
IJSART - Volume 3 Issue 3 –MARCH 2017                                                                                      ISSN [ONLINE]: 2395-1052 
 

Page | 386                                                                                                                                                                     www.ijsart.com 
 

Advanced Multicore Architecture 
 

Prof.  Pranali Rahul Dandekar1, Prof.  Devika Deshmukh2 
1 Assistant professor, Shree Ramdeobaba college of Engg Nagpur. 

2Assistant professor, RGCER Nagpur 
 

Abstract- ubiquitous in our real life in devices like 
smartphones, tablets, etc. In fact, they are present in almost 
all segments of the computing market, from supercomputers to 
embedded devices. The hugemarket competence have lead 
industry and academia to develop vertiginous technological 
and architectural advances. The fast evolution that are still 
experiencing current multicores makes difficult for instructors 
to offer computer architecture courses with updated contents, 
preferably showing the industry and academia research 
trends. To deal with this shortcoming, authors consider that a 
research-oriented course is the most appropriate solution. 
 

This paper presents an advanced computer 
architecture course called Advanced Multicore Architectures. 
The covers the basic topics of multicore architecture and has 
been organized in four main modules regarding multicore 
basis, performance evaluation, advanced caching, and main 
memory organization. 
 

I. INTRODUCTION 
 

Computer architecture topics are organized in many 
universities all over the world at least in two courses: an 
introductory course and an advanced course. Usually, there are 
several advanced courses covering different computer 
architecture topics(e.g. parallel computer architectures or 
memory subsystems).The fast pace of technological and 
architectural advances in computer architecture suppose a 
serious limitation for instructors to offer courses addressing 
up-to-date topics. Because of this reason, many instructors opt 
to follow an advanced computer architecture called Advanced 
Multicore Architectures(AMA) at the Universitat Polit. 
Multicores have experienced an evolution without precedent 
as demonstrated by the fact that multicores are present in the 
market with a wide variety of design choices: in-order versus 
out of order execution cores, many simple cores versus few 
but powerful cores, heterogeneous cores, etc. 
 

The offered AMA course does not try to cover a wide 
range of architectural concepts, e.g. transactional memory or 
data flow architectures are not covered. Instead, the course 
focuses on key aspects of multicores and is organized in four 
main modules. Three of them aimed at studying the working 
details of the major components (cores, caches, and 
memories)of a typical multicore processor, paying attention to 
both architectural and performance aspects; and one of them to 

study general performance methodologies used in multicore 
design. Instructors highlight for each studied component the 
hot research topics, that is, where is the current academia and 
industry research interest. 

 
II. PROPOSED RESEARCH ORIENTED ADVANCED 

MULTICORE ARCHITECTURE COURSE 
 
This section describes the contents of the AMA 

course. which describes extensions to the previous pipeline to 
support speculative execution. The focus in both courses is 
mainly educational and their aim is to introduce the basic 
concepts and to describe how the distinct computer 
components (e.g.superscalar processors, caches, etc.) work. 

\ 
The contents of the AMA are aimed to provide the 

knowledge about how current multicores work as well as the 
industry and academia trends, giving the students a broader 
and more insightful view of modern computers.  
 
Topic 1.1: Advanced microarchitectural concepts. 
 

These working details are widely and deeply studied 
in another elective course called Advanced Computer 
Architectures. The focus of this module is to review and 
highlight microarchitectural details of typical commercial 
processors. The studied microarchitecture closely resembles to 
the Alpha21264 [2] and most commercial microprocessors. 
The pipeline consists of a physical register file, a single 
instruction queue, the ROB, and a load/store unit. The 
microarchitecture is reviewed detailing what is done at each 
stage. Emphasis is given to renaming, dispatching, and issue 
stages, paying special attention to why pipeline stalls can 
appear. In addition to this architecture, multithreaded 
processors are also studied, focusing on simultaneous 
multithreaded processors that are dominating an important 
segment of the market. 

 
Topic 1.2: Multicore processors why. 
 

Advances in transistor technology have allowed 
cramming more components onto integrated circuits as 
predicted by Moore’s law [5]. This fact brings new 
opportunities for computer architects. In Topic 1.2, we discuss 
alternative architectures to multicores like bigger cores, larger 
caches, clustered processors, etc. Instructors present and 



IJSART - Volume 3 Issue 3 –MARCH 2017                                                                                      ISSN [ONLINE]: 2395-1052 
 

Page | 387                                                                                                                                                                     www.ijsart.com 
 

discuss the pros and cons of each alternative to provide these 
with a wide perspective on multicore design. Attention is 
payed to the analysis of the benefits each alternative provides. 

