
IJSART - Volume 3 Issue 3 –MARCH 2017 ISSN [ONLINE]: 2395-1052

Page | 409 www.ijsart.com

DevOps with Docker-An Overview

Mr.G.Kanagaraj1, Ms.T.Primya2, M.Kirthika3

1, Kumaraguru College of Technology Coimbatore
2, 3 Dr.N.G.P.Institute of Technology,Coimbatore

I. INTRODUCTION

Docker is the world’s leading software container

platform. Developers use Docker to eliminate “works on my
machine” problems when collaborating on code with co-
workers. Operators use Docker to run and manage apps side-
by-side in isolated containers to get better compute density.
Enterprises use Docker to build agile software delivery
pipelines to ship new features faster, more securely and with
confidence for both Linux and Windows Server apps.

Docker is a tool that can package an application and

its dependencies in a virtual container that can run on any
Linux server. This helps enable flexibility and portability on
where the application can run, whether on premises, public
cloud, private cloud, bare metal, etc.

Figure 1. Docker Architecture

Docker provides an additional layer of abstraction
and automation of virtualization at the operating system level
on Linux. Docker provides an additional layer of abstraction
and automation of operating-system-level virtualization on
Windows and Linux. Docker uses the resource isolation
features of the Linux kernel such as cgroups and kernel
namespaces, and a union-capable file system such as
OverlayFS and others to allow independent ‘containers’ to run
within a single Linux instance.

This helps in avoiding the overhead of starting and

maintaining virtual machines, which boosts its performance
and also reduces the size of the application. The Linux kernel's
support for namespaces mostly isolates an application's view

of the operating environment, including process trees,
network, user IDs and mounted file systems, while the kernel's
cgroups provide resource limiting, including the CPU,
memory, block I/O and network.

Docker containers are so lightweight, a single server

or virtual machine can run several containers simultaneously.
By using containers, resources can be isolated, services
restricted, and processes provisioned to have an almost
completely private view of the operating system with their
own process ID space, file system structure, and network
interfaces. Multiple containers share the same kernel, but each
container can be constrained to only use a defined amount of
resources such as CPU, memory and I/O.

Using Docker to create and manage containers may

simplify the creation of highly distributed systems by allowing
multiple applications, worker tasks and other processes to run
autonomously on a single physical machine or across multiple
virtual machines. This allows the deployment of nodes to be
performed as the resources become available or when more
nodes are needed, allowing a platform as a service (PaaS)-
style of deployment and scaling for systems like Apache
Cassandra, MongoDB or Riak. Docker also helps in
simplifying the creation and operation of task or workload
queues and other distributed systems

II. CONTAINER

Using containers, everything required to make a

piece of software run is packaged into isolated containers.
Unlike VMs, containers do not bundle a full operating system
- only libraries and settings required to make the software
work are needed. This makes for efficient, lightweight, self-
contained systems that guarantees software will always run the
same, regardless of where it’s deployed.

IJSART - Volume 3 Issue 3 –MARCH 2017 ISSN [ONLINE]: 2395-1052

Page | 410 www.ijsart.com

Figure 2. CONTAINER

A container image is a lightweight, stand-alone,

executable package of a piece of software that includes
everything needed to run it i.e.,code, runtime, system tools,
system libraries, settings. Available for both Linux and
Windows based apps, containerized software will always run
the same, regardless of the environment. Containers isolate
software from its surroundings, for example differences
between development and staging environments and help
reduce conflicts between teams running different software on
the same infrastructure.

Containers are easily packaged and designed to run

anywhere. There can be multiple containers deployed in a
single VM. It may take several minutes for VM’s to boot up
their operating systems and then begin running the
applications they host, whereas containerised applications can
be started almost instantly.

III. COMPARING CONTAINERS AND VIRTUAL

MACHINES

Containers and virtual machines have similar

resource isolation and allocation benefits, but function
differently because containers virtualize the operating system
instead of hardware, containers are more portable and
efficient.

Figure 3. Virtual Machine

Figure 4. Container

Container:

Containers are an abstraction at the app layer that

packages code and dependencies together. Multiple containers
can run on the same machine and share the OS kernel with
other containers, each running as isolated processes in user
space. Containers take up less space than VMs (container
images are typically tens of MBs in size), and start almost
instantly.

Virtual machines

Virtual machines (VMs) are an abstraction of
physical hardware turning one server into many servers. The
hypervisor allows multiple VMs to run on a single machine.
Each VM includes a full copy of an operating system, one or
more apps, necessary binaries and libraries - taking up tens of
GBs. VMs can also be slow to boot.

