Optimization of Process Parameters of Multi-Response Tungsten Inert Gas Welding of AISI 304L

G M Koli¹, V S Jadhav² ^{1, 2}Department of Mechanical Engineering ¹UG Students, GCE, Karad, 415124 ²Associate Professor, GCE, Karad, 415124

Abstract- The objective of this research work is to study influence TIG welding of parameters on AISI 304L.Parameters like welding current, gas flow rate, welding speed and filler material are considered for study. Response variables are tensile strength and bending strength. Experimentation is carried out according to L18 orthogonal array. ANOVA technique is used to find out influence of each parameter on strength of material. Results showed that welding current has the highest influence on tensile strength and bending strength.

Keywords- Tungsten Inert Gas (TIG),

I. INTRODUCTION

TIG welding is also called as Gas Tungsten Arc Welding. It was developed in 1940 at the start of Second World War [1]. TIG welding uses non-consumable tungsten electrode to produce the arc and shielding gas to protect the weld pool, heat affected zone, tungsten electrode from atmospheric contamination. Argon and helium are most commonly used shielding gas [2]. Stainless steel also called as the corrosion resistance steel are family of iron base alloys having excellent corrosion resistance properties. Stainless steel consists of minimum 10.5% chromium [3]. Also molybdenum and nickel are added to increase the corrosion resistance property. Stainless steel are again classified as ferrite, austenite, martensite and duplex stainless steel.304L is austenite stainless steel consisting minimum 18% chromium and less than 0.03% carbon [4].

Taguchi method is one of the best and power fool technique which uses special design to study the effect of parameters with less number of experiments [5]. This technique provides simple and effective approach for optimization. Problem can be solved with the help of orthogonal array. Percentage contribution of each parameter can be obtained with the help of ANOVA [6].

Fig.1Basic mechanism of TIG welding [5]

Literature review, modeling and analysis of plasma arc cutting process presented below

II. METHODOLOGY

Experimentation and analysis work is carried out by following way

- a) Design and perform the experiments for pilot readings
- b) Decide the each level of process parameters from pilot experimentation
- c) Design and perform orthogonal array with the help of level of each parameters
- d) fter performing orthogonal array experimentation Taguchi and ANOVA analysis technique is used is used to find percentage contribution of each process parameter for respective response variables

1] Material specifications:

Material	: 304L Austenite stainless steel
Thickness	: 4mm
Size	: 100mm*50mm
Weld type	: Butt weld

ELEMENT	WEIGHT PERCENTAGE		
Carbon	0.0168		
Manganese	1.70		
Phosphorus	0.0217		
Sulphur	0.005		
Silicon	0.353		
Chromium	18.41		
Nickel	8.10		
Molybdenum	0.218		

Table1 Chemical composition of 304L

2. Critical parameters and their levels:

LEVELS	1	2	3
FILLER	308L	309L	-
Current	80	100	120
Gas flow(LPM)	4	8	12
Speed(mm/min)	100	120	140

Table 2 Parameters and their levels

III. EXPERIMENTATION

Taguchi method is used for design of experiments. Since one parameter having two levels so mixed design is used. L18 orthogonal array and respective responses are listed in table.

Sr	Filler	Current	GF	WS	Tensil	Bendin
		(A)		(mm/min	e	g
N)	(MPa)	(MPa)
0						
1	2091	80	4	100	552.8	
	308L	00	4	100	5	740.25
2	2001	80	0	120	507.4	
	508L	80	0	120	3	621.32
3	2001	80	12	140	562.6	
	508L	80	12	140	9	525.5
4	2001	100	4	100	582.9	
	508L	100	4	100	1	898.4
5	308L	100	8	120	599.7	908.25
6	2001	100	12	140	584.2	
	508L	100	12		9	621.37
7	2001	120	4	4 120	596.4	
	308L	120	4		2	1252.5

8	2091	120	0	140	565.3	
	508L	120	0	140	4	782.46
9	3081	120	12	100	577.8	
	508L	120	12	100	6	815.85
10	3091	80	4	140	580.3	1089.4
	5071	00	-	140	3	8
11	3001	80	8	100	533.4	
	509L	80	0	100	1	775.56
12	309L	80	12	120	581.4	845.12
13	2001	100	1	120	655.2	1218.7
	509L	100	4	120	8	5
14	2001	100	Q	140	551.3	
	509L	100	0	140	7	687.34
15	3001	100	12	100	570.7	1019.6
	509L	100	12	100	6	1
16	309L	120	4	140	590.9	1248.5
17	3001	120	8	100	566.6	
	509L	120	0	100	6	970.51
18	3001	120	12	120	630.9	1065.1
	509L	120	12	120	1	4

Table 3 L18 orthogonal array

Tensile test:

Dimensions of tensile specimens are prepared according to AWS standard. Tensile specimens are prepared on milling machines. Tension test is carried out on the universal testing machine.

