
Pernici. QoS-Driven Web Services Selection in
Autonomic Grid Environments. International Con-ference
on Grid Computing, High Performance and Distributed
Applications (GADA), Montpellier, France, November
2006.

[18] I. Brandic, S. Benkner, G. Engelbrecht, R. Schmidt. QoS
Support for Time-Critical Grid Workflow Applications .
1st IEEE International Conference on e-Science and Grid
Computing, Melbourne, Australia, December 2005.

[19] E. Oberortner, U. Zdun and S. Dustdar: Tailoring a
Model-Driven Quality-of-Service DSL for Various
Stakeholders. MiSE 2009.

[20] J. Chen, B. Lu. An Universal Flexible Utility Function in
Grid Economy. 2008 IEEE Pacific-Asia Workshop on
Computational Intelligence a nd Industrial Ap-plication.

[21] R. A. Fisher. Statistical Methods for Research Workers.
ed. 12, Edinburgh, Oliver and Boyd, 1954.

[22] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain et. Al.
Hive - A Warehousing Solution Over a Map-Reduce
Framework. VLDB 2009.

