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Abstract- Cloud computing is the widely used technology to 
provide different type of services to users in a pay as you go 
basis. Data which are stored on Cloud are generally huge and 
can be called Big Data. Big data is a broad term that deals 
with handling of very, very large amount of data which is not 
possible with traditional systems. This includes collection, 
storage, search, analysis, visualization of the data.  These data 
can be accessed in a large amount and this leads to the 
finding of better approach for the quick computation of data. 
In this paper we have discussed about the various approaches 
that are existing to handle Big Data which can be used for 
optimistic data computation in Cloud Environments. We also 
have discussed about the problems that are yet to be solved in 
Big Data Computation in heterogeneous environment. 
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I. INTRODUCTION 
 

Nowadays, huge and various type of data called Big 
Data are stored in cloud environment for the benefit of various 
end-users like virtualized desktop users, non technical end 
users, cloud choreographers and cloud service providers. 
These data need to be computed with optimal job performance 
and can be quickly accessed when a request arrives. This will 
help the end user to get the required data with minimum 
access time and effort. Recently many researches are going on, 
in improving the data computation performance. Some of the 
existing approaches to data intensive computation are Hadoop 
Map Reduce Version 2 and Resource-aware Adaptive 
Scheduling (RAS) and Phase and Resource Information-aware 
Scheduler for MapReduce clusters. In this paper we can 
explore the recent approaches to data intensive computation. 

  
II. LITERATURE REVIEW 

 
In this paper, we have discussed the various data 

intensive computation methods and their benefits. Among 
them, PRISM approach is the more efficient one in a 
homogeneous environment. Following are the existing 
approaches of optimistic data computation. 

 

1. PRISM: Fine-Grained Resource-Aware Scheduling 
for MapReduce [1] 

 
The data-driven decision making has fueled the 

development of MapReduce, a parallel programming model 
that has become synonymous with large scale, data-intensive 
computation. In MapReduce, a job is a collection of Map and 
Reduce tasks that can be scheduled concurrently on multiple 
machines, resulting in significant reduction in job running 
time. Many large companies, such as Google, Facebook, and 
Yahoo!, routinely use MapReduce to process large volumes of 
data on a daily basis. Consequently, the performance and 
efficiency of MapReduce frameworks have become critical to 
the success of today’s Internet companies. 
 

A central component to a MapReduce system is its 
job scheduler. Its role is to create a schedule of Map and 
Reduce tasks, spanning one or more jobs, that minimizes job 
completion time and maximizes resource utilization. A 
schedule with too many concurrently running tasks on a single 
machine will result in heavy resource contention and long job 
completion time. Conversely, a schedule with too few 
concurrently running tasks on a single machine will cause the 
machine to have poor resource utilization. 
 

Phase and Resource Information-aware Scheduler for 
MapReduce clusters (PRISM) is a scheduler that performs 
resource-aware scheduling at the level of task phases. 
Specifically, we show that for most MapReduce applications, 
the run-time task resource consumption can vary significantly 
from phase to phase. Therefore, by considering the resource 
demand at the phase level, it is possible for the scheduler to 
achieve higher degrees of parallelism while avoiding resource 
contention. To this end, a phase-level scheduling algorithm 
with the aim of achieving high job performance and resource 
utilization is developed. 
 

Through experiments using a real MapReduce cluster 
running a wide-range of workloads, PRISM delivers up to 18 
percent improvement in resource utilization while allowing 
jobs to complete up to 1:3 faster than current Hadoop 
schedulers.  
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An overview of the PRISM architecture is shown in 
Fig. 1.1.  PRISM consists of three main components: a phase-
based scheduler at the master node, local node managers that 
coordinate phase transitions with the scheduler, and a job 
progress monitor to capture phase-level progress information. 

 

 
Figure 1. System Architecture 

 
The phase-level scheduling mechanism used by 

PRISM is illustrated by Fig. 1.2. Similar to the current Hadoop 
implementation, each node manager periodically sends a 
heartbeat message to the scheduler. When a task needs to be 
scheduled, the scheduler replies to the heartbeat message with 
a task scheduling request (Step 1). The node manager then 
launches the task (Step 2). Each time a task finishes executing 
a particular phase (e.g. shuffle phase of the reduce task), the 
task asks the node manager for a permission to start the next 
phase (e.g. reduce phase of the task) (Step 3). The local node 
manager then forwards the permission request to the scheduler 
through the regular heartbeat message (Step 4). Given a job’s 
phase-level resource requirements and its current progress 
information, the scheduler decides whether to start a new task, 
or allow a paused task to begin its next phase (e.g., the reduce 
phase), and then informs the node manager about the 
scheduling decision (Step 5). Finally, once the task is allowed 
to execute the next phase, the node manager grants the 
permission to the task process (Step 6). Once the task is 
finished, the task status is received by the node manager (Step 
7) and then forwarded to the scheduler (Step 8). To perform 
phase-level scheduling, PRISM requires phase-level resource 
information for each job. 

 

 
Figure 2. Phase Level Scheduling Mechanism 

 
2. On Cloud computational models and the heterogeneity 

challenge [2] 
 

Cloud computing is by far the most cost-effective 
technology for hosting Internet-scale services and 
applications. The MapReduce model, in particular, is largely 
used nowadays in cloud infrastructures to meet the demand of 
large-scale data and computation intensive applications. 
Despite its success, the implications of MapReduce on the 
management of cloud workload and cluster resources are still 
largely unstudied. In this paper, the authors show that dealing 
with the heterogeneity of workloads and machine capabilities 
is a key challenge. In today’s cloud environment, workloads 
can have varied sizes, lengths, resource requirements, and 
arrival rates. The machines also have varied CPU, memory, 
I/O speed, and network bandwidth capacities. Jointly they 
pose difficult challenges pertaining, among others, to job 
scheduling, task and data placement, resource sharing and 
resource allocation. We analyze the heterogeneity challenge in 
these specific problem domains and survey the representative 
state-of-the-art works that try to address them.  

 
3. Themis MR: An I/O Efficient MapReduce [3]  

 
“Big Data” computing increasingly utilizes the 

MapReduce programming model for scalable processing of 
large data collections. Many MapReduce jobs are I/O-bound, 
and so minimizing the number of I/O operations is critical to 
improving their performance. In this work, we present 
ThemisMR, a MapReduce implementation that reads and 
writes data records to disk exactly twice, which is the 
minimum amount possible for data sets that cannot fit in 
memory. In order to minimize I/O, ThemisMR makes 
fundamentally different design decisions from previous 
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MapReduce implementations. ThemisMR performs a wide 
variety of MapReduce jobs – including click log analysis, 
DNA read sequence alignment, and PageRank – at nearly the 
speed of TritonSort’s record-setting sort performance. 
 
4. Dominant Resource Fairness: Fair Allocation of 

Multiple Resource Types [4] 
 

The authors consider the problem of fair resource 
allocation in a system containing different resource types, 
where each user may have different demands for each 
resource. To address this problem, they proposed Dominant 
Resource Fairness (DRF), a generalization of max-min 
fairness to multiple resource types. The DRF, unlike other 
possible policies, satisfies several highly desirable properties. 
First, DRF incentivizes users to share resources, by ensuring 
that no user is better off if resources are equally partitioned 
among them. Second, DRF is strategy-proof, as a user cannot 
increase her allocation by lying about her requirements. Third, 
DRF is envy free, as no user would want to trade his/her 
allocation with that of another user. Finally, DRF allocations 
are Pareto efficient, as it is not possible to improve the 
allocation of a user without decreasing the allocation of 
another user. The authors have implemented DRF in the 
Mesos cluster resource manager, and show that it leads to 
better throughput and fairness than the slot-based fair sharing 
schemes in current cluster schedulers. 

