
IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 1062 www.ijsart.com

Review of Optimistic Data Computation Approaches
To Big Data In Cloud Environment

Roslin Dayana K1, Dr.Vigilson Prem M2

1, 2 Department of Computer Science and Engineering
1, 2 R.M.D Engineering College, Gummidipoondi Taluk,Thiruvallur Dist.

Abstract- Cloud computing is the widely used technology to
provide different type of services to users in a pay as you go
basis. Data which are stored on Cloud are generally huge and
can be called Big Data. Big data is a broad term that deals
with handling of very, very large amount of data which is not
possible with traditional systems. This includes collection,
storage, search, analysis, visualization of the data. These data
can be accessed in a large amount and this leads to the
finding of better approach for the quick computation of data.
In this paper we have discussed about the various approaches
that are existing to handle Big Data which can be used for
optimistic data computation in Cloud Environments. We also
have discussed about the problems that are yet to be solved in
Big Data Computation in heterogeneous environment.

Keywords- Big Data, Cloud Computing, Heterogeneous
Environment, Optimistic Data Computation.

I. INTRODUCTION

Nowadays, huge and various type of data called Big
Data are stored in cloud environment for the benefit of various
end-users like virtualized desktop users, non technical end
users, cloud choreographers and cloud service providers.
These data need to be computed with optimal job performance
and can be quickly accessed when a request arrives. This will
help the end user to get the required data with minimum
access time and effort. Recently many researches are going on,
in improving the data computation performance. Some of the
existing approaches to data intensive computation are Hadoop
Map Reduce Version 2 and Resource-aware Adaptive
Scheduling (RAS) and Phase and Resource Information-aware
Scheduler for MapReduce clusters. In this paper we can
explore the recent approaches to data intensive computation.

II. LITERATURE REVIEW

In this paper, we have discussed the various data

intensive computation methods and their benefits. Among
them, PRISM approach is the more efficient one in a
homogeneous environment. Following are the existing
approaches of optimistic data computation.

1. PRISM: Fine-Grained Resource-Aware Scheduling
for MapReduce [1]

The data-driven decision making has fueled the

development of MapReduce, a parallel programming model
that has become synonymous with large scale, data-intensive
computation. In MapReduce, a job is a collection of Map and
Reduce tasks that can be scheduled concurrently on multiple
machines, resulting in significant reduction in job running
time. Many large companies, such as Google, Facebook, and
Yahoo!, routinely use MapReduce to process large volumes of
data on a daily basis. Consequently, the performance and
efficiency of MapReduce frameworks have become critical to
the success of today’s Internet companies.

A central component to a MapReduce system is its
job scheduler. Its role is to create a schedule of Map and
Reduce tasks, spanning one or more jobs, that minimizes job
completion time and maximizes resource utilization. A
schedule with too many concurrently running tasks on a single
machine will result in heavy resource contention and long job
completion time. Conversely, a schedule with too few
concurrently running tasks on a single machine will cause the
machine to have poor resource utilization.

Phase and Resource Information-aware Scheduler for
MapReduce clusters (PRISM) is a scheduler that performs
resource-aware scheduling at the level of task phases.
Specifically, we show that for most MapReduce applications,
the run-time task resource consumption can vary significantly
from phase to phase. Therefore, by considering the resource
demand at the phase level, it is possible for the scheduler to
achieve higher degrees of parallelism while avoiding resource
contention. To this end, a phase-level scheduling algorithm
with the aim of achieving high job performance and resource
utilization is developed.

Through experiments using a real MapReduce cluster
running a wide-range of workloads, PRISM delivers up to 18
percent improvement in resource utilization while allowing
jobs to complete up to 1:3 faster than current Hadoop
schedulers.

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 1063 www.ijsart.com

An overview of the PRISM architecture is shown in
Fig. 1.1. PRISM consists of three main components: a phase-
based scheduler at the master node, local node managers that
coordinate phase transitions with the scheduler, and a job
progress monitor to capture phase-level progress information.

Figure 1. System Architecture

The phase-level scheduling mechanism used by

PRISM is illustrated by Fig. 1.2. Similar to the current Hadoop
implementation, each node manager periodically sends a
heartbeat message to the scheduler. When a task needs to be
scheduled, the scheduler replies to the heartbeat message with
a task scheduling request (Step 1). The node manager then
launches the task (Step 2). Each time a task finishes executing
a particular phase (e.g. shuffle phase of the reduce task), the
task asks the node manager for a permission to start the next
phase (e.g. reduce phase of the task) (Step 3). The local node
manager then forwards the permission request to the scheduler
through the regular heartbeat message (Step 4). Given a job’s
phase-level resource requirements and its current progress
information, the scheduler decides whether to start a new task,
or allow a paused task to begin its next phase (e.g., the reduce
phase), and then informs the node manager about the
scheduling decision (Step 5). Finally, once the task is allowed
to execute the next phase, the node manager grants the
permission to the task process (Step 6). Once the task is
finished, the task status is received by the node manager (Step
7) and then forwarded to the scheduler (Step 8). To perform
phase-level scheduling, PRISM requires phase-level resource
information for each job.

Figure 2. Phase Level Scheduling Mechanism

2. On Cloud computational models and the heterogeneity

challenge [2]

Cloud computing is by far the most cost-effective
technology for hosting Internet-scale services and
applications. The MapReduce model, in particular, is largely
used nowadays in cloud infrastructures to meet the demand of
large-scale data and computation intensive applications.
Despite its success, the implications of MapReduce on the
management of cloud workload and cluster resources are still
largely unstudied. In this paper, the authors show that dealing
with the heterogeneity of workloads and machine capabilities
is a key challenge. In today’s cloud environment, workloads
can have varied sizes, lengths, resource requirements, and
arrival rates. The machines also have varied CPU, memory,
I/O speed, and network bandwidth capacities. Jointly they
pose difficult challenges pertaining, among others, to job
scheduling, task and data placement, resource sharing and
resource allocation. We analyze the heterogeneity challenge in
these specific problem domains and survey the representative
state-of-the-art works that try to address them.

3. Themis MR: An I/O Efficient MapReduce [3]

“Big Data” computing increasingly utilizes the

MapReduce programming model for scalable processing of
large data collections. Many MapReduce jobs are I/O-bound,
and so minimizing the number of I/O operations is critical to
improving their performance. In this work, we present
ThemisMR, a MapReduce implementation that reads and
writes data records to disk exactly twice, which is the
minimum amount possible for data sets that cannot fit in
memory. In order to minimize I/O, ThemisMR makes
fundamentally different design decisions from previous

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 1064 www.ijsart.com

MapReduce implementations. ThemisMR performs a wide
variety of MapReduce jobs – including click log analysis,
DNA read sequence alignment, and PageRank – at nearly the
speed of TritonSort’s record-setting sort performance.

4. Dominant Resource Fairness: Fair Allocation of

Multiple Resource Types [4]

The authors consider the problem of fair resource
allocation in a system containing different resource types,
where each user may have different demands for each
resource. To address this problem, they proposed Dominant
Resource Fairness (DRF), a generalization of max-min
fairness to multiple resource types. The DRF, unlike other
possible policies, satisfies several highly desirable properties.
First, DRF incentivizes users to share resources, by ensuring
that no user is better off if resources are equally partitioned
among them. Second, DRF is strategy-proof, as a user cannot
increase her allocation by lying about her requirements. Third,
DRF is envy free, as no user would want to trade his/her
allocation with that of another user. Finally, DRF allocations
are Pareto efficient, as it is not possible to improve the
allocation of a user without decreasing the allocation of
another user. The authors have implemented DRF in the
Mesos cluster resource manager, and show that it leads to
better throughput and fairness than the slot-based fair sharing
schemes in current cluster schedulers.

5. Starfish: A Self-tuning System for Big Data Analytics

[5]

Timely and cost-effective analytics over “Big Data”
is now a key ingredient for success in many businesses,
scientific and engineering disciplines, and government
endeavors. The Hadoop software stack—which consists of an
extensible MapReduce execution engine, pluggable distributed
storage engines, and a range of procedural to declarative
interfaces—is a popular choice for big data analytics. Most
practitioners of big data analytics—like computational
scientists, systems researchers, and business analysts—lack
the expertise to tune the system to get good performance.
Unfortunately, Hadoop’s performance out of the box leaves
much to be desired, leading to suboptimal use of resources,
time, and money (in pay as-you-go clouds). The authors
introduced Starfish, a self-tuning system for big data analytics.
Starfish builds on Hadoop while adapting to user needs and
system workloads to provide good performance automatically,
without any need for users to understand and manipulate the
many tuning knobs in Hadoop. While Starfish’s system
architecture is guided by work on self-tuning database
systems, the authors discussed how new analysis practices

over big data pose new challenges; leading them to different
design choices in Starfish.

6. Resource-aware Adaptive Scheduling for MapReduce

Clusters [6]

The authors presented a resource-aware scheduling
technique for MapReduce multi-job workloads that aims at
improving resource utilization across machines while
observing completion time goals. Some of the other
MapReduce schedulers define a static number of slots to
represent the capacity of a cluster, creating a fixed number of
execution slots per machine. This abstraction works for
homogeneous workloads, but fails to capture the different
resource requirements of individual jobs in multi-user
environments. The authors proposed technique leverages job
profiling information to dynamically adjust the number of
slots on each machine, as well as workload placement across
them, to maximize the resource utilization of the cluster. In
addition, their technique is guided by user-provided
completion time goals for each job.

7. Resource provisioning Framework for MapReduce

Jobs with Performance [7]

Many companies are increasingly using MapReduce
for efficient large scale data processing such as personalized
advertising, spam detection, and different data mining tasks.
Cloud computing offers an attractive option for businesses to
rent a suitable size Hadoop cluster, consume resources as a
service, and pay only for resources that were utilized. One of
the open questions in such environments is the amount of
resources that a user should lease from the service provider.
Often, a user targets specific performance goals and the
application needs to complete data processing by a certain
time deadline. However, currently, the task of estimating
required resources to meet application performance goals is
solely the user’s responsibility. In this work, the authors
introduced a novel framework and technique to address this
problem and to offer a new resource sizing and provisioning
service in MapReduce environments. For a MapReduce job
that needs to be completed within a certain time, the job
profile is built from the job past executions or by executing the
application on a smaller data set using an automated profiling
tool. Then, by applying scaling rules combined with a fast and
efficient capacity planning model, they generated a set of
resource provisioning options. In addition, the authors
designed a model for estimating the impact of node failures on
a job completion time to evaluate worst case scenarios. The
authors validated the accuracy of their models using a set of
realistic applications. The predicted completion times of

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 1065 www.ijsart.com

generated resource provisioning options are within 10% of the
measured times in the 66-node Hadoop cluster.

8. Delay Scheduling: A Simple Technique for Achieving

Locality and Fairness in Cluster Scheduling [8]

As organizations start to use data-intensive cluster
computing systems like Hadoop and Dryad for more
applications, there is a growing need to share clusters between
users. However, there is a conflict between fairness in
scheduling and data locality (placing tasks on nodes that
contain their input data). To address the conflict between
locality and fairness, the authors proposed a simple algorithm
called delay scheduling: when the job that should be scheduled
next according to fairness cannot launch a local task, it waits
for a small amount of time, letting other jobs launch tasks
instead. They find that delay scheduling achieves nearly
optimal data locality in a variety of workloads and can
increase throughput by up to 2x while preserving fairness. In
addition, the simplicity of delay scheduling makes it
applicable under a wide variety of scheduling policies beyond
fair sharing.

9. Quincy: Fair Scheduling for Distributed Computing

Clusters [9]

This paper addresses the problem of scheduling
concurrent jobs on clusters where application data is stored on
the computing nodes. This setting, in which scheduling
computations close to their data is crucial for performance, is
increasingly common and arises in systems such as
MapReduce, Hadoop, and Dryad as well as many grid-
computing environments. We argue that data intensive
computation benefits from a fine-grain resource sharing model
that differs from the coarser semi-static resource allocations
implemented by most existing cluster computing architectures.
The problem of scheduling with locality and fairness
constraints has not previously been extensively studied under
this model of resource sharing. They introduced a powerful
and flexible new framework for scheduling concurrent
distributed jobs with fine-grain resource sharing. The
scheduling problem is mapped to a graph data structure, where
edge weights and capacities encode the competing demands of
data locality, fairness, and starvation-freedom, and a standard
solver computes the optimal online schedule according to a
global cost model. The authors evaluated their implementation
of this framework, which they call Quincy, on a cluster of a
few hundred computers using a varied workload of data- and
CPU-intensive jobs. They evaluated Quincy against an
existing queue-based algorithm and implement several
policies for each scheduler, with and without fairness
constraints. Quincy gets better fairness when fairness is

requested, while substantially improving data locality. The
volume of data transferred across the cluster is reduced by up
to a factor of 3.9 in their experiments, leading to a throughput
increase of up to 40%.

10. DryadLINQ: A System for General-Purpose

Distributed Data-Parallel [10]

DryadLINQ is a system and a set of language
extensions that enable a new programming model for large
scale distributed computing. It generalizes previous execution
environments such as SQL, MapReduce, and Dryad in two
ways: by adopting an expressive data model of strongly typed
.NET objects; and by supporting general-purpose imperative
and declarative operations on datasets within a traditional
high-level programming language. A DryadLINQ program is
a sequential program composed of LINQ expressions
performing arbitrary side effect-free transformations on
datasets, and can be written and debugged using standard
.NET development tools. The DryadLINQ system
automatically and transparently translates the data-parallel
portions of the program into a distributed execution plan
which is passed to the Dryad execution platform. Dryad,
which has been in continuous operation for several years on
production clusters made up of thousands of computers,
ensures ef- ficient, reliable execution of this plan. We describe
the implementation of the DryadLINQ compiler and runtime.
We evaluate DryadLINQ on a varied set of programs drawn
from domains such as web-graph analysis, large-scale log
mining, and machine learning. We show that excellent
absolute performance can be attained—a general-purpose sort
of 1012 Bytes of data executes in 319 seconds on a 240-
computer, 960- disk cluster—as well as demonstrating near-
linear scaling of execution time on representative applications
as we vary the number of computers used for a job.

11. Improving MapReduce Performance in

Heterogeneous Environments [11]

MapReduce is emerging as an important
programming model for large-scale data-parallel applications
such as web indexing, data mining, and scientific simulation.
Hadoop is an open-source implementation of MapReduce
enjoying wide adoption and is often used for short jobs where
low response time is critical. Hadoop’s performance is closely
tied to its task scheduler, which implicitly assumes that cluster
nodes are homogeneous and tasks make progress linearly, and
uses these assumptions to decide when to speculatively re-
execute tasks that appear to be stragglers. In practice, the
homogeneity assumptions do not always hold. An especially
compelling setting where this occurs is a virtualized data
center, such as Amazon’s Elastic Compute Cloud (EC2). We

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 1066 www.ijsart.com

show that Hadoop’s scheduler can cause severe performance
degradation in heterogeneous environments. We design a new
scheduling algorithm, Longest Approximate Time to End
(LATE), that is highly robust to heterogeneity. LATE can
improve Hadoop response times by a factor of 2 in clusters of
200 virtual machines on EC2.

12. MapReduce: Simplified Data Processing on Large

Clusters [12]

MapReduce is a programming model and an
associated implementation for processing and generating large
data sets. Users specify a map function that processes a
key/value pair to generate a set of intermediate key/value
pairs, and a reduce function that merges all intermediate
values associated with the same intermediate key. Many real
world tasks are expressible in this model, as shown in the
paper. Programs written in this functional style are
automatically parallelized and executed on a large cluster of
commodity machines. The run-time system takes care of the
details of partitioning the input data, scheduling the program’s
execution across a set of machines, handling machine failures,
and managing the required inter-machine communication.
This allows programmers without any experience with parallel
and distributed systems to easily utilize the resources of a
large distributed system. Our implementation of MapReduce
runs on a large cluster of commodity machines and is highly
scalable: a typical MapReduce computation processes many
terabytes of data on thousands of machines. Programmers find
the system easy to use: hundreds of MapReduce programs
have been implemented and upwards of one thousand
MapReduce jobs are executed on Google’s clusters every day.

In processing large quantities of data, a fundamental
problem is to obtain a summary which supports approximate
query answering. Random sampling yields flexible summaries
which naturally support subset-sum queries with unbiased
estimators and well understood confidence bounds. Classic
sample-based summaries, however, are designed for arbitrary
subset queries and are oblivious to the structure in the set of
keys. The particular structure, such as hierarchy, order, or
product space (multi-dimensional), makes range queries much
more relevant for most analysis of the data. Dedicated
summarization algorithms for range-sum queries have also
been extensively studied. They can outperform existing
sampling schemes in terms of accuracy on range queries per
summary size. Their accuracy, however, rapidly degrades
when, as is often the case, the query spans multiple ranges.
They are also less flexible—being targeted for range sum
queries alone—and are often quite costly to build and use. In
this paper the authors proposed and evaluated variance
optimal sampling schemes that are structure-aware. These

summaries improve over the accuracy of existing structure-
oblivious sampling schemes on range queries while retaining
the benefits of sample-based summaries: flexible summaries,
with high accuracy on both range queries and arbitrary subset
queries.

13. Fast Data in the Era of Big Data: Twitter’s Real-Time

Related Query Suggestion Architecture [14]

The authors provided a case study illustrating the
challenges of real-time data processing in the era of “big
data”. They tell the story of how their system was built twice:
first implementation was built on a typical Hadoop-based
analytics stack, but was later replaced because it did not meet
the latency requirements necessary to generate meaningful
real-time results. The second implementation, which is the
system deployed in production, is a custom in-memory
processing engine specifically designed for the task. They
conclude that the current typical usage of Hadoop as a “big
data” platform, while great for experimentation, is not well
suited to low latency processing, and points the way to future
work on data analytics platforms that can handle “big” as well
as “fast” data. In Twitter’s Scribe infrastructure, Scribe
daemons on production hosts send log messages to Scribe
aggregators, which deposit aggregated log data onto per-
datacenter staging Hadoop clusters. Periodic processes then
copy data from these staging clusters into main Hadoop data
warehouse.

14. A High-Performance Retrieval Method of Mass Data

Oriented to Cloud Computing [15]

Data storage and processing technology has achieved
rapid development, and the cloud computing is also arisen.
Cloud computing is a distributed data calculation model with
the property of high efficient, reliable, flexible and
inexpensive. Currently, a various platform based on cloud
computing is applied by many big enterprises, and the data
size of these platforms is no longer MB and GB, but TB or
PB. Thus, the mass data retrieve is the core of the cloud
computing platform. Hadoop is the distributed file system that
is suitable for large-scale data storage and access, and has the
features of extensible, economy, reliability and efficiency,
which is the preferred platform to store and retrieve mass data
efficiently. So, the mass data storage and retrieval system
based on Hadoop is built. In order to develop the applicable
search engine, Hbase is selected as the distributed and
unstructured database, and has a good performance.

IJSART - Volume 3 Issue 4 –APRIL 2017 ISSN [ONLINE]: 2395-1052

Page | 1067 www.ijsart.com

III. CONCLUSION

In this paper, we have discussed about the various
approaches developed by different authors for the intensive
data computation. In this regard, efficient optimistic data
computation has been a recent issue that if achieved will have
the benefit of retrieving any computed data from a huge
collection of data called Big Data.