1] Design of Tensile specimen:

Fig.2 Tensile specimen design

2] Preparation of tensile specimen

Fig.3Preperation of tensile specimen

3] Bending test

Bending test is mainly conducted to check the ductility and soundness of the weld. Bend test is again classified as root bend and face bend. If the root is outside and it is in tension then it is called as root bend test

Fig.4Three point bend test

Fig.5 Root bend

Fig.6 Bend Test Specimens

IV.RESULT AND DISCUSSION

1] Analysis of Variance

Analysis of variance (ANOVA) is a statistical model which can be used to find out effect of independent parameter on single dependent parameter and also can be used to find out the significant parameters and the percentage contribution of each parameter. MINITAB17 is statistical software used.

Sourc e	D F	Seq SS	Adj SS	Adj MS	F	Р
Filler	1	352.8	12.36	12.36	0.09	0.776
Curre	2	2614.	2750.1	1375.0	0.61	0.007
nt		1	8	9	9.01	0.007
Gas	2	3322.	3018.3	1509.1	10.55	0.006
flow		9	2	6	10.55	0.000
Speed	2	5867.	5867.4	2933.8	20.51	0.001
Speed	2	6	2			
Resid		1144	11444			
ual	8	1144.	2	143.05	-	-
error		4	5			
Total	1	13301				
Total	5	.9	-	-		

Table 4 ANOVA for tensile strength

Sourc	D	Seq	Adj	Adj	Б	D
e	F	SS	SS	MS	I.	1
Filler	1	16173	16173	16173	18.23	0.002
rinei		8	8	8		
Curre	2	18499	18499	92495	10.43	0.004
nt		1	1			
Gas	2	27945	27945	13972	15.75	0.001
flow		5	5	7		
Speed	2	88062	88062	44031	4.96	0.032

Resid	1	88704	88704	8870			
ual	0				-	-	
error							
Total	1	80295		-			
Total	7	0	-				
Table 5 ANOVA for bending strength							

Table 5 ANOVA for bending strength

2] Percentage contribution:

Fig.8Parameter contribution for bending

Welding speed has the highest contribution (44.11%) followed by the welding current (24.98%) for the tensile strength while gas flow rate has the highest contribution (34.8%) followed by the welding current (23.03%) for bending strength.

3] Main effect plots.

Fig.10 Main effect plot for bending strength

Welding speed is one of the most critical parameters to obtain the good quality weld. Also the current and gas flow rate has the dominant contribution in weld quality and strength of the weld. Proper control of these parameters yields in good weld quality.

V. CONCLUSION

То get maximum tensile strength optimum parameters obtained are current 100A, filler 309L, gas flow rate 41pm and welding speed 120 mm/min.

Maximum bending strength can be obtained by current 120A,gas flow rate 4lpm,filler 308L,and speed 120mm/min. 309L filler gives good quality welds. From ANOVA welding speed and current has the more influence on the weld strength followed by gas flow rate.

ACKNOWLEDGEMENT

I would like to express my sincere gratefulness to technical staff mechanical engineering department, Govt. College of Engineering Karad for guidance and encouragement. I would also like to express gratitude to Mr.Taushif Jamdar, Production Manager, Meb Industries Sangli for continuous support.

REFERENCES

- [1] Anand Rao& Dr.R.Deivanathan" Experimental Investigation for Welding Aspects of Stainless Steel310 for the Process of TIG Welding" 12th Global congress on manufacturing and management, GCMM 2014 procedia engineering, vol 97,(2014) pp.902-908.
- [2] P. Bharath, V.G. Sridhar, M. Senthil kumar "Optimization of 316 stainless steel weld joint characteristics using taguchi technique" 12th Global Congress on Manufacturing and Management, GCMM 2014 procedia engineering, vol 97,(2014) pp. 881-891.
- [3] Jun Yan, Ming Gao, Xiaoyan Zeng "Study on microstructure and mechanical properties of 304L stainless steel joints by TIG, laser and Laser-TIG hybrid welding" Optics and Lasers in Engineering vol 48,(2014)pp.512-517.
- [4] Edwin Raja Dhas J, Jenkin Hexley Dhas"A review on optimization of welding process" International Conference on Modeling, Optimization and Computing Proceedia Engineering vol 38 ,(2012),pp.544-554.
- [5] Larry F. Jeffus. Welding Principles and Applications Publisher Cengage Learning. (2002)
- [6] Radha Raman Mishra, Visnu Kumar Tiwari and Rajesha .S " A study of tensile strength of MIG and TIG welded dissimilar joints of mild steel and stainless steel". International Journal of Advances in Material Science and Engineering vol 2,no3,(2014).