 
5. Starfish: A Self-tuning System for Big Data Analytics 

[5] 
 

Timely and cost-effective analytics over “Big Data” 
is now a key ingredient for success in many businesses, 
scientific and engineering disciplines, and government 
endeavors. The Hadoop software stack—which consists of an 
extensible MapReduce execution engine, pluggable distributed 
storage engines, and a range of procedural to declarative 
interfaces—is a popular choice for big data analytics. Most 
practitioners of big data analytics—like computational 
scientists, systems researchers, and business analysts—lack 
the expertise to tune the system to get good performance. 
Unfortunately, Hadoop’s performance out of the box leaves 
much to be desired, leading to suboptimal use of resources, 
time, and money (in pay as-you-go clouds). The authors 
introduced Starfish, a self-tuning system for big data analytics. 
Starfish builds on Hadoop while adapting to user needs and 
system workloads to provide good performance automatically, 
without any need for users to understand and manipulate the 
many tuning knobs in Hadoop. While Starfish’s system 
architecture is guided by work on self-tuning database 
systems, the authors discussed how new analysis practices 

over big data pose new challenges; leading them to different 
design choices in Starfish. 
 
6. Resource-aware Adaptive Scheduling for MapReduce 

Clusters [6] 
 

The authors presented a resource-aware scheduling 
technique for MapReduce multi-job workloads that aims at 
improving resource utilization across machines while 
observing completion time goals. Some of the other 
MapReduce schedulers define a static number of slots to 
represent the capacity of a cluster, creating a fixed number of 
execution slots per machine. This abstraction works for 
homogeneous workloads, but fails to capture the different 
resource requirements of individual jobs in multi-user 
environments. The authors proposed technique leverages job 
profiling information to dynamically adjust the number of 
slots on each machine, as well as workload placement across 
them, to maximize the resource utilization of the cluster. In 
addition, their technique is guided by user-provided 
completion time goals for each job.  

 
7. Resource provisioning Framework for MapReduce 

Jobs with Performance [7] 
 

Many companies are increasingly using MapReduce 
for efficient large scale data processing such as personalized 
advertising, spam detection, and different data mining tasks. 
Cloud computing offers an attractive option for businesses to 
rent a suitable size Hadoop cluster, consume resources as a 
service, and pay only for resources that were utilized. One of 
the open questions in such environments is the amount of 
resources that a user should lease from the service provider. 
Often, a user targets specific performance goals and the 
application needs to complete data processing by a certain 
time deadline. However, currently, the task of estimating 
required resources to meet application performance goals is 
solely the user’s responsibility. In this work, the authors 
introduced a novel framework and technique to address this 
problem and to offer a new resource sizing and provisioning 
service in MapReduce environments. For a MapReduce job 
that needs to be completed within a certain time, the job 
profile is built from the job past executions or by executing the 
application on a smaller data set using an automated profiling 
tool. Then, by applying scaling rules combined with a fast and 
efficient capacity planning model, they generated a set of 
resource provisioning options. In addition, the authors 
designed a model for estimating the impact of node failures on 
a job completion time to evaluate worst case scenarios. The 
authors validated the accuracy of their models using a set of 
realistic applications. The predicted completion times of 
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generated resource provisioning options are within 10% of the 
measured times in the 66-node Hadoop cluster. 

 
8. Delay Scheduling: A Simple Technique for Achieving 

Locality and Fairness in Cluster Scheduling [8] 
 

As organizations start to use data-intensive cluster 
computing systems like Hadoop and Dryad for more 
applications, there is a growing need to share clusters between 
users. However, there is a conflict between fairness in 
scheduling and data locality (placing tasks on nodes that 
contain their input data). To address the conflict between 
locality and fairness, the authors proposed a simple algorithm 
called delay scheduling: when the job that should be scheduled 
next according to fairness cannot launch a local task, it waits 
for a small amount of time, letting other jobs launch tasks 
instead. They find that delay scheduling achieves nearly 
optimal data locality in a variety of workloads and can 
increase throughput by up to 2x while preserving fairness. In 
addition, the simplicity of delay scheduling makes it 
applicable under a wide variety of scheduling policies beyond 
fair sharing. 

 
9. Quincy: Fair Scheduling for Distributed Computing 

Clusters [9] 
 

This paper addresses the problem of scheduling 
concurrent jobs on clusters where application data is stored on 
the computing nodes. This setting, in which scheduling 
computations close to their data is crucial for performance, is 
increasingly common and arises in systems such as 
MapReduce, Hadoop, and Dryad as well as many grid-
computing environments. We argue that data intensive 
computation benefits from a fine-grain resource sharing model 
that differs from the coarser semi-static resource allocations 
implemented by most existing cluster computing architectures. 
The problem of scheduling with locality and fairness 
constraints has not previously been extensively studied under 
this model of resource sharing. They introduced a powerful 
and flexible new framework for scheduling concurrent 
distributed jobs with fine-grain resource sharing. The 
scheduling problem is mapped to a graph data structure, where 
edge weights and capacities encode the competing demands of 
data locality, fairness, and starvation-freedom, and a standard 
solver computes the optimal online schedule according to a 
global cost model. The authors evaluated their implementation 
of this framework, which they call Quincy, on a cluster of a 
few hundred computers using a varied workload of data- and 
CPU-intensive jobs. They evaluated Quincy against an 
existing queue-based algorithm and implement several 
policies for each scheduler, with and without fairness 
constraints. Quincy gets better fairness when fairness is 

requested, while substantially improving data locality. The 
volume of data transferred across the cluster is reduced by up 
to a factor of 3.9 in their experiments, leading to a throughput 
increase of up to 40%. 
 
10. DryadLINQ: A System for General-Purpose 

Distributed Data-Parallel [10] 
 

DryadLINQ is a system and a set of language 
extensions that enable a new programming model for large 
scale distributed computing. It generalizes previous execution 
environments such as SQL, MapReduce, and Dryad in two 
ways: by adopting an expressive data model of strongly typed 
.NET objects; and by supporting general-purpose imperative 
and declarative operations on datasets within a traditional 
high-level programming language. A DryadLINQ program is 
a sequential program composed of LINQ expressions 
performing arbitrary side effect-free transformations on 
datasets, and can be written and debugged using standard 
.NET development tools. The DryadLINQ system 
automatically and transparently translates the data-parallel 
portions of the program into a distributed execution plan 
which is passed to the Dryad execution platform. Dryad, 
which has been in continuous operation for several years on 
production clusters made up of thousands of computers, 
ensures ef- ficient, reliable execution of this plan. We describe 
the implementation of the DryadLINQ compiler and runtime. 
We evaluate DryadLINQ on a varied set of programs drawn 
from domains such as web-graph analysis, large-scale log 
mining, and machine learning. We show that excellent 
absolute performance can be attained—a general-purpose sort 
of 1012 Bytes of data executes in 319 seconds on a 240-
computer, 960- disk cluster—as well as demonstrating near-
linear scaling of execution time on representative applications 
as we vary the number of computers used for a job. 
 
11. Improving MapReduce Performance in 

Heterogeneous Environments [11] 
 

MapReduce is emerging as an important 
programming model for large-scale data-parallel applications 
such as web indexing, data mining, and scientific simulation. 
Hadoop is an open-source implementation of MapReduce 
enjoying wide adoption and is often used for short jobs where 
low response time is critical. Hadoop’s performance is closely 
tied to its task scheduler, which implicitly assumes that cluster 
nodes are homogeneous and tasks make progress linearly, and 
uses these assumptions to decide when to speculatively re-
execute tasks that appear to be stragglers. In practice, the 
homogeneity assumptions do not always hold. An especially 
compelling setting where this occurs is a virtualized data 
center, such as Amazon’s Elastic Compute Cloud (EC2). We 
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show that Hadoop’s scheduler can cause severe performance 
degradation in heterogeneous environments. We design a new 
scheduling algorithm, Longest Approximate Time to End 
(LATE), that is highly robust to heterogeneity. LATE can 
improve Hadoop response times by a factor of 2 in clusters of 
200 virtual machines on EC2. 
 
12. MapReduce: Simplified Data Processing on Large 

Clusters [12] 
 

MapReduce is a programming model and an 
associated implementation for processing and generating large 
data sets. Users specify a map function that processes a 
key/value pair to generate a set of intermediate key/value 
pairs, and a reduce function that merges all intermediate 
values associated with the same intermediate key. Many real 
world tasks are expressible in this model, as shown in the 
paper. Programs written in this functional style are 
automatically parallelized and executed on a large cluster of 
commodity machines. The run-time system takes care of the 
details of partitioning the input data, scheduling the program’s 
execution across a set of machines, handling machine failures, 
and managing the required inter-machine communication. 
This allows programmers without any experience with parallel 
and distributed systems to easily utilize the resources of a 
large distributed system. Our implementation of MapReduce 
runs on a large cluster of commodity machines and is highly 
scalable: a typical MapReduce computation processes many 
terabytes of data on thousands of machines. Programmers find 
the system easy to use: hundreds of MapReduce programs 
have been implemented and upwards of one thousand 
MapReduce jobs are executed on Google’s clusters every day. 
 

In processing large quantities of data, a fundamental 
problem is to obtain a summary which supports approximate 
query answering. Random sampling yields flexible summaries 
which naturally support subset-sum queries with unbiased 
estimators and well understood confidence bounds. Classic 
sample-based summaries, however, are designed for arbitrary 
subset queries and are oblivious to the structure in the set of 
keys. The particular structure, such as hierarchy, order, or 
product space (multi-dimensional), makes range queries much 
more relevant for most analysis of the data. Dedicated 
summarization algorithms for range-sum queries have also 
been extensively studied. They can outperform existing 
sampling schemes in terms of accuracy on range queries per 
summary size. Their accuracy, however, rapidly degrades 
when, as is often the case, the query spans multiple ranges. 
They are also less flexible—being targeted for range sum 
queries alone—and are often quite costly to build and use. In 
this paper the authors proposed and evaluated variance 
optimal sampling schemes that are structure-aware. These 

summaries improve over the accuracy of existing structure-
oblivious sampling schemes on range queries while retaining 
the benefits of sample-based summaries: flexible summaries, 
with high accuracy on both range queries and arbitrary subset 
queries. 
 
13. Fast Data in the Era of Big Data: Twitter’s Real-Time 

Related Query Suggestion Architecture [14] 
 

The authors provided a case study illustrating the 
challenges of real-time data processing in the era of “big 
data”. They tell the story of how their system was built twice: 
first implementation was built on a typical Hadoop-based 
analytics stack, but was later replaced because it did not meet 
the latency requirements necessary to generate meaningful 
real-time results. The second implementation, which is the 
system deployed in production, is a custom in-memory 
processing engine specifically designed for the task. They 
conclude that the current typical usage of Hadoop as a “big 
data” platform, while great for experimentation, is not well 
suited to low latency processing, and points the way to future 
work on data analytics platforms that can handle “big” as well 
as “fast” data. In Twitter’s Scribe infrastructure, Scribe 
daemons on production hosts send log messages to Scribe 
aggregators, which deposit aggregated log data onto per-
datacenter staging Hadoop clusters. Periodic processes then 
copy data from these staging clusters into main Hadoop data 
warehouse.  

 
14. A High-Performance Retrieval Method of Mass Data 

Oriented to Cloud Computing [15] 
 

Data storage and processing technology has achieved 
rapid development, and the cloud computing is also arisen. 
Cloud computing is a distributed data calculation model with 
the property of high efficient, reliable, flexible and 
inexpensive. Currently, a various platform based on cloud 
computing is applied by many big enterprises, and the data 
size of these platforms is no longer MB and GB, but TB or 
PB. Thus, the mass data retrieve is the core of the cloud 
computing platform. Hadoop is the distributed file system that 
is suitable for large-scale data storage and access, and has the 
features of extensible, economy, reliability and efficiency, 
which is the preferred platform to store and retrieve mass data 
efficiently. So, the mass data storage and retrieval system 
based on Hadoop is built. In order to develop the applicable 
search engine, Hbase is selected as the distributed and 
unstructured database, and has a good performance. 
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III. CONCLUSION 
 

In this paper, we have discussed about the various 
approaches developed by different authors for the intensive 
data computation. In this regard, efficient optimistic data 
computation has been a recent issue that if achieved will have 
the benefit of retrieving any computed data from a huge 
collection of data called Big Data.  

 
IV. FUTURE ENHANCEMENT 

 
There are many interesting paths to be achieved as 

future exploration. For example, scheduling problem for 
machines with heterogeneous performance characteristics in a 
cloud environment and improving the scalability of PRISM, 
an efficient scheduling method on huge complex data using 
distributed schedulers. 
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