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Abstract- The increasing use of the Web for everyday tasks is 
making Web services an essential part of the Internet 
customer’s daily life. Users query the Internet for a required 
Web service and get back a set of Web services that may or 
may not satisfy their request. To get the most relevant Web 
services that fulfill the user’s request, the user has to construct 
the request using the keywords that best describe the user’s 
objective and match correctly with the Web Service name or 
location. Clustering Web services based on function 
similarities would greatly boost the ability of Web services 
search engines to retrieve the most relevant Web services. 
This paper proposes a novel technique to mine Web based 
documents and cluster them into functionally similar Web 
service groups. The application of our approach to real Web 
services description files has shown good performance for 
clustering Web services based on function similarity, as a 
predecessor step to retrieving the relevant Web services for a 
user  request by search engines. 
 
Keywords- clustering Web documents, Web service, feature 
extraction, Web service clustering. 
 

I. INTRODUCTION 
 

Service-oriented Architecture (SOA) has become a 
driving force for Web applications development. Service-
oriented Computing (SOC) is a computing paradigm that is 
driven by SOA. SOC uses services as the basic constructs to 
support rapid, low-cost, and easy composition of distributed 
applications even in heterogeneous environments [1]. In SOA, 
a service is defined by a Web interface that supports 
interpretable operations between different software 
applications using a standard messaging protocol [2]. Web 
services are a popular implementation of SOA. A Web service 
is described by means of the Web Services Description  
Language (WSDL) [3], and that description is published in a 
public Universal Description Discovery and Integration 
(UUDI) registry. XML is used to construct the basic blocks of 
Web service communication by means of some form of XML 
messaging, such as Simple Object Access Protocol (SOAP) 
request or response or XML-Remote Procedure Call (XML-
RPC). 

 
Major providers of Web services, such as Google, 

Amazon and Yahoo, have decided to publish their Web 

services through their own websites instead of using public 
registries or brokers. This trend is forcing users to discover 
Web services using a search-engine model. Al-Masri et al. [4] 
show that services registered in public registries are 
decreasing in contrast with services crawled by search 
engines’s crawlers. The authors point out that more that 53% 
of the UDDI Business Registry (UBR) registered services are 
invalid, whereas 92% of Web services cached by search 
engines are valid and active. 

 
Searching for Web services using search engines, 

however, can result in a bottleneck in the discovery process, 
especially for non-semantic Web services because search 
engines do not understand the Web service functionalities 
outlined in the description file. Search engines partially match 
the search terms entered by the user with the Web service 
name, location, business, or Model [5] defined in the Web 
service description file to get the results back. The use of these 
kinds of keywords are, by design, limited in WDSL 
specifications. If the search query does not contain part of the 
Web service name exactly, then the service may not be 
retrieved. It is therefore essential for the user to be aware of 
the concise and correct keywords in order to retrieve the most 
relevant services that match the request. This is difficult for 
users who are ultimately concerned with service functionality. 
A user may even miss services that use synonyms or 
variations of these keywords. For example, a service that 
contains ”car” in its name may not be retrieved from a query 
looking for ”vehicle”. 

 
The problem of poor recall for search for non-

semantic Web services using search engines can be 
approached in two ways. The first approach is to perform a 
broad matching process and return a potentially large number 
of unranked services, most of which may not be of interest to 
the user. The second approach is to improve search engine 
retrieval with mechanisms to cluster services into similar 
functional groups while they crawl their description files. This 
latter approach can effectively reduce the search space of Web 
services while improving the matching process. In addition, it 
can take advantage of the continuous crawling feature of 
search engines’s crawlers by enabling adaptive re-clustering 
and self-organization to cope with the highly dynamic nature 
of Web services [6]. In this paper, we seek to improve Web 
services discovery with search engines by proposing a novel 
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approach to clustering Web service description files (WSDL 
documents) into functionally similar groups prior to answering 
discovery requests . 
 
Our main contributions are as follows: 

 
 We present an approach that uses five key features 

extracted from WSDL documents in order to group Web 
services into functionality-based clusters.  

 We experimentally demonstrate that our proposed ap-
proach outperforms (higher precision and recall) other 
approaches.  

 
The rest of this paper is organized as follows. Section 

II gives a brief background on related work. Section III 
describes the problem of poor recall for search for non-
semantic Web services using search engines can be 
approached in two ways. The first approach is to perform a 
broad matching process and return a potentially large number 
of unranked services, most of which may not be of interest to 
the user. The second approach is to improve search engine 
retrieval with mechanisms to cluster services into similar 
functional groups while they crawl their description files. This 
latter approach can effectively reduce the search space of Web 
services while improving the matching process. In addition, it 
can take advantage of the continuous crawling feature of 
search engines’s crawlers by [6].Section IV introduces our 
proposed clustering approach.Section V explains extracting 
features from wsdl documents,section VI discusses the 
experiments and results. Finally, Section VII concludes the 
paper and outlines future research avenues. 

 
II.BACKGROUND AND RELATED WORK 

 
Research in Web mining has recently gained much 

attention due to the popularity of Web services and the 
potential benefits that can be achieved from mining Web 
services description files. Non-semantic Web services are 
described by WSDL documents while semantic Web services 
use Web ontology languages (OWL-S) [7] or Web Service 
Modeling Ontology (WSMO) [8] as a description language. 
Non-semantic Web services are more popular and supported 
by both the industry and development tools. The discovery 
process is quite different according to the Web services 
description method. Semantic Web services are discovered by 
high level match-making approaches [9], whereas non-
semantic Web services discovery uses information retrieval 
techniques [10]. In our approach, we target the discovery of 
non-semantic Web services. 

Nayak [5] proposes a method to improve the Web 
service discovery process using the Jaccard coefficient to 
calculate the similarity between Web services. He provides the 

user with related search terms based on other users’ 
experiences with similar queries. In contrast, our approach 
clusters Web services based on their functionality in order to 
reduce the search space and improve query matching. We 
make use of five features extracted from the description files 
to calculate the similarity among Web services. 

 
Many efforts have been made to overcome the 

drawbacks of UDDI-based discovery techniques. Guan et al. 
[11] propose two discovery mechanisms based on the 
cooperation between UDDI and Directory Facilitator (DF) to 
improve the efficiency of the UDDI-based Web service 
discovery. However, the study do not give enough evidence to 
show the effectiveness of their approach in improving the Web 
services discovery. Shuiguang et al. [12] propose an 
information model for registered services to improve the 
match-making in the discovery process. The authors use 
precision and recall to measure the performance of their 
approach. Xin et al. [13] propose the Web services search 
engine Woogle that is capable of providing Web services 
similarity search. Their engine, however, does not adequately 
consider data types, which usually reveal important 
information about the functionalities of Web services [14]. 

 
Liu and Wong [15] use a proposal similar to ours and 

apply text mining techniques to extract features such as 
service content, context, host name, and name, from Web 
service description files in order to cluster Web services. They 
propose an integrated feature mining and clustering approach 
for Web services as a predecessor to discovery, hoping to help 
in build-ing a search engine to crawl and cluster non-semantic 
Web services. We differ in our choice of features. We believe 
that the service context and service host name features offer 
little help in the clustering process. Providers tend to advertise 
the services they provide on their own website, which means 
they provide different Web services on the same site. Hence, 
mining the surrounding Web pages (service context) or 
considering the host name does not help with the meaning of 
the Web service, which is not the case in UDDI. In addition, 
some Web services do not make use of the <documentation> 
element in the WSDL document, which means there is 
insufficient information for the content feature. Relying on 
attributes’ names as a Web service content may also be 
misleading since the names may not follow any naming 
conventions and they may not be descriptive or even correct 
English words. 
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III. WSDL DOCUMENT STRUCTURE 
 
WSDL is an XML-based language that provides a 

model for describing non-semantic Web services [3]. It is also 
used to describe the operations that can be performed by a 
certain Web service as well as its location. In our feature 
extraction we consider the structure of WSDL specification 
version 1.1 as it is most often supported by software 
development tools. 

 
A WSDL document describes a Web service using 

six major components: 
 

 <types> element is an XML type definition that de-scribes 
the data containers used in message exchanges.  

 <messages> element is an abstract representation of the 
transmitted information. Typically, a message contains 
one or more logical parts (parameters). These parts are 
associated with a type definition.  

 <portType> is an important component in WSDL 
documents, in which a set of abstract operations 
(functions) that can be performed by the Web service are 
defined. Each operation is associated with an input and/or 
output message.  

 <binding> component specifies the communication 
protocol and data format for each operation and message 
defined in a particular portType element.  

 <service> element is a composite operation that ag-
gregates multiple related ports or functions.  

 
IV. PROPOSED CLUSTERING APPROACH 

 
Our proposed approach is inspired by the information 

available in Web services description document. We mine the 
WSDL documents to extract features that describe the 
semantic and behavior of the Web service, specifically the 
WSDL content, WSDL types, WSDL groups. This is a 
predecessor step to assist a service search engine in identifying 
the Web service functionality and match Web services with 
users’ requests. Figure 1 illustrates graphically our proposed 
approach to cluster WSDL docu-ments to aid a service 
messages, WSDL ports and the Web service name. These 
features describe and reveal the functionality of a Web service 
[13]. Integrating these features together, we cluster Web 
services into functionally similar search engine. A search 
engine’s crawler crawls WSDL documents from the internet 
and applies offline our proposed clustering approach to group 
similar functionally services. When a user queries the service 
search engine for a desirable objective (step 1), it uses the 
clustered Web services to match semantically the query (step 
2) and return the most relevant Web services (step 3) that 
satisfies the requested objective. 

 
Fig. 1. Schematic block diagram illustrates the big picture that 

inspired our WSDL clustering approach. 

 
Figure 2 illustrates the steps for feature extraction. 

 
 

V. EXTRACTING FEATURES FROM WSDL 
DOCUMENTS 

 
In this Section we describe how we extract the five 

proposed features from WSDL documents.  
 

Feature 1: WSDL Content 
 
We begin by reading the WSDL document contents 

directly from the WSDL URI. Each WSDL document fi 
describes a Web service si. We process the contents of the 
WSDL document in order to extract a vector of meaningful 
content words for the Web service si. Our approach to 
building the vector consists of the following five steps (shown 
in Figure 2): 

 
1)Parsing  WSDL:  The  contents  of  the  document  are 
parsed based on white spaces to produce a vector of tokens Ti.  

 
2) Tag removal: The next step removes all tokens from Ti 
that are part of a XML tag so that only valid content words 
remain in the vector. Removing XML tags from the tokenized 
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vector is straightforward since all XML tags used in a WSDL 
document are predefined. 

      
3) Word stemming: In this step, all words in Ti are reduced to 
their base words.  

 
 Tokens with a common stem will usually have the 

same meaning, for example, ‘connect’, ‘connected’, 
‘connecting’, ‘connection’, and ‘connections’ all have the 
same stem ‘connect’. Having one or all of them will not make 
a difference in terms of word variations in the semantic of a 
Web service. However, words which appear more often are 
more important than others. We consider the number of 
occurrence in the following steps.  

 
4) Function word removal: Function words tend to be 
independent of one another. Often, function words can be 
distinguished from content words using a Poisson distribution 
to model word occurrence in documents[15]. This step is 
intended to remove all function words from the service word 
vector. To decide whether a certain word w is a function word, 
we calculate the overestimation factor for all words in the 
word vector as follows:  

 

Λw = 
estimatedDocumentF req 

=
nˆw 

(1)
 

observedDocumentF req nw 
 

    
   
      
where nw is the number of documents that contain 

the word w (we use the occurrence in Web documents), nˆw 
and is the number of estimated documents that contain the 
word w. To estimate the document frequency for a word we 
need to have the document frequency for a sin-gle occurrence 
of that word in the Web corpus. While it is not feasible for a 
search engine to identify documents that contain a single 
occurrence of a particular search term, there are techniques, 
such as the K-mixture word distribution model [17], to 
estimate the word frequency using page count. In this paper, 
we use the Yahoo search engine to obtain a single occurrence 
page count for a certain search term as follows. We first 
search the Web using the Yahoo search engine for all pages 
that contain the desired word, for example ”weather”. This 
gives the Web document frequency regardless of how many 
times the search term ”weather” appears in a document. We 
then search using the term ”weather * weather”, which gives 
all documents containing at least two occurrences of the word 
”weather”. The difference between these two page counts is an 
estimate for the Web document frequency for a single 
occurrence of the term ”weather”. We can then calculate the 
overestimation factor (dis-cussed in more detail in [15]) for all 
words in Ti as well as the average avg[Λ] of all overestimation 

factors. An overestimation factor threshold (Λthre) is defined 
as follows [15]. 

Λthre = 
avg 

[Λ] 
if avg[Λ] > 1 

(2)
 

1 otherwise  
  
Any word that has an overestimation factor above the 

Λthre is considered to be a content word. Otherwise the word 
is considered to be a function word and is removed from the 
vector Ti. 

 
5). Content word recognition: WSDL documents usually 
contain general computing content words such as 
’data’,’web’,’port’, etc. These words appear in most Web 
service description files and so can not be used to discriminate 
between Web services. The objective of this step is to remove 
words that do not describe the specific semantics of the Web 
service. 

 
Fig. 3. An excerpt from the Weather Forecast Web 

service(http://www.webservicex.net/WeatherForecast.asmx?w
sdl) that shows the structure of types, messages, and ports. 

 
We first apply the k-means clustering algorithm [18] 

with k = 2 on Ti to cluster the remaining words into two 
groups, one group describing the meaning of the Web service 
and the other group is for general computing words. We use 
K-means because it is simple, fast, and efficient if the number 
of clus-ters is known beforehand. We use Normalized Google 
Distance (NGD) [19] as a featureless distance measure 
between words. We use a cluster selection method to 
automatically recognize which cluster contains the Web-
service-specific words. A number of sophisticated cluster 
selection algorithms have been proposed such as the one based 
on iterative propagation of penalty weights [15]. We chose, 
however, to use a simple approach based on calculating the 
average NGD between each of the two clusters and a 
predefined vector of general computing words such as { 
runtime, bind, web, service, module, data, post, developer }. 
The cluster closest to this oracle is determined to be the non-
Web-service-specific cluster and its words are removed from 
the word vector Ti. 
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Feature 2: WSDL Types (complexType) 
 
WSDL documents contain a section that defines data 

con-tainers which will be used by messages to transmit 
information between Web services. Figure 3 shows an 
example of a com-plexType definition that appears in the 
WeatherForecast Web service. WSDL specifications use XML 
Schema Definition (XSD) as their canonical type system. 
Types can be as simple as a single element or as complex as 
an array of elements. Each element has a name attribute and a 
type attribute. While the name attribute is sometimes not a 
useful feature, the type attribute is a good candidate for 
describing the functionality of a service. Xin et. al [13] show 
that complex data types are the most informative element in 
WSDL documents. We therefore extract element types and 
determine the number of type matches between a pair of Web 
services using 

 
 
where si and sj are different Web services, M (si, sj ) is the 
number of matched types between Web services si, sj , and Esi 
and Esj are the total numbers of defined types in Web service 
si and sj respectively. 
 
Feature 3: WSDL Messages 

 
Messages encompass one or more logical parameters. 

Each parameter is associated with one of the system types. 
Multiple parameters (part elements) are used if the message 
has multiple logical units, such as a message containing a 
purchase order with order items and its invoice. Message 
definitions are typically considered as an abstract definition of 
the message content. A message binding section defines how 
the abstract content is mapped into a concrete format [3]. 
Figure 3 shows an example of a simple message definition that 
appears in the WeatherForecast Web service. The message 
may contain multiple parts and the order in which these parts 
appear is important to the message definition. In our approach, 
we match the messages’ structure between Web services and 
use Equation (3) to calculate this match. In this case, M (si, sj 
) is number of matched messages between Web services si and 
sj , and Esi , Esj are the total number of defined messages in 
Web services si, and sj respectively. 

 
Feature 4: WSDL Ports 

 
A <portType> defines the combination and sequence 

of messages for an operation. WSDL 1.1 supports four types 
of message exchange patterns [20]: 

 

 One-way: The service receives a single input message.  
 Request-response: The service receives a request message 

and responds with an output message.  
 Solicit-response: The service first sends an output mes-

sage and then waits for an input message in response.  
 Notification: The service sends an output message 

without waiting for anything in return as, for example, in 
the case of state updates.  

 
Figure 3 illustrates a <portType> definition section in 

the WeatherForecast Web service. We evaluate how many 
port-Types are similar, with respect to both message sequence 
and message structure, between two Web services using 
Equation(3). 

 
Feature 5: Web Service Name     
 

We consider the Web service name 
used in the URI of the WSDL 
document. For example, the URI of the 
WeatherForecast  Web service is 
http://www.webservicex.net/WeatherForecast.Asmx?WSDL, 
and so the name of the Web service is ”Weather Forecast”. 
This name could be totally different from the name used inside 
the WSDL document itself. In case of composite names, such 
as ‘WeatherForecast’, we split the composite name into 
multiple names based on the assumption that a capital letter 
indicates the start of a new word. Using NGD we find the 
similarity between services names as follows: 
 
sim(snamei, snamej ) = 1 − NGD(snamei, snamej ) (4) 

 
where snamei and snamej are the names of the Web 

services si and sj respectively. 
 

VI. EXPERIMENTS AND RESULTS 
 

We  use  two  criteria  to  evaluate  the  performance  
of  our approach,  namely  Precision  and  Recall. ”Precision  
can  be seen as a measure of exactness or fidelity, whereas 
Recall is a measure of completeness” [22]. Precision and 
Recall have been often used to evaluate information retrieval 
schemes [12]. 
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Fig. 4. The output of the content words recognition phase for 

the Weather-Forecast Web service. 
 
We first mine the content of extract the  WSDL  

documents  to  content  words  vector Ti where 1 > i >  
400,describing the meaning of web services.Using the Java 
library WV Tool,each line is upload as a instance of  WVT 
Documentinfo class.The output is the vector of word without 
HTML tags.These vectors are taken to the next phase using 
the Porter Stemmer to reduce all the words in the search vector 
to their roots. Then we calculate the overestimation factor for 
all the words in each vector to distinguish between function 
words and content words. We use the Yahoo search engine to 
find the document frequency and estimated document 
frequency for each word. We use the Yahoo search engine to 
find the document frequency and estimated document 
frequency for each word. We next identify the content words 
for the Web services by clustering each word vector into two 
groups using the k-means clustering algorithm, in which we 
use NGD as a featureless similarity measure between words. 

Figure 4 shows a sample output of this phase for the Weather 
Forecast Web service. Finally, we use a cluster selection 
algorithm to pick out the cluster of non-content words by 
calculating the clusters’ similarity, using Equation (6), with a 
group of general computing words including {runtime, bind, 
web, service, module, data, post, developer}. We create the 
types feature for the Web services by extracting all the defined 
complex Types along with their elements in each WSDL 
document and determine the number of matching elements for 
every pair of Web services using Equation (3).  

 
Table II shows the results for four sample 

Webservices,webservicex.net/globalweather(WS1),webservice
x.net/usweather(WS2),deeptraiing.com/weather(WS3), and 
nsw.gov.au/AddressImageWS (WS4). We also extract the 
information for the messages and ports features and calculate 
the similarity for each pair of services. We cluster the feature 
sets of the 400 Web services using QT clustering algorithm, 
which uses the composite relatedness measure in Equation (5) 
to calculate similarity between Web services. We use 0.7, 
which was determined experimentally, as the minimum 
similarity threshold between any pair of services in a cluster. 
Figure 5 shows a snippet from the clustering output, which 
focuses on the groups that we identified manually. In each 
cluster there may be some Web services incorrectly placed in 
it (false positives, which are marked by a dark background in 
Figure 5), as well as others that are supposed to be there but 
are placed in other clusters (false negatives).  

 
 

  
 TABLE I : THE MANUALLY IDENTIFIED CATEGORIES FOR CLUSTERING VERIFICATION. 
 

Category       
WSDL 
URI  

         

 
http://www.atlaz.net/webservices/GetCurrencyExchange.wsd
l 

http://www.webservicex.net/CurrencyConvertor.as
mx?WSDL 

 http://server1.pointwsp.net/ws/finance/currency.asmx?WSDL 
http://allysoft.ru/BScurrency/currency.asmx?WSD
L 

 
http://www.freewebs.com/jimmy  
cheng/CurrencyExchangeService.wsdl 

http://fx.cloanto.com/webservices/CurrencyServer.
asmx?wsdl 

         

 
http://www.currencyserver.de/webservice/currencyserverwebse
rvice.asmx?WSDL 

http://currencyconverter.kowabunga.net/converter.
asmx?WSDL 

Currency 
http://ws.soatrader.com/gama-
system.com/1.0/CurrencyExchangeRates?wsdl 

http://tvazteca.viajez.com/WServicesDev/Currency
Request?WSDL 

exchange 
http://ws.serviceobjects.com/ce/CurrencyExchange.asmx?W
SDL 

http://ws2.serviceobjects.net/ce/CurrencyExchange
.asmx?WSDL 

(19) 
http://www.petermeinl.de/CurrencyConverter/CurrencyConv
erter.asmx?wsdl http://currency.niekutis.net/currency.asmx?wsdl 
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http://cs.daenet.de/webservice/CurrencyServerWebService.as
mx?WSDL http://www.xignite.com/xCurrencies.asmx?wsdl 

 
http://trial.serviceobjects.com/ce/CurrencyExchange.asmx?W
SDL 

http://ws.strikeiron.com/ForeignExchangeRate3?
WSDL 

 http://ws.soatrader.com/baydonhill.com/0.1/Currency?wsdl  
 http://www.webservicex.net/globalweather.asmx?wsdl http://www.webservicex.net/usweather.asmx?wsdl 

 http://www.webservicex.net/WeatherForecast.asmx?wsdl 
http://www.deeptraining.com/webservices/weather
.asmx?WSDL 

 http://ws.soatrader.com/wopos.com/0.1/Weather?wsdl http://ws365.net/ws/weather.asmx?WSDL 

Weather http://ws.soatrader.com/cs.uga.edu/0.1/WeatherFetcher?wsdl 
http://weather.shellware.com/weather.asmx?WSD
L 

(16) http://asyncpostback.com/WeatherService.asmx?WSDL http://ws.soatrader.com/bea.com/0.1/weather?wsdl 

 
http://weather.cobbnz.com/weatherservice/webservice.asmx?
wsdl http://209.162.186.60/globalweather.asmx?WSDL 

 http://trial.serviceobjects.com/fw/FastWeather.asmx?WSDL http://api.wxbug.net/weatherservice.asmx?wsdl 

 
http://www.weather.gov/forecasts/xml/DWMLgen/wsdl/ndfd
XML.wsdl 

http://lostsprings.com/weather/WeatherService.as
mx?WSDL 

 http://services.postcodeanywhere.co.uk/us/lookup.asmx?wsdl 
http://ws.strikeiron.com/GlobalAddressLocator3?
WSDL 

 
http://ws.fraudlabs.com/postalcodeworldMexico  
webservice.asmx?wsdl 

http://ws.strikeiron.com/GlobalAddressVerificatio
n4?WSDL 

         

 
http://ws.fraudlabs.com/zipcodeworldUS  
webservice.asmx?wsdl 

http://ws.serviceobjects.com/av/AddressValidate.a
smx?WSDL 

         

Address 
http://validator2.addressdoctor.com/addInteractive/Interactiv
e.asmx?WSDL 

http://ws.cdyne.com/psaddress/addresslookup.asm
x?wsdl 

validation
http://trial.serviceobjects.com/avca/ValidateCanada.asmx?W
SDL 

http://arcweb.esri.com/services/v2/AddressFinder.
wsdl 

(16) 
http://ws.fraudlabs.com/postalcodeworldCanada  
webservice.asmx?wsdl 

http://ws.strikeiron.com/ZIPPostalCodeInfo5?WS
DL 

       

 
http://ws.soatrader.com/welho.fi/0.1/AddressAutoCompleteS
ervice?wsdl 

http://ws.soatrader.com/servicex.co.uk/0.1/Address
?wsdl 

 
http://142.176.62.103/GEONOVA  
WS/CivicAddressPointRange.asmx?WSDL 

http://ws.fraudlabs.com/areacodeworldwebservice.
asmx?wsdl 

     

 
http://ws.xwebservices.com/XWebEmailValidation/XWebEmail
Validation.asmx?wsdl 

http://ws.cdyne.com/emailverifyws/emailverify.as
mx?wsdl 

E-mail 
http://www.siprod.net/webservices/xemail/xemailwebservice.
asmx?WSDL 

http://trial.serviceobjects.com/ev2/emailvalidation
2.asmx?WSDL 

verificati
on http://ws2.fraudlabs.com/mailboxvalidator.asmx?wsdl http://soap.towerdata.com/validate.wsdl 

(8) 
http://ws.cdyne.com/emailverify/Emailvernotestemail.asmx?
wsdl http://ws.strikeiron.com/EmailVerify?WSDL 

 http://webservices.tiscali.com/CreditCardServices.asmx?wsdl 
http://www.webservicex.net/CreditCard.asmx?wsd
l 

Credit 
https://webservices.optimalpayments.com/creditcardWS/CreditC
ardService/v1?wsdl 

http://www.webservicex.net/CreditCard.asmx?wsd
l 

card 
http://www.cbr.ru/CreditInfoWebServ/CreditOrgInfo.asmx?
wsdl 

http://webservices.primerchants.com/creditcard.as
mx?wsdl 
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TABLE II: CALCULATING COMPLEXTYPE MATCHES BETWEEN FOUR WEB SERVICES. 

 
 

 
 

For the sake of performance comparison, we 
implemented the clustering approach proposed by Liu and 
Wong [15] and applied it on our dataset. This proposed 
clustering mechanism relies on less information from the 
description files and mines for features from surrounding 
pages of the Web service and the host name. We used the 
Quality Threshold clustering algorithm in our implementation 
instead of the Tree-Traversing Ant (TTA) algorithm used in 
the original paper as QT is the one we used in our approach. 
The results shows that, for example, services described by 
http://www.webservicex.net/ConvertTemperature. asmx?wsdl, 
http://weather.terrapin.com/axis2/ services/HurricaneService? 
wsdl, http://ws. soatrader.com/syromlya.ru/0.1/Prediction? 
wsdl, and http://webservices.daehosting.com/services/ 
TemperatureConversions.wso?WSDL, are incorrectly placed 

the ”Weather” cluster. Investigating these WSDL documents, 
we see that the first three do not make use of the 
<documentation> element to provide a description of the Web 
service’s functionality and their attributes’ names can be 
confused with the weather Web services. The fourth of the 
above incorrectly placed Web services has text to describe its 
functionality but uses weather-like terms in the description. In 
all these services, however, the <complexType> definitions 
and <message> structures are completely different from the 
other weather Web services, which explains why our approach 
is able to recognize them. 

 
On the other hand, the Web service described by 

http://ws.fraudlabs.com/fraudlabswebservice. asmx?wsdl, for 
example, is not correctly placed in the ”Credit card services” 

check 
http://secure.cdyne.com/creditcardverify/luhnchecker.asmx?
wsdl 

http://webservices.primerchants.com/creditcard.as
mx?WSDL 

(10) 
http://ws.strikeiron.com/FraudLabs/CreditCardFraudDetectio
n?WSDL 

http://ws.fraudlabs.com/fraudlabswebservice.asmx
?wsdl 
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cluster by either approach. A closer look to this Web service 
shows that it does not have a <documentation> element and 
neither its name nor its contents imply that it provides a credit 
check. It is worthwhile noting that our approach failed to 
correctly cluster this 
 
TABLE III : PERFORMANCