
IJSART - Volume 3 Issue 2 –FEBRUARY 2017 ISSN [ONLINE]: 2395-1052

Page | 200 www.ijsart.com

Clustering Web Documents to Bootstrap the
Discovery of Web Services

Mrs.M.Fathima Begum1, Mr.P.Nanda Kumar2, Mr.T.Balaji3, Mr.A.R.Mohamed Yousuff4, Mr.M.Abdul Naseer5

1, 2, 3, 4, 5 C.Abdul Hakeem College of Engg. and Tech.

Abstract- The increasing use of the Web for everyday tasks is
making Web services an essential part of the Internet
customer’s daily life. Users query the Internet for a required
Web service and get back a set of Web services that may or
may not satisfy their request. To get the most relevant Web
services that fulfill the user’s request, the user has to construct
the request using the keywords that best describe the user’s
objective and match correctly with the Web Service name or
location. Clustering Web services based on function
similarities would greatly boost the ability of Web services
search engines to retrieve the most relevant Web services.
This paper proposes a novel technique to mine Web based
documents and cluster them into functionally similar Web
service groups. The application of our approach to real Web
services description files has shown good performance for
clustering Web services based on function similarity, as a
predecessor step to retrieving the relevant Web services for a
user request by search engines.

Keywords- clustering Web documents, Web service, feature
extraction, Web service clustering.

I. INTRODUCTION

Service-oriented Architecture (SOA) has become a
driving force for Web applications development. Service-
oriented Computing (SOC) is a computing paradigm that is
driven by SOA. SOC uses services as the basic constructs to
support rapid, low-cost, and easy composition of distributed
applications even in heterogeneous environments [1]. In SOA,
a service is defined by a Web interface that supports
interpretable operations between different software
applications using a standard messaging protocol [2]. Web
services are a popular implementation of SOA. A Web service
is described by means of the Web Services Description
Language (WSDL) [3], and that description is published in a
public Universal Description Discovery and Integration
(UUDI) registry. XML is used to construct the basic blocks of
Web service communication by means of some form of XML
messaging, such as Simple Object Access Protocol (SOAP)
request or response or XML-Remote Procedure Call (XML-
RPC).

Major providers of Web services, such as Google,

Amazon and Yahoo, have decided to publish their Web

services through their own websites instead of using public
registries or brokers. This trend is forcing users to discover
Web services using a search-engine model. Al-Masri et al. [4]
show that services registered in public registries are
decreasing in contrast with services crawled by search
engines’s crawlers. The authors point out that more that 53%
of the UDDI Business Registry (UBR) registered services are
invalid, whereas 92% of Web services cached by search
engines are valid and active.

Searching for Web services using search engines,

however, can result in a bottleneck in the discovery process,
especially for non-semantic Web services because search
engines do not understand the Web service functionalities
outlined in the description file. Search engines partially match
the search terms entered by the user with the Web service
name, location, business, or Model [5] defined in the Web
service description file to get the results back. The use of these
kinds of keywords are, by design, limited in WDSL
specifications. If the search query does not contain part of the
Web service name exactly, then the service may not be
retrieved. It is therefore essential for the user to be aware of
the concise and correct keywords in order to retrieve the most
relevant services that match the request. This is difficult for
users who are ultimately concerned with service functionality.
A user may even miss services that use synonyms or
variations of these keywords. For example, a service that
contains ”car” in its name may not be retrieved from a query
looking for ”vehicle”.

The problem of poor recall for search for non-

semantic Web services using search engines can be
approached in two ways. The first approach is to perform a
broad matching process and return a potentially large number
of unranked services, most of which may not be of interest to
the user. The second approach is to improve search engine
retrieval with mechanisms to cluster services into similar
functional groups while they crawl their description files. This
latter approach can effectively reduce the search space of Web
services while improving the matching process. In addition, it
can take advantage of the continuous crawling feature of
search engines’s crawlers by enabling adaptive re-clustering
and self-organization to cope with the highly dynamic nature
of Web services [6]. In this paper, we seek to improve Web
services discovery with search engines by proposing a novel

IJSART - Volume 3 Issue 2 –FEBRUARY 2017 ISSN [ONLINE]: 2395-1052

Page | 201 www.ijsart.com

approach to clustering Web service description files (WSDL
documents) into functionally similar groups prior to answering
discovery requests .

Our main contributions are as follows:

 We present an approach that uses five key features

extracted from WSDL documents in order to group Web
services into functionality-based clusters.

 We experimentally demonstrate that our proposed ap-
proach outperforms (higher precision and recall) other
approaches.

The rest of this paper is organized as follows. Section

II gives a brief background on related work. Section III
describes the problem of poor recall for search for non-
semantic Web services using search engines can be
approached in two ways. The first approach is to perform a
broad matching process and return a potentially large number
of unranked services, most of which may not be of interest to
the user. The second approach is to improve search engine
retrieval with mechanisms to cluster services into similar
functional groups while they crawl their description files. This
latter approach can effectively reduce the search space of Web
services while improving the matching process. In addition, it
can take advantage of the continuous crawling feature of
search engines’s crawlers by [6].Section IV introduces our
proposed clustering approach.Section V explains extracting
features from wsdl documents,section VI discusses the
experiments and results. Finally, Section VII concludes the
paper and outlines future research avenues.

II.BACKGROUND AND RELATED WORK

Research in Web mining has recently gained much

attention due to the popularity of Web services and the
potential benefits that can be achieved from mining Web
services description files. Non-semantic Web services are
described by WSDL documents while semantic Web services
use Web ontology languages (OWL-S) [7] or Web Service
Modeling Ontology (WSMO) [8] as a description language.
Non-semantic Web services are more popular and supported
by both the industry and development tools. The discovery
process is quite different according to the Web services
description method. Semantic Web services are discovered by
high level match-making approaches [9], whereas non-
semantic Web services discovery uses information retrieval
techniques [10]. In our approach, we target the discovery of
non-semantic Web services.

Nayak [5] proposes a method to improve the Web
service discovery process using the Jaccard coefficient to
calculate the similarity between Web services. He provides the

user with related search terms based on other users’
experiences with similar queries. In contrast, our approach
clusters Web services based on their functionality in order to
reduce the search space and improve query matching. We
make use of five features extracted from the description files
to calculate the similarity among Web services.

Many efforts have been made to overcome the

drawbacks of UDDI-based discovery techniques. Guan et al.
[11] propose two discovery mechanisms based on the
cooperation between UDDI and Directory Facilitator (DF) to
improve the efficiency of the UDDI-based Web service
discovery. However, the study do not give enough evidence to
show the effectiveness of their approach in improving the Web
services discovery. Shuiguang et al. [12] propose an
information model for registered services to improve the
match-making in the discovery process. The authors use
precision and recall to measure the performance of their
approach. Xin et al. [13] propose the Web services search
engine Woogle that is capable of providing Web services
similarity search. Their engine, however, does not adequately
consider data types, which usually reveal important
information about the functionalities of Web services [14].

Liu and Wong [15] use a proposal similar to ours and

apply text mining techniques to extract features such as
service content, context, host name, and name, from Web
service description files in order to cluster Web services. They
propose an integrated feature mining and clustering approach
for Web services as a predecessor to discovery, hoping to help
in build-ing a search engine to crawl and cluster non-semantic
Web services. We differ in our choice of features. We believe
that the service context and service host name features offer
little help in the clustering process. Providers tend to advertise
the services they provide on their own website, which means
they provide different Web services on the same site. Hence,
mining the surrounding Web pages (service context) or
considering the host name does not help with the meaning of
the Web service, which is not the case in UDDI. In addition,
some Web services do not make use of the <documentation>
element in the WSDL document, which means there is
insufficient information for the content feature. Relying on
attributes’ names as a Web service content may also be
misleading since the names may not follow any naming
conventions and they may not be descriptive or even correct
English words.

IJSART - Volume 3 Issue 2 –FEBRUARY 2017 ISSN [ONLINE]: 2395-1052

Page | 202 www.ijsart.com

III. WSDL DOCUMENT STRUCTURE

WSDL is an XML-based language that provides a

model for describing non-semantic Web services [3]. It is also
used to describe the operations that can be performed by a
certain Web service as well as its location. In our feature
extraction we consider the structure of WSDL specification
version 1.1 as it is most often supported by software
development tools.

A WSDL document describes a Web service using

six major components:

 <types> element is an XML type definition that de-scribes
the data containers used in message exchanges.

 <messages> element is an abstract representation of the
transmitted information. Typically, a message contains
one or more logical parts (parameters). These parts are
associated with a type definition.

 <portType> is an important component in WSDL
documents, in which a set of abstract operations
(functions) that can be performed by the Web service are
defined. Each operation is associated with an input and/or
output message.

 <binding> component specifies the communication
protocol and data format for each operation and message
defined in a particular portType element.

 <service> element is a composite operation that ag-
gregates multiple related ports or functions.

IV. PROPOSED CLUSTERING APPROACH

Our proposed approach is inspired by the information

available in Web services description document. We mine the
WSDL documents to extract features that describe the
semantic and behavior of the Web service, specifically the
WSDL content, WSDL types, WSDL groups. This is a
predecessor step to assist a service search engine in identifying
the Web service functionality and match Web services with
users’ requests. Figure 1 illustrates graphically our proposed
approach to cluster WSDL docu-ments to aid a service
messages, WSDL ports and the Web service name. These
features describe and reveal the functionality of a Web service
[13]. Integrating these features together, we cluster Web
services into functionally similar search engine. A search
engine’s crawler crawls WSDL documents from the internet
and applies offline our proposed clustering approach to group
similar functionally services. When a user queries the service
search engine for a desirable objective (step 1), it uses the
clustered Web services to match semantically the query (step
2) and return the most relevant Web services (step 3) that
satisfies the requested objective.

Fig. 1. Schematic block diagram illustrates the big picture that

inspired our WSDL clustering approach.

Figure 2 illustrates the steps for feature extraction.

V. EXTRACTING FEATURES FROM WSDL
DOCUMENTS

In this Section we describe how we extract the five

proposed features from WSDL documents.

Feature 1: WSDL Content

We begin by reading the WSDL document contents

directly from the WSDL URI. Each WSDL document fi
describes a Web service si. We process the contents of the
WSDL document in order to extract a vector of meaningful
content words for the Web service si. Our approach to
building the vector consists of the following five steps (shown
in Figure 2):

1)Parsing WSDL: The contents of the document are
parsed based on white spaces to produce a vector of tokens Ti.

2) Tag removal: The next step removes all tokens from Ti
that are part of a XML tag so that only valid content words
remain in the vector. Removing XML tags from the tokenized

IJSART - Volume 3 Issue 2 –FEBRUARY 2017 ISSN [ONLINE]: 2395-1052

Page | 203 www.ijsart.com

vector is straightforward since all XML tags used in a WSDL
document are predefined.

3) Word stemming: In this step, all words in Ti are reduced to
their base words.

 Tokens with a common stem will usually have the

same meaning, for example, ‘connect’, ‘connected’,
‘connecting’, ‘connection’, and ‘connections’ all have the
same stem ‘connect’. Having one or all of them will not make
a difference in terms of word variations in the semantic of a
Web service. However, words which appear more often are
more important than others. We consider the number of
occurrence in the following steps.

4) Function word removal: Function words tend to be
independent of one another. Often, function words can be
distinguished from content words using a Poisson distribution
to model word occurrence in documents[15]. This step is
intended to remove all function words from the service word
vector. To decide whether a certain word w is a function word,
we calculate the overestimation factor for all words in the
word vector as follows:

Λw =
estimatedDocumentF req

=
nˆw

(1)

observedDocumentF req nw

where nw is the number of documents that contain

the word w (we use the occurrence in Web documents), nˆw
and is the number of estimated documents that contain the
word w. To estimate the document frequency for a word we
need to have the document frequency for a sin-gle occurrence
of that word in the Web corpus. While it is not feasible for a
search engine to identify documents that contain a single
occurrence of a particular search term, there are techniques,
such as the K-mixture word distribution model [17], to
estimate the word frequency using page count. In this paper,
we use the Yahoo search engine to obtain a single occurrence
page count for a certain search term as follows. We first
search the Web using the Yahoo search engine for all pages
that contain the desired word, for example ”weather”. This
gives the Web document frequency regardless of how many
times the search term ”weather” appears in a document. We
then search using the term ”weather * weather”, which gives
all documents containing at least two occurrences of the word
”weather”. The difference between these two page counts is an
estimate for the Web document frequency for a single
occurrence of the term ”weather”. We can then calculate the
overestimation factor (dis-cussed in more detail in [15]) for all
words in Ti as well as the average avg[Λ] of all overestimation

factors. An overestimation factor threshold (Λthre) is defined
as follows [15].

Λthre =
avg

[Λ]
if avg[Λ] > 1

(2)

1 otherwise

Any word that has an overestimation factor above the

Λthre is considered to be a content word. Otherwise the word
is considered to be a function word and is removed from the
vector Ti.

5). Content word recognition: WSDL documents usually
contain general computing content words such as
’data’,’web’,’port’, etc. These words appear in most Web
service description files and so can not be used to discriminate
between Web services. The objective of this step is to remove
words that do not describe the specific semantics of the Web
service.

Fig. 3. An excerpt from the Weather Forecast Web

service(http://www.webservicex.net/WeatherForecast.asmx?w
sdl) that shows the structure of types, messages, and ports.

We first apply the k-means clustering algorithm [18]

with k = 2 on Ti to cluster the remaining words into two
groups, one group describing the meaning of the Web service
and the other group is for general computing words. We use
K-means because it is simple, fast, and efficient if the number
of clus-ters is known beforehand. We use Normalized Google
Distance (NGD) [19] as a featureless distance measure
between words. We use a cluster selection method to
automatically recognize which cluster contains the Web-
service-specific words. A number of sophisticated cluster
selection algorithms have been proposed such as the one based
on iterative propagation of penalty weights [15]. We chose,
however, to use a simple approach based on calculating the
average NGD between each of the two clusters and a
predefined vector of general computing words such as {
runtime, bind, web, service, module, data, post, developer }.
The cluster closest to this oracle is determined to be the non-
Web-service-specific cluster and its words are removed from
the word vector Ti.

IJSART - Volume 3 Issue 2 –FEBRUARY 2017 ISSN [ONLINE]: 2395-1052

Page | 204 www.ijsart.com

Feature 2: WSDL Types (complexType)

WSDL documents contain a section that defines data

con-tainers which will be used by messages to transmit
information between Web services. Figure 3 shows an
example of a com-plexType definition that appears in the
WeatherForecast Web service. WSDL specifications use XML
Schema Definition (XSD) as their canonical type system.
Types can be as simple as a single element or as complex as
an array of elements. Each element has a name attribute and a
type attribute. While the name attribute is sometimes not a
useful feature, the type attribute is a good candidate for
describing the functionality of a service. Xin et. al [13] show
that complex data types are the most informative element in
WSDL documents. We therefore extract element types and
determine the number of type matches between a pair of Web
services using

where si and sj are different Web services, M (si, sj) is the
number of matched types between Web services si, sj , and Esi
and Esj are the total numbers of defined types in Web service
si and sj respectively.

Feature 3: WSDL Messages

Messages encompass one or more logical parameters.

Each parameter is associated with one of the system types.
Multiple parameters (part elements) are used if the message
has multiple logical units, such as a message containing a
purchase order with order items and its invoice. Message
definitions are typically considered as an abstract definition of
the message content. A message binding section defines how
the abstract content is mapped into a concrete format [3].
Figure 3 shows an example of a simple message definition that
appears in the WeatherForecast Web service. The message
may contain multiple parts and the order in which these parts
appear is important to the message definition. In our approach,
we match the messages’ structure between Web services and
use Equation (3) to calculate this match. In this case, M (si, sj
) is number of matched messages between Web services si and
sj , and Esi , Esj are the total number of defined messages in
Web services si, and sj respectively.

Feature 4: WSDL Ports

A <portType> defines the combination and sequence

of messages for an operation. WSDL 1.1 supports four types
of message exchange patterns [20]:

 One-way: The service receives a single input message.
 Request-response: The service receives a request message

and responds with an output message.
 Solicit-response: The service first sends an output mes-

sage and then waits for an input message in response.
 Notification: The service sends an output message

without waiting for anything in return as, for example, in
the case of state updates.

Figure 3 illustrates a <portType> definition section in

the WeatherForecast Web service. We evaluate how many
port-Types are similar, with respect to both message sequence
and message structure, between two Web services using
Equation(3).

Feature 5: Web Service Name

We consider the Web service name
used in the URI of the WSDL
document. For example, the URI of the
WeatherForecast Web service is
http://www.webservicex.net/WeatherForecast.Asmx?WSDL,
and so the name of the Web service is ”Weather Forecast”.
This name could be totally different from the name used inside
the WSDL document itself. In case of composite names, such
as ‘WeatherForecast’, we split the composite name into
multiple names based on the assumption that a capital letter
indicates the start of a new word. Using NGD we find the
similarity between services names as follows:

sim(snamei, snamej) = 1 − NGD(snamei, snamej) (4)

where snamei and snamej are the names of the Web

services si and sj respectively.

VI. EXPERIMENTS AND RESULTS

We use two criteria to evaluate the performance
of our approach, namely Precision and Recall. ”Precision
can be seen as a measure of exactness or fidelity, whereas
Recall is a measure of completeness” [22]. Precision and
Recall have been often used to evaluate information retrieval
schemes [12].

IJSART - Volume 3 Issue 2 –FEBRUARY 2017 ISSN [ONLINE]: 2395-1052

Page | 205 www.ijsart.com

Fig. 4. The output of the content words recognition phase for

the Weather-Forecast Web service.

We first mine the content of extract the WSDL

documents to content words vector Ti where 1 > i >
400,describing the meaning of web services.Using the Java
library WV Tool,each line is upload as a instance of WVT
Documentinfo class.The output is the vector of word without
HTML tags.These vectors are taken to the next phase using
the Porter Stemmer to reduce all the words in the search vector
to their roots. Then we calculate the overestimation factor for
all the words in each vector to distinguish between function
words and content words. We use the Yahoo search engine to
find the document frequency and estimated document
frequency for each word. We use the Yahoo search engine to
find the document frequency and estimated document
frequency for each word. We next identify the content words
for the Web services by clustering each word vector into two
groups using the k-means clustering algorithm, in which we
use NGD as a featureless similarity measure between words.

Figure 4 shows a sample output of this phase for the Weather
Forecast Web service. Finally, we use a cluster selection
algorithm to pick out the cluster of non-content words by
calculating the clusters’ similarity, using Equation (6), with a
group of general computing words including {runtime, bind,
web, service, module, data, post, developer}. We create the
types feature for the Web services by extracting all the defined
complex Types along with their elements in each WSDL
document and determine the number of matching elements for
every pair of Web services using Equation (3).

Table II shows the results for four sample

Webservices,webservicex.net/globalweather(WS1),webservice
x.net/usweather(WS2),deeptraiing.com/weather(WS3), and
nsw.gov.au/AddressImageWS (WS4). We also extract the
information for the messages and ports features and calculate
the similarity for each pair of services. We cluster the feature
sets of the 400 Web services using QT clustering algorithm,
which uses the composite relatedness measure in Equation (5)
to calculate similarity between Web services. We use 0.7,
which was determined experimentally, as the minimum
similarity threshold between any pair of services in a cluster.
Figure 5 shows a snippet from the clustering output, which
focuses on the groups that we identified manually. In each
cluster there may be some Web services incorrectly placed in
it (false positives, which are marked by a dark background in
Figure 5), as well as others that are supposed to be there but
are placed in other clusters (false negatives).

 TABLE I : THE MANUALLY IDENTIFIED CATEGORIES FOR CLUSTERING VERIFICATION.

Category
WSDL
URI

http://www.atlaz.net/webservices/GetCurrencyExchange.wsd
l

http://www.webservicex.net/CurrencyConvertor.as
mx?WSDL

 http://server1.pointwsp.net/ws/finance/currency.asmx?WSDL
http://allysoft.ru/BScurrency/currency.asmx?WSD
L

http://www.freewebs.com/jimmy
cheng/CurrencyExchangeService.wsdl

http://fx.cloanto.com/webservices/CurrencyServer.
asmx?wsdl

http://www.currencyserver.de/webservice/currencyserverwebse
rvice.asmx?WSDL

http://currencyconverter.kowabunga.net/converter.
asmx?WSDL

Currency
http://ws.soatrader.com/gama-
system.com/1.0/CurrencyExchangeRates?wsdl

http://tvazteca.viajez.com/WServicesDev/Currency
Request?WSDL

exchange
http://ws.serviceobjects.com/ce/CurrencyExchange.asmx?W
SDL

http://ws2.serviceobjects.net/ce/CurrencyExchange
.asmx?WSDL

(19)
http://www.petermeinl.de/CurrencyConverter/CurrencyConv
erter.asmx?wsdl http://currency.niekutis.net/currency.asmx?wsdl

IJSART - Volume 3 Issue 2 –FEBRUARY 2017 ISSN [ONLINE]: 2395-1052

Page | 206 www.ijsart.com

http://cs.daenet.de/webservice/CurrencyServerWebService.as
mx?WSDL http://www.xignite.com/xCurrencies.asmx?wsdl

http://trial.serviceobjects.com/ce/CurrencyExchange.asmx?W
SDL

http://ws.strikeiron.com/ForeignExchangeRate3?
WSDL

 http://ws.soatrader.com/baydonhill.com/0.1/Currency?wsdl
 http://www.webservicex.net/globalweather.asmx?wsdl http://www.webservicex.net/usweather.asmx?wsdl

 http://www.webservicex.net/WeatherForecast.asmx?wsdl
http://www.deeptraining.com/webservices/weather
.asmx?WSDL

 http://ws.soatrader.com/wopos.com/0.1/Weather?wsdl http://ws365.net/ws/weather.asmx?WSDL

Weather http://ws.soatrader.com/cs.uga.edu/0.1/WeatherFetcher?wsdl
http://weather.shellware.com/weather.asmx?WSD
L

(16) http://asyncpostback.com/WeatherService.asmx?WSDL http://ws.soatrader.com/bea.com/0.1/weather?wsdl

http://weather.cobbnz.com/weatherservice/webservice.asmx?
wsdl http://209.162.186.60/globalweather.asmx?WSDL

 http://trial.serviceobjects.com/fw/FastWeather.asmx?WSDL http://api.wxbug.net/weatherservice.asmx?wsdl

http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfd
XML.wsdl

http://lostsprings.com/weather/WeatherService.as
mx?WSDL

 http://services.postcodeanywhere.co.uk/us/lookup.asmx?wsdl
http://ws.strikeiron.com/GlobalAddressLocator3?
WSDL

http://ws.fraudlabs.com/postalcodeworldMexico
webservice.asmx?wsdl

http://ws.strikeiron.com/GlobalAddressVerificatio
n4?WSDL

http://ws.fraudlabs.com/zipcodeworldUS
webservice.asmx?wsdl

http://ws.serviceobjects.com/av/AddressValidate.a
smx?WSDL

Address
http://validator2.addressdoctor.com/addInteractive/Interactiv
e.asmx?WSDL

http://ws.cdyne.com/psaddress/addresslookup.asm
x?wsdl

validation
http://trial.serviceobjects.com/avca/ValidateCanada.asmx?W
SDL

http://arcweb.esri.com/services/v2/AddressFinder.
wsdl

(16)
http://ws.fraudlabs.com/postalcodeworldCanada
webservice.asmx?wsdl

http://ws.strikeiron.com/ZIPPostalCodeInfo5?WS
DL

http://ws.soatrader.com/welho.fi/0.1/AddressAutoCompleteS
ervice?wsdl

http://ws.soatrader.com/servicex.co.uk/0.1/Address
?wsdl

http://142.176.62.103/GEONOVA
WS/CivicAddressPointRange.asmx?WSDL

http://ws.fraudlabs.com/areacodeworldwebservice.
asmx?wsdl

http://ws.xwebservices.com/XWebEmailValidation/XWebEmail
Validation.asmx?wsdl

http://ws.cdyne.com/emailverifyws/emailverify.as
mx?wsdl

E-mail
http://www.siprod.net/webservices/xemail/xemailwebservice.
asmx?WSDL

http://trial.serviceobjects.com/ev2/emailvalidation
2.asmx?WSDL

verificati
on http://ws2.fraudlabs.com/mailboxvalidator.asmx?wsdl http://soap.towerdata.com/validate.wsdl

(8)
http://ws.cdyne.com/emailverify/Emailvernotestemail.asmx?
wsdl http://ws.strikeiron.com/EmailVerify?WSDL

 http://webservices.tiscali.com/CreditCardServices.asmx?wsdl
http://www.webservicex.net/CreditCard.asmx?wsd
l

Credit
https://webservices.optimalpayments.com/creditcardWS/CreditC
ardService/v1?wsdl

http://www.webservicex.net/CreditCard.asmx?wsd
l

card
http://www.cbr.ru/CreditInfoWebServ/CreditOrgInfo.asmx?
wsdl

http://webservices.primerchants.com/creditcard.as
mx?wsdl

IJSART - Volume 3 Issue 2 –FEBRUARY 2017 ISSN [ONLINE]: 2395-1052

Page | 207 www.ijsart.com

TABLE II: CALCULATING COMPLEXTYPE MATCHES BETWEEN FOUR WEB SERVICES.

For the sake of performance comparison, we
implemented the clustering approach proposed by Liu and
Wong [15] and applied it on our dataset. This proposed
clustering mechanism relies on less information from the
description files and mines for features from surrounding
pages of the Web service and the host name. We used the
Quality Threshold clustering algorithm in our implementation
instead of the Tree-Traversing Ant (TTA) algorithm used in
the original paper as QT is the one we used in our approach.
The results shows that, for example, services described by
http://www.webservicex.net/ConvertTemperature. asmx?wsdl,
http://weather.terrapin.com/axis2/ services/HurricaneService?
wsdl, http://ws. soatrader.com/syromlya.ru/0.1/Prediction?
wsdl, and http://webservices.daehosting.com/services/
TemperatureConversions.wso?WSDL, are incorrectly placed

the ”Weather” cluster. Investigating these WSDL documents,
we see that the first three do not make use of the
<documentation> element to provide a description of the Web
service’s functionality and their attributes’ names can be
confused with the weather Web services. The fourth of the
above incorrectly placed Web services has text to describe its
functionality but uses weather-like terms in the description. In
all these services, however, the <complexType> definitions
and <message> structures are completely different from the
other weather Web services, which explains why our approach
is able to recognize them.

On the other hand, the Web service described by

http://ws.fraudlabs.com/fraudlabswebservice. asmx?wsdl, for
example, is not correctly placed in the ”Credit card services”

check
http://secure.cdyne.com/creditcardverify/luhnchecker.asmx?
wsdl

http://webservices.primerchants.com/creditcard.as
mx?WSDL

(10)
http://ws.strikeiron.com/FraudLabs/CreditCardFraudDetectio
n?WSDL

http://ws.fraudlabs.com/fraudlabswebservice.asmx
?wsdl

IJSART - Volume 3 Issue 2 –FEBRUARY 2017 ISSN [ONLINE]: 2395-1052

Page | 208 www.ijsart.com

cluster by either approach. A closer look to this Web service
shows that it does not have a <documentation> element and
neither its name nor its contents imply that it provides a credit
check. It is worthwhile noting that our approach failed to
correctly cluster this

TABLE III : PERFORMANCE MEASURES RELATED TO

THE FIVE IDENTIFIED CLUSTERS.

Cluster
Our approach [15]’s approach

 Precision%

Recall
% Precision% Recall%

Currency
exchange 90.0 94.7 84.2 88.9
Weather 94.1 100 70.0 87.5
Address
validation 83.3 93.7 60.0 93.7
E-mail
verification 80.0 100 58.3 87.5
Credit card
services 90.0 90.0 60.0 90.0

TABLE IV : EVALUATING THE SIGNIFICANCE OF

DIFFERENT CLASSIFICATION FEATURES.
Cluster Precision% Recall%

Currency
exchange 82.6 78.9
Weather 72.3 93.7
Address
validation 60.0 93.3
E-mail
verification 56.0 77.7
Credit card
services 60.0 88.9

service because it uses very different
<complexType> and <message> structures than the ones used
by other credit card Web services.

Table III shows the performance comparison (in

terms of the precision and recall) for our approach versus Liu
and Wong’s approach [15] relative to the five manually
identified groups in our test set of Web services. We could not
calculate the overall precision and recall since we could not
manually identify all clusters in our dataset. We note that the
low precision of our approach for the ”Address validation”
and ”E-mail verification” clusters in Table III is due to the
mutual correlation between these two groups as well as some
individual services from the ip-to-country Web services
domain. We also note that all Web services that are supposed
to belong to ”E-mail verification” and ”Weather” groups are
successfully placed in the clusters, as indicated by 100% recall
value.

Looking at the performance results of the two
approaches in Table III, we note that our approach has higher
precision and higher recall for all the identified categories. For
example, our approach improved the precision for the
”Address validation” group by 23.3% and 30% for ”Credit
card services” group.

We also conducted an experiment to evaluate the

signif-icance of the common features used by our approach
and Liu and Wong’s approach on the classification process.
We ran our approach clustering only the service name and the
content features. Table IV shows the performance measure
form this experiment. Comparing the results in Table IV and
Table III, we conclude that, performance is slightly increased,
in general, by adding context and host name features.
However, sometimes precision gets better and recall becomes
higher if context and host name are not considered such as the
case of increasing the precision from 70.0% to 72.3% for the
”Weather” group. We believe that this negative contribution of
these two features is due to the fact that Web services are
published through providers’ website or public access
uncategorized repositories, in which the surrounding pages of
the WSDL documents have no relations to the functionality of
the Web services that described by these WSDLs. On the other
hand, our approach performs well by adding features such as
complexTypes, messages and ports. The impact of these
features improved the clustering reliability by increasing our
precision and enhancing our recall.

VII. CONCLUSION

Effective Web service discovery is an important

issue, especially for non-semantic Web services. Traditional
UDDI-based and search engine-based Web service discovery
lacks the ability to recognize the content of the Web service
description file. In this paper, we propose an approach to
improve service discovery of non-semantic Web services by
clustering similar services through mining WSDL documents.
We identify five key features that are extracted and integrated
in order to group Web services into functionality-based
clusters.

Our clustering approach can be integrated into search

engines to improve the quality of Web service discovery by
helping to identify the Web services relevant to a user request.
This will, in turn, add value to the discovery process by
providing users with better quality options in selecting a
service. Experiments show a performance improvement in the
quality of the retrieval compared with previous approaches. As
future work, we plan to improve features integration by
choosing optimized weights for each feature using a linear
programming approach.

IJSART - Volume 3 Issue 2 –FEBRUARY 2017 ISSN [ONLINE]: 2395-1052

Page | 209 www.ijsart.com

REFERENCES

[1] Michael P. Papazoglou, Paolo Traverso, Istituto Ricerca,
Scientifica Tecnologica, “ Service-Oriented Computing:
State of the Art and Research Challenges,” Computer,
VOL. 40, NO. 11, pp 38-45, Nov. 2007.

[2] “Web Services Architecture,” February 11, 2004. [on-

line] Available: http://www.w3.org/TR/ws-arch.
[Accessed: Feb. 26, 2010].

[3] “Web Services Description Language (WSDL) Ver-sion

2.0 Part 1: Core Language,” June 26, 2007. [Online].
Available: http://www.w3.org/TR/wsdl20. [Accessed:
Feb. 26, 2010].

[4] Eyhab Al-Masri, Qusay H. Mahmoud, “Investigating web

services on the world wide web,” International World
Wide Web Conference (WWW 2008), pp. 795-804, 2008.

[5] Richi Nayak, “ Data mining in Web services discovery
and monitoring ,” International Journal of Web Services
Research, Vol. 5, No. 1, pp. 63-81, January, 2008.

[6] Wei Liu, “Trustworthy Service Selection and Composi-

tion Reducing the Entropy of Service-oriented Web,” 3rd
International Conference on Industrial Informat-
ics(INDIN 2005), pp. 104-109, 2005.

[7] M. Burstein, J. Hobbs, O. Lassila, D. Mcdermott, S.

Mcilraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne,
E. Sirin, N. Srinivasan, K. Sycara, D. Martin (ed.) “OWL-
S: Semantic Markup for Web Services,” W3C Member
Submission, 2004.

[8] H. Lausen, A. Polleres, “Web Service Modeling Ontol-

ogy (WSMO),” W3C Member Submission, 2005.

[9] Matthias Klusch, Benedikt Fries, Katia Sycara, “Au-
tomated semantic web service discovery with owls-mx,”
Proceedings of 5th International Conference on
Autonomous Agents and Multi-Agent Systems
(AAMAS), 2006.

[10] John D. Garofalakis, Yannis Panagis, Evangelos

Sakkopoulos and Athanasios K. Tsakalidis,
“Contemporary Web Service Discovery Mechanisms,”
Journal of Web Engineering, Vol. 5, No. 3, pp. 265-290,
September 2006.

[11] Guan Hong-Jie, Meng Fan-Rong, Sun Jin-Fei, Du Peijun,

“Web service discovery based on the cooperation of

UDDI and DF,” 4th International Conference on Wireless
Communications, Networking and Mobile Computing
(WiCOM), pp. 1-4, 2008.

[12] Shuiguang Deng, Zhaohui Wu, Jian Wu, Ying Li, Jian-

wei Yin, “An Efficient Service Discovery Method and its
Application,” International Journal of Web Services
Research, Vol. 6, No. 4, pp. 94-117, 2009.

[13] Xin Dong, Alon Halevy, Jayant Madhavan, Ema Nemes,

Jun Zhang, “Similarity Search for Web Services,” Pro-
ceedings of the 30th VLDB Conference, Toronto, Canada,
pp. 372-383, 2004.

[14] Natallia Kokash, “A Comparison of Web Service Inter-

face Similarity Measures,” Frontiers in Artificial Intelli-
gence and Applications, Vol. 142, pp.220-231, 2006.

[15] Wei Liu, Wilson Wong, “Web service clustering using

text mining techniques,” International Journal of Agent-
Oriented Software Engineering, Vol. 3, No. 1, pp. 6-26,
2009.

[16] M. F. Porter, “An Algorithm for Suffix Stripping”, Pro-

gram, Vol. 14, No. 3, pp. 130-137, 1980.

[17] Slava M. Katz, “Distribution of content words and
phrases in text and language modeling,” Natural Lan-
guage Engineering, Vol. 2, No. 1, pp. 15-59, March 1996.

[18] Jain AK, Dubes RC, Algorithms for clustering data.

Prentice-Hall, Englewood Cliffs, 1988.

[19] Cilibrasi, Rudi L, Vitnyi, Paul M. B., “ The Google
similarity distance,” IEEE Transactions on Knowledge
and Data Engineering, Vol. 19, No. 3, pp. 370-383, March
2007.

[20] Ethan Cerami, Web Services Essentials. O’Reilly & As-
sociates, ISBN:0-596-00224-6, February 2002Knowledge
and Data Engineering, Vol. 19, No. 3, pp. 370-383, March
2007.