 
Topic 1.3: Multicore evolution and design. 
 

the analysis of the benefits each alternative provides. 
The Case for a Single-chip Multiprocessor. 

 
We present a representative subset of commercial 

multicores, ranging from very simple in-order execution cores 
(e.g. the Piranha Chip Multiprocessor [6]) to complex 
multithreaded out-of-order (e.g. IBM Power 8) cores. The 
discussion on these multicores is always done emphasizing the 
design objectives and use case of each machine. For instance, 
if the goal is to support the execution of many threads in 
specific workloads (e.g. web workloads) a good design choice 
might be to implement many but simpler cores. The second 
part of this topic focuses on the Amdahl’s Law for multicores. 
This part is entirely based on the talk by Mark Hill entitled 
Amdahl’s Law in the Multicore Era[7] that can be found on 
the Internet at https://www.youtube.com/watch?v= 
KfgWmQpzD74. We use the Amdahl’s Law to analyze both a 
symmetric and symmetric multicores. 

 
Module 2: Performance 
 

Both the industry and the academia have sharply 
moved from single cores to multicores. The nature of 
multicores, different from their single core counterparts, has 
lead researchers to define specific performance metrics to 
evaluate multicore performance. In [8], Selfaet al.present a 
survey on multicore performance evaluation metrics that have 
been defined and used in recent top computer architecture 
conferences. Some interesting readings on this topic are the 
work by Eyerman and Eeckhout in [9] and the work by 
Michaud in [10] 
 
Topic 2.1: Performance evaluation metrics 
 

In Topic 2.1, we discuss the key performance 
engineering steps: measurement, analysis, and improvements. 
Regarding measurement, this module covers both 
monitoring/profiling tools, as well as simulation tools. Special 
attention is payed to multicore metrics mainly based on the 
discussion presented in [8]. An important set of current 
research is being done on real machines (e.g. thread 
scheduling policies). In this regard, an interesting reading can 
be the work by Feliu et al. [11] where performance counters 
are used to assist a thread-to-core allocation policy on the Intel 
Xeon. We also present distinct profiling tools related to 
performance counters (e.g. Perf, PAPI, Libpfm, etc.). Finally, 

practical stats for architects are studied. We present the basic 
principles and how to use stats in real systems to interpret the 
results. We study confidence intervals as a statistical tool that 
is useful to analyze the values of a given performance metric 
when they are not deterministic, which is the case of 
measurements performed on real systems. 

 
Topic 2.2: Performance accounting architectures 
 

Accounting architectures represent an important 
advance that allow researchers to achieve a sound 
understanding about where performance can be lost. 
Instructors strongly recommend their colleagues to include the 
study of these architectures on their courses. We start Topic 
2.2 with the concept of CPI stacks [12] for single-threaded 
processors. These stacks represent the contribution of the 
major processor components to the system’s performance. 
After that, different approaches to construct CPI stacks are 
analyzed, mainly focusing on that of the IBM Power5 and on 
the interval analysis approach. Interval analysis is studied in 
detail; the performance penalty is analyzed for both frontend 
miss events (e.g. I-Cache and I-TLB misses) and backend miss 
events (e.g. L2 data cache). Implementation of the accounting 
architecture are also discussed in detail in order to enable 
students to implement this architecture in a detailed multicore 
simulator. 

 
After the study of accounting architectures in single 

core processors, we proceed with Topic 2.2 by explaining the 
accounting architecture for multicores [13]. The first step in 
this study is to understand the sources of interferences, which 
depend on the shared resources. The base system presents two 
main shared resources, a shared L2 which acts as the LLC 
(last level cache) and the main memory resources (memory 
controller, memory bus, and memory modules). Two types of 
interference at the LLC are studied and estimated, inter thread 
cache misses and intra-thread cache misses. The former 
represents extra conflict misses due to threads evicting each 
other’s data. The latter refers to misses that also occur in 
single core execution but they present longer latency in 
multicore execution. Interferences at the main memory are 
estimated assuming an open page policy and FR-FCFS (first 
ready, first come first served) scheduling policy.  

 
Module 3: Caching 
 

Advanced cache design is of paramount importance 
for multicore performance due two main reasons. First, the 
miss latency introduces a serious performance penalty when 
the accessed data is retrieved from off-chip memory. Second, 
shared caches can become contention points that increase the 
average memory access time. Solutions to both problems 



IJSART - Volume 3 Issue 3 –MARCH 2017                                                                                      ISSN [ONLINE]: 2395-1052 
 

Page | 388                                                                                                                                                                     www.ijsart.com 
 

require advanced techniques beyond classic cache 
performance enhancements. Module 3 deals with the most 
successful techniques proposed in the literature.  