IV. FUTURE ENHANCEMENT

There are many interesting paths to be achieved as

future exploration. For example, scheduling problem for
machines with heterogeneous performance characteristics in a
cloud environment and improving the scalability of PRISM,
an efficient scheduling method on huge complex data using
distributed schedulers.

REFERENCES

[1] Qi Zhang, Mohamed Faten Zhani, Yuke Yang, Raouf

Boutaba and Bernard Wong, “PRISM: Fine-Grained
Resource-Aware Scheduling for MapReduce”, IEEE
Transactions on Cloud Computing, vol 3, no2, April/May
2015

[2] Raouf Boutaba, Lu Cheng and Qi Zhang, “On Cloud
Computational Models and the Heterogeneity Challenge”,
J. Internet Serv. Appln., vol. 3, no.1, pp. 1–10, 2012.

[3] A. Rasmussen, M. Conley, R. Kapoor, V. T. Lam, G.

Porter and A. Vahdat, “Themis MR: An I/O-Efficient
MapReduce,” in Proc. ACM Sump. Cloud Comput.,
2012, p. 13.

[4] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S.

Shenker and I. Stoica, “Dominant Resource Fairness: Fair
Allocation of Multiple Resource Types”, in Proc.
USENIX Symp. Netw. Syst. Des. Implementation, 2011,
pp. 323-336.

[5] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F.

Cetin and S. Babu, “Starfish: A Self-tuning System for
Big Data Analytics” in Proc. Conf. Innovative Data Syst.
Res., 2011, pp. 261-272.

[6] J. Polo, C. Castillo, D. Carrera, Y.Becerra, I. Whalley, M.

Steinder, J. Torres and E. Ayguade, “Resource-aware
Adaptive Scheduling for MapReduce Clusters”, in Proc.
ACM/IFIP/USENIX Int. Conf. Middleware, 2011, pp.
187–207.

[7] A. Verma, L. Cherkasova, R. Campbell, “Resource
Provisioning Framework for MapReduce Jobs with
Performance Goals”, in Proc. ACM/IFIP/USENIX Int.
Conf. Middleware, 201, pp. 165-186.

[8] M. Zaharia, T. Borthakur, J. Sen Sarma, K. Elmeleegy, S.

Shenkar and I. Stoica, “Delay Scheduling: A Simple
Technique for Achieving Locality and Fairness in Cluster
Scheduling”, in Proc. Eur. Conf. Comp. Syst., 2010, pp.
265-278.

[9] M. Isard, V. Prabhakaran, J. Currey, U. Wieder and K.

Talwar, “Quincy: Fair Scheduling for Distributed
Computing Clusters”, in Proc. ACM SIGOPS Symp.
Oper. Syst. Principles, 2009, pp. 261–276.

[10] Y. Yu, M. Isard, D. Fetterly, M.Budiu, U. Erlingsson, P.

Gunda and J. Currey, “DryadLINQ: A System for
General-Purpose Distributed Data-Parallel”, in Proc.
USENIX Symp. Oper. Syst. Des. Implementation, 2008,
pp. 1-14.

[11] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and

I. Stoica, “Improving Map Reduce Performance in
Heterogeneous Environments”, in Proc. USENIX Symp.
Oper. Syst. Des. Implementation, 2008, vol.8, pp. 29-42.

[12] J. Dean and S. Ghemawat, “MapReduce: Simplified Data

Processing on Large Clusters”, Commun. ACM, vol.51,
no.1, 2008, pp. 107-113.

[13] G. Mishne, J. Dalton, Z. Li, A. Sharma, and J. Lin, “Fast

Data in the Era of Big Data: Twitter’s Real-Time Related
Query Suggestion Architecture”, in Proc. ACM SIGMOD
Int. Conf. Manage. Data, 2013, pp. 1147–1158.

[14] Jin Tao, “A High Performance Retrieval Method of Mass

Data Oriented to Cloud Computing”, International
Conference on Robots and Intelligent System (ICRIS),
Year: 2016, Pages: 16 - 21, DOI: 10.1109/ICRIS.2016.3.

