
IJSART - Volume 3 Issue 3 –MARCH 2017 ISSN [ONLINE]: 2395-1052

Page | 360 www.ijsart.com

Utilizing Hardware’s used in Distributed Applications

using Docker Container

Khushbu S. Patil 1, Kajal B. Gaikwad2, Gayatri D. Borawake 3, Kajal S. Kale 4, Prof.Mrs. Pooja Mishra5
 Department of Computer Engineering

1, 2, 3, 4, 5 DYPIEMR, Akurdi

Abstract- Docker is an open platform for developing, shipping

and running various applications in faster way. Docker helps

to ship code faster. Docker also helps to test fast, deploy fast

and make shorts the cycle between writing and running code.

Docker use client server architecture. It improves the process

of management of application which we are developing. Ex. If

we want to restart one application without disturbing other

application, we can do it easily; Docker contains 3 components

– Docker image, Registries, Containers.

Keywords- Docker tool, Java, Virtualization, Web Technology

(HTML)

I. INTRODUCTION

Docker is an open platform for developing, shipping,

and running various applications in a faster way. Docker

enables the applications to run separately from the host

infrastructure and treat the infrastructure like a managed

application. By taking advantages if docker’s methodologies

for shipping, testing and developing code quickly, one can

significantly reduce the delay between writing code and

running it in production [1]. For example - In the previous

years, if one user wants to run more than one operating system

then he has to use different hardware system.After that the

concept of virtualization was came in picture.

In virtualization one can use more than one operation

system on same machine. But this increases the machine

overhead. In virtualization same amount of memory, CPU

cycles were taken by virtual system [2]. Hence, docker is new

technology which comes over the drawbacks of virtualization.

A. Docker Platform

Docker provides functionality to package and run an

application in container i.e. a loosely isolated environment.

Many containers can be run simultaneously on a given host

usingisolationand security [4]. One can run more containerson

a given hardware without creating extra load on hypervisor due

to lightweight nature of container.

B. Docker Engine

Docker engine is a client-server application having

mainly following components-

1. A server which is a type of long running program called

daemon process.

2. A REST API which specifies interface that programs can

use to talk to the daemon and instruct it what to do.

3. A command line interface client.

Docker is an integrated application. It is easy to deploy

into environment for building and shipping application. Docker

for windows is a native application with a native user interface.

It is having auto-update capability with native virtualization,

Hyper-v, networking and file system. For making it faster and

more reliable than previous ways, getting Docker on a

Windows PC.

Fig. 1.1. Docker Engine

II. LITERATURE SURVEY

For developers and system administrator Docker

provides an open platform to build, ship, and run distributed

applications in a faster way. Main components of Docker are

Docker images, registries, and containers. Different

applications can be run over docker container without

dependency of languages [5]. Docker uses resources

isolation features of Linux kernel and kernel namespaces

(identifier or variables) that allows independent containers to

run within a single Linux instance, this will avoids the overhead

IJSART - Volume 3 Issue 3 –MARCH 2017 ISSN [ONLINE]: 2395-1052

Page | 361 www.ijsart.com

of virtual machine. The security and isolation provided by

Docker allows running many containers simultaneously on a

single host. Multiple containers may share the same kernel but

each container can use a defined amount of resources available

in the host machine [2]. Critical applications and time-sensitive

applications hosted in high priority containers will get a great

share of network bandwidth without starving other containers

[1]. Docker test and deploy the applications fast and make a

short cycle between writing and running code. Docker uses the

client server architecture and improves the process of

management of application which we are deploying [3].

III. HYPERVISOR BASED AND CONTAINER

BASED VIRTUALIZATION

There are two models are used to deploy virtualized

instances. Which are the hypervisor-based and container -based

platform [1]. For VMs, hypervisor known as a layer to deploys,

allocates operation space of instances. A hypervisor, a piece of

computer software, hardware or firmware creates and runs

VM’s. Host machine is a computer on which hypervisor runs

one or more virtual machines and virtual machine is called guest

machine. Virtual operating platform is present by hypervisor to

the guest OS and manage execution of it. Multiple instances of

different operating systems may share the virtualized hardware

resources.

Fig.3.1. Computer system architecture

In the architecture of real computers, we need an interaction

between software and hardware to operate a system. There are

three important interfaces, application binary interface (ABI),

instruction set architecture (ISA) and application programming

interface (API).

Above figure shows computer system architecture which is

used for communicating with key implementation layers via

interfaces. In virtual machine, a process or system running as

guest and the underlying platform support virtualized instances

is host. Hence, they need hypervisor [10] or VM monitor for

deploying and managing VMs. From the approach of the

operating system and the application supports, a produced

virtual machine has a whole execution environment which can

perform many processes cumulatively. It can allocate

individual I/O resources and memory to the processes. The

VMM has to match the hardware ISA that the guest software

can execute.

IV. HOW DOCKER IS BETTER THAN VM’S

1) Virtual machines runs on virtual hardware and guest

operating system will be loaded in its own memory. In

Docker, guests share same operating system, which is the

Host operating system, is loaded in the physical memory.

2) Communication between guests is done through the

network devices in virtual machines while in Docker

Communication between guests is done through pipes,

bridges, sockets, etc.

3) Booting is faster in Docker where in VM it takes time in

booting.

4) Due to light weight containers less overhead are occur in

Docker. Due to complexity in virtual machine more

overheads are occurs.

5) In virtual machine sharing of libraries and files are not

possible while in Docker sharing of files is possible.

6) Docker uses less memory as it shares host operating

system. Virtual machine uses more memory as it has to

store complete operating system for each guest.

7) Docker provides a way to run almost any application

securely isolated in container [2].

V. ARCHITECTURE

It is a client server architecture in which client talks to the

docker daemon, which does the heavy lifting of building,

running and distributing docker containers. The client and

daemon can be run on same system or one can connect a docker

client to a remote Docker daemon. The client and daemon

communicate using a REST API, over UNIX socket or a

network interface [7].

A. Docker Image

It is a read only template having instructions for creating a

Docker container [5]. For example an image can be the modules

of student, teacher and administration. One can build or update

image from scratch or download and use other’s image. An

image can be based on, or may extend one or more images. A

docker image is described in text file called Dockerfile. Docker

images are the build component of docker.

IJSART - Volume 3 Issue 3 –MARCH 2017 ISSN [ONLINE]: 2395-1052

Page | 362 www.ijsart.com

B. Docker Containers

These are the runnable instance of image. Run, stop, move or

delete these operations can be performed on containers using

Docker APT or CLI commands [5]. Each container is isolated

and secure platform but can be privileged with access to

resources running in different host or container as well

persisting storage or databases.

It is an isolates application from each other on a shared

operating system. This approach standardizes application

program delivery, allowing apps to run in any Linux

environment, whether physical or virtual. Because they share

the same operating system, containersare portable among

different Linux distributionsand are significantly smaller than

virtual machine (VM) images.

C. Docker Registries

It is the library of the images. Registry can be public or

private, or can be on same server as the Docker daemon or

Docker client, or on totally separated server [3].

D. Union File System

Union file systems, or UnionFS, are operated by creating

layers, making them fast and very lightweight. UnionFs is a

file system for Linux, NetBSD, and FreeBSD that will

implement a union mount for other file systems. UnionFs

allows directories and files of separate file system to form a

single coherent file system. Directory contents which have

same path within merged branches that will be merged in a

single directory within new virtual file system.

UnionFs is used for creating a single common template for

number of file systems and also for security reasons. Docker

Engine uses Union file system. That provides the building

blocks for containers. Docker Engine can use multiple

UnionFS variants, which includes, btrfs, vfs, AUFSand

DeviceMapper [3].With the help of UnionFs Docker can layer

Docker images. Actions are done to base images then layers get

created and documented, such that each layer completely

describes how to recreate an action. This will enables Docker's

lightweight images, as only layer updates need to be

propagated.

Fig. 5.1. Architecture Diagram

VI. IMPLEMENTATION

Each image consists of series of layers. These layers are the

reason of Docker being lightweight. When one change the

image by updating the application the newer version, a new

layer is build and replaces only the layer it updates. The other

layers remain intact. One needs to transfer only the updated

layer to distribute it.

Each layer is having the base layer as Ubuntu image or fedora

image. One can also create his own base image. For example

creating the images of student module, teacher module and

administration module.

Docker registry stores Docker images. After building image

one can push it on public registry i.e. Docker Hub or the private

registry running behind firewall. One can also use existing

image by pulling it from registry to a host. Docker Hub is

having large collection of existing images.

For example for updating the student image in above system

one need not to update all the system modules. One just need to

pull or create new student image and run it on container.

A container uses the host machine’s Linux kernel and

consists of any extra files added along with metadata associated

with container at the time of creation or when the container is

started. Container build of images which define container’s

contents which will be running when the container is launched.

Images are read only by default but it adds read write layer on

the top of the image in which application is running.

IJSART - Volume 3 Issue 3 –MARCH 2017 ISSN [ONLINE]: 2395-1052

Page | 363 www.ijsart.com

When one runs Docker through CLI command or equivalent

API, the engine client instructs the daemon to run the container.

So working of docker can be concluded as follow:

1) Create the Docker image that holds your Application

2) Create Docker Container from those images to run

yourapplications

3) Share those Docker Images via Docker Hub or on your

own registry.

Public and private both storage for image is provided by

Docker Hub. Public storage can be searched and downloaded

by anyone. Private storage is only for limited users; is excluded

from search results and only you and your users can pull image

down and used to build container.

 When you run the container, either by using the docker

binary or via the API, docker daemon is ask to run a container.

Using run command docker client launches a new container

of the docker binary.

A. Operations performed by docker during launch

1) Pulls the image:

Docker checks initially whether the requested image is

present locally on host machine and, if not then it will

download from Docker Hub[3]. If the image is already

present on host then it will use the image to create new

container.

2) Creates a new container:

If docker is having the image then it will create a container.

3) Allocation of filesystem ant mounting read-write layer:

Container is created in file system and read-write layers are

added to the image.

4) Allocation of network/bridge interface:

Network interface is getting created so the docker container

can talk to the local host machine.

5) Setting up an IP address:

From a pool an IP address is fetched and allocate.

6) Execute the process that used requests:

Run application that is requested.

7) Captures and provides application output:

Docker will connect and log standard input, output and

display errors made to see how application is running.

B. Docker Events

The events API is the fantastic feature of docker that enable

tools like Registrator and Logspout for listing the container

events like starting and stopping [8].

Docker API documentation which provides list of available

events without knowing what they mean and when will occur.

Fig.6.1 Events of Docker

Some container related events are:

Export: emitted by docker export

Exec_create: emitted by docker exec

Exec_start: also emitted by docker exec after exec_create

VII. DEPLOYING DISTRIBUTED APPLICATIONS ON

DOCKER

Many types of applications can be configured with

different approaches depending on virtualized architecture. For

e.g., VMs as the hypervisor-based instances have full

components emulated by hypervisor layer, e.g., OS, hardware

libraries. Hypervisor has to deploy an entire filesystem and OS

in each VM. This results in the overhead of emulating libraries

and OS when producing a large range of VMs. The advantage

of VMs is isolation, and disadvantage is overhead when running

distributed applications. This is also one of problem that

developers have to consider in PaaS field. On the basis of

container-based architecture, Docker is a platform supporting

containers that can share the same related libraries and OS

kernel.

Containers can share common files because their

images are constructed from layered filesystems [6]. At the time

of running a job, each containers assigned a unique PID, it can

be observed equally as a process at the view of host machine.

These characteristics of Docker, we deploy applications that

share the same dependencies, necessary libraries under the host

machine. This method is available for portable computations

IJSART - Volume 3 Issue 3 –MARCH 2017 ISSN [ONLINE]: 2395-1052

Page | 364 www.ijsart.com

and solving scalable problems because we can reduce

remarkably the overhead, when comparing to VMs.

Fig. 7.1. Model for deploying distributed applications on

Docker and Virtual Machine

Above Fig shows the model which user deploy Docker

container to run applications. VMs provide a complete

environment which supports multiple applications as well as

users. VMs emulate the full OS and hardware along with

individual libraries. Hence, the same way to configure

distributed application on VMs and host system. We need to

install and configure applications, libraries inside each virtual

machine to execute as a cluster. In opposition to VMs, we

exploit the sharing ability of Docker with host OS kernel to

deploy applications. Every Docker container does not need to

set up a whole image or OS with related libraries, they can share

the same libraries and binaries during executing.

VIII. DOCKER’S KEY ADVANTAGE

Docker provides lightweight virtualization with

almost zero overhead. The effect of this delivers some

impactful advantages. Docker can have many more containers

running on single machine than we can with virtualization.

Another powerful impact is that container bring up and bring

down can be accomplished within seconds. It provides Portable

deployment of applications as a single object versus process

sandboxing, Application-centric versus machine/server-centric.

It can Supports for automatic container builds. It Built-in

version tracking; having Reusable components; can be Public

registry for sharing containers. It is a growing tools ecosystem

from the published API.

IX. RESULTS

For updating the module of student, user needs not to

update whole system after addition of student image. He just

needs to upload and run new update image of student which is

not affecting the remaining modules. Similarly, remaining

modules can also be updated without disturbing other modules

as and when required.

X. CONCLUSION

Docker container technology is become developing

platform used in cloud computing field. Our research shows

that VMs and Docker container have both positive and negative

factors. Thus, we have to consider about the target of utilization

and the feature of application type running on them. Also VMs

have a strong point about the isolation criterion. Docker

containers have numerous benefits in reducing overhead

because the architecture allows sharing the OS kernel.

As the Docker’s architecture, these characteristics to

execute applications efficiently, our evaluation shows that the

utilization of VMs and Docker containers have many advantage

about probability. Also have more advantages like convenience

and scalability. We need to pay attention about the problem

sizes, application types and system limitations. For example,

Docker is more suitable than virtual machine about data

intensive applications.

In the future, we explore the transmission capacity in

the cluster system, which is formed by VMs and Docker

containers. This future work will support the resource scheduler

in allocating VMs and containers. Docker is getting code tested

and deployed into production faster than virtualization.

Different applications can be run over Docker container with

language independency. The results include much less CPU

utilization, memory utilization, CPU count; network I/O

counter, etc. as compared to the previous virtualization

technique.

REFERENCES

[1] Ayush Dusia, Yang, Michela Taufer, “Network Quality of

Service in Docker Containers”, IEEE International

Conference on Cluster Computing, 2015.

[2] Preeth E. N., Fr. Jaison Paul Mulerickaly, Biju Paulz and

YedhuSastriz, “Evaluation of Docker Containers Based on

Hardware Utilization”, International Conference on

Control, Communication & Computing India (ICCC),

2015.

[3] https://docs.docker.com/

[4] https://docs.docker.com/engine/understanding-docker/

[5] http://prakhar.me/docker

https://docs.docker.com/
https://docs.docker.com/engine/understanding-docker/

IJSART - Volume 3 Issue 3 –MARCH 2017 ISSN [ONLINE]: 2395-1052

Page | 365 www.ijsart.com

[6] Minh Thanh Chung, Nguyen Quang-Hung, Manh-Thin

Nguyen, Nam Thoai,” Using Docker in High Performance

Computing Applications”.

[7] http://nordlcapls.com/api-driven-devops-spotlight-on-

docker/

[8] http://gliderlabs.com/devlog/2015/docker-events-

explained/

[9] J.Hwang, S. Zeng, F.Y.Wu and T.Wood, “A component-

based performance comparison of four hypervisors”, in

Integrated Network Management (IM 2013).

http://nordlcapls.com/api-driven-devops-spotlight-on-docker/
http://nordlcapls.com/api-driven-devops-spotlight-on-docker/
http://gliderlabs.com/devlog/2015/docker-events-explained/
http://gliderlabs.com/devlog/2015/docker-events-explained/