 
Topic 3.1: Advanced caching: concepts and problems 
 

In Topic 3.1, basic concepts related to cache 
performance such as working set, associativity, and miss ratio 
are revised. 

 
Special emphasis is given to the fact that simply 

reducing the miss ratio may not improve the performance, 
since misslatency depends on where the block is located and 
latency- hiding mechanisms must be taken into account. After 
introducing basic caching concepts, several techniques to 
reduce miss rates are overviewed. These techniques go beyond 
increasing associativity and cache size, since blindly doing 
that will significantly increase access latency while only 
providing incremental benefits on the hit ratio. Instead, some 
successful proposals are presented, such as victim caches 
[15]or skewed associative caches [16]. The goal of these 
proposals is to reduce conflict misses without significantly 
impacting the access time. Next, the topic deals with cache 
enhancements to reduce miss latencies. Basic approaches, 
such multi-level cache hierarchies, critical word first, or 
subblocking are reviewed, but pecial attention is payed to 
techniques aware of memory level parallelism (MLP). In this 
regard, non-blocking caches are used to allow multiple 
outstanding miss requests. First, the implementation of non-
blocking caches [17] is explained in detail as well as the role 
of the miss status handling registers (MSHRs). Then, to 
demonstrate the importance of MLP-aware micro architectural 
techniques, an example is presented where the optimal 
(regarding miss ratio) Belady’s replacement algorithm [18] 
obtains lower performance than a basic MLP- aware 
replacement policy. he last part of Topic 3.1 studies the 
multicore memory hierarchy as a shared resource. This part 
analyzes benefits and disadvantages of sharing the cache. 
Disadvantages are mainly caused by uncontrolled sharing that 
can produce unfairness and even starvation of individual 
threads. This fact difficults complying with QoS and real-time 
constraints. Static partitioning of resources is presented as a 
naive solution to solve these disadvantages; however, it lowers 
resource utilization. 
 
Topic 3.2: Advanced caching: papers 
 

Topic 3.2 presents several recent papers dealing with 
caching problems already introduced in Topic 3.1. In 
particular, a proposal regarding cache partitioning is 
explained, as well as two others addressing insertion and 
replacement policies. Regarding cache partitioning, the 

Utility-based partitioning paper [19] by Qureshi and Patt is 
discussed. This scheme partitions a shared cache between 
multiple applications depending on the reduction in the 
number of cache misses that each application is likely to 
experience for a given partition. For this purpose, the proposal 
implements an auxiliary tag directory, a useful mechanism that 
has been used in some other papers, and that helps estimate 
the cache behavior is stand-alone execution. With respect to 
insertion policies, the work which presents the evicted-address 
filter mechanism, is studied. This approach implements a 
hardware structure that holds the address of the most recently 
replaced blocks. This structure is used to check if a given 
block belongs to the actual working set of the workload. The 
result of this lookup decides in what position of the LRU 
queue the block should be inserted to avoid cache pollution 
and trashing. Finally, the work that proposes an interesting 
dynamic MLP-Aware cache replacement approach is 
discussed. This paper claims that misses that occur in isolation 
are more costly on performance than those that occur in 
parallel, since the latency of the latter ones can be hidden. 
Based on this claim, authors classify misses depending on a 
cost metric that takes into account the number of parallel 
outstanding memory requests. Simple logic to compute 
thismetric is implemented in the MSHRs. When the block is 
finally retrieved, its associated computed cost is stored in the 
cache to assist the replacement policy, with the aim of 
replacing those blocks whose miss cost is predicted to be 
higher. The proposal also explores a hybrid replacement 
policy that dynamically moves to the LRU algorithm whenthe 
estimation accuracy is not good enough. 

 
Module 4: Main memory 
 

The last module covers main memory issues in 
modern multicores. This module focuses on two main 
components of the system: the DRAM memory organization 
and the memory controller. We start the module describing the 
main memory. 

 



IJSART - Volume 3 Issue 3 –MARCH 2017                                                                                      ISSN [ONLINE]: 2395-1052 
 

Page | 389                                                                                                                                                                     www.ijsart.com 
 

subsystem as a set of off-chip DRAM memory modules 
connected to one or more on-chip memory controllers. Then 
we describe the major concerns affecting main memory: 
i)need for capacity, bandwidth and QoS requirements; ii) 
energy consumption; and iii) DRAM technology scaling. This 
helps students to know which are the main problems that 
threaten now a days the performance of the main memory 
subsystem. 
 
Topic 4.1: Main memory organization. 

 
In the first topic, the DRAM organization is deeply 

review edusing a bottom-up approach, starting from the 
DRAM memory cell. Once the basic cell is introduced, cell 
arrays and banks are straightforward. The concept of bank is 
presented as a mean to reduce the access time and to increase 
memory level parallelism. This abstract concept then is placed 
in context by explaining how DRAM memory banks expand 
across several chips with a narrower data path in order to 
reduce the manufacturing cost of the DRAM memory chips, 
and how they work jointly and synchronously to compound 
the wider data path of the banks. The internal organization of a 
memory chip is deeply analyzed with students explaining the 
concept of row buffer and how it acts as a basic prefetcher. 
Once the bank and chip structures have been studied, 
instructors introduce the basic DRAM commands that the 
memory controller issues to control DRAM memory access. 
After the study of the chip organization, instructors define the 
concept of rank as a set of chips with their respective banks 
working in lockstep. Then, DIMMs are described as a set of 
ranks, and memory channels are introduced. An example of a 
hierarchical DRAM organization is depicted in Figure 4. 
Finally, instructors present different DRAM address mapping 
schemes varying the physical address bits used to select the 
distinct components (banks, ranks, and channels) of the 
multidimensional DRAM organization. This is an interesting 
topic to discuss, since the optimal mapping scheme depends 
on the main memory access patterns of the executed workload. 

 
Topic 4.2: Main memory scheduling 

 
Finally, Module 4 covers the memory controller and 

memory request scheduling topics. Instructors first explain 
how refresh is done in current DRAM memories and its 
implications in performance and energy consumption 
nowadays and in the near future. We then devote some time to 
the memory controller, describing all its functions, alternative 
locations (on-chip versus off-chip), and its components. 
Special attention is paid to memory request queues and 
scheduling policies. Two mainpolicies are introduced and 
compared: FCFS (first come first served) and FR-FCFS (first 
ready, first come first served). 

Finally, instructors review the two main ways of 
operation incurrent DRAM modules: open page and closed 
page, analyzing how they handle the row buffers, as well as 
their implications on performance and energy consumption. 

 
IV. CONCLUSIONS 

 
This paper has presented the contents of the course 

Advanced Multicore Architectures offered at Universitat 
Politecnica de Valencia. The course is organized in four 
modules, three of them devoted to the study of the three main 
components of a current multicore (core, caches, and main 
memory) and the other tackling multicore performance 
evaluation. To study of advanced computer architecture topics 
and to enable them to research on these topics. For this 
purpose, it includes cutting-edge contents at lectures, 
highlighting current research trends on the academia and the 
industry. 

 
ACKNOWLEDGMENTS 

 
We refer online material foe muliticore processor. 

Authors also would like to thank Onur Mutlu for making 
available online his valuable teaching material. 

 
REFERENCES 

 
[1] A. J. Smith, “The task of the referee,”Computer, vol. 23, 

no. 4, pp.65–71, Apr. 1990. 
 

[2] R. E. Kessler, “The alpha 21264 microprocessor,”IEEE 
Micro vol. 19,no. 2, pp. 24–36, Mar. 1999. 
 

[3] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and 
K. Chang,“The case for a single-chip multiprocessor,” 
inASPLOS, 1996, pp. 2–11. 
 

[4] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-
effectivesuperscalar processors,” in ISCA, 1997, pp. 206–
218. 
 

[5] R. R. Schaller, “Moore’s law: Past, present, and 
future,”IEEE Spectr.vol. 34, no. 6, pp. 52–59, Jun. 1997. 
 

[6] L. A. Barroso, K. Gharachorloo, R. McNamara, A. 
Nowatzyk, S. Qadeer,B. Sano, S. Smith, R. Stets, and B. 
Verghese, “Piranha: A scalablearchitecture based on 
single-chip multiprocessing,” inISCA, 2000, pp.282–293. 
 

[7] M. D. Hill and M. R. Marty, “Amdahl’s law in the 
multicore era,”Computer, vol. 41, no. 7, pp. 33–38, Jul. 
2008.[8] V. Selfa, J. Sahuquillo, C. Gomez, and M. E. 



IJSART - Volume 3 Issue 3 –MARCH 2017                                                                                      ISSN [ONLINE]: 2395-1052 
 

Page | 390                                                                                                                                                                     www.ijsart.com 
 

Gomez, “Methodologiesand performance metrics to 
evaluate multiprogram workloads,” inPDP 2015. 
 

[8] S. Eyerman and L. Eeckhout, “Restating the case for 
weighted-ipc metrics to evaluate multiprogram workload 
performance,”IEEE Comput.Archit. Lett., vol. 99, p. 1, 
2013. 
 

[9] P. Michaud, “Demystifying multicore throughput 
metrics,”IEEE Com-put. Archit. Lett., vol. 12, no. 2, pp. 
63–66, 2013. 

 