Tools that hosted with Docker:

IJSART - Volume 3 Issue 3 –MARCH 2017 ISSN [ONLINE]: 2395-1052

Page | 411 www.ijsart.com

Figure 5.Docker Hosting

Docker can be integrated into various infrastructure

tools, including Amazon Web Services, Ansible, Chef,
CFEngine or Google cloud platform, which can be easily
integrated with Docker. It also interacts with tools like
Jenkins, IBM Bluemix, Microsoft Azure, Openstack Nova,
Salt, Vagrant and VMware Vsphere Integrated containers.

Stack has complete support for automatically

performing builds inside Docker, using the user ID and
volume mounts switching to make it mostly seamless. FP
Complete provides images for use with Stack that also include
other tools, GHC and optionally, have all of the Stackage LTS
packages which are pre-installed in the global package
database. The main purpose for using Stack/Docker this way
is to ensure that all developers build in a consistent
environment without any of the team members needing to deal
with Docker on their own.

Docker Swarm

Docker Engine 1.12 includes swarm mode for
natively managing a cluster of Docker Engines called a
swarm.

Docker Swarm is native clustering for Docker. It

turns a pool of Docker hosts into a single, virtual Docker host.
Because Docker Swarm serves the standard Docker API, any
tool that already communicates with a Docker daemon can use
Swarm to transparently scale to multiple hosts. Supported
tools include, but are not limited to, the following:

 Dokku
 Docker Compose

Cluster management integrated with Docker Engine:

Use the Docker Engine CLI to create a swarm of Docker
Engines where you can deploy application services. No need
of additional orchestration software to create or manage a
swarm.

Decentralized design: Instead of handling
differentiation between node roles at deployment time, the
Docker Engine handles any specialization at runtime.
Deploying both kinds of nodes, managers and workers, using
the Docker Engine is possible. Thus entire swarm can build
from a single disk image.

Service discovery: Swarm manager nodes assign

each service in the swarm a unique DNS name and load
balances running containers. It is possible to query every
container running in the swarm through a DNS server
embedded in the swarm.

Dockers for developers:

Docker is a tool that is designed to benefit both

developers and system administrators, making it a part of
many DevOps (developers + operations) toolchains. For
developers, it means that they can focus on writing code
without worrying about the system that it will ultimately be
running on. It also allows them to get a head start by using one
of the thousands of programs already designed to run in a
Docker container as a part of their application.

Docker runs behind a virtual machine both on

Windows and Mac. use docker-machine ls for checking our
docker-machine/s.

$ docker-machine ls
NAME ACTIVE DRIVER STATE URL SWARM DOCKER
ERRORS
default - virtualbox Stopped Unknown

The "default" docker-machine is created as a result of

the installation process. In order to drop it, command is.

$ docker-machine rm default
About to remove default
Are you sure? (y/n): y
Successfully removed default

Clustering using Docker Swarm 0.2.0:

One of the key updates as part of Docker 1.6 is
Docker Swarm 0.2.0. Docker Swarm solves one of the
fundamental limitations of Docker where the containers could
only run on a single Docker host. Docker Swarm is native
clustering for Docker. It turns a pool of Docker hosts into a
single, virtual host.

Swarm Manager: Docker Swarm has a Master or

Manager, that is a pre-defined Docker Host, and is a single

IJSART - Volume 3 Issue 3 –MARCH 2017 ISSN [ONLINE]: 2395-1052

Page | 412 www.ijsart.com

point for all administration. Currently only a single instance of
manager is allowed in the cluster. This is a SPOF for high
availability architectures and additional managers will be
allowed in a future version of Swarm with #598.

Swarm Nodes: The containers are deployed on Nodes

that are additional Docker Hosts. Each Swarm Node must be
accessible by the manager, each node must listen to the same
network interface (TCP port). Each node runs a node agent
that registers the referenced Docker daemon, monitors it, and
updates the discovery backend with the node’s status. The
containers run on a node.

IV. BENEFITS OF DOCKER

The benefits of Docker is Version Control,
Portability, Isolation and Security.

 Rapid application deployment – containers include the

minimal runtime requirements of the application,
reducing their size and allowing them to be deployed
quickly.

 Portability across machines – an application and all its

dependencies can be bundled into a single container that
is independent from the host version of Linux kernel,
platform distribution, or deployment model. This
container can be transferred to another machine that runs
Docker, and executed there without compatibility issues.

 Version control and component reuse – you can track

successive versions of a container, inspect differences, or
roll-back to previous versions. Containers reuse
components from the preceding layers, which makes them
noticeably lightweight.

 Sharing – you can use a remote repository to share your

container with others. Red Hat provides a registry for this
purpose, and it is also possible to configure your own
private repository.

 Lightweight footprint and minimal overhead – Docker

images are typically very small, which facilitates rapid
delivery and reduces the time to deploy new application
containers.

 Simplified maintenance – Docker reduces effort and risk

of problems with application dependencies.

REFERENCES

[1] http://dzone.com

[2] http://opensourceforu.com

[3] https://www.docker.com/

[4] https://access.redhat.com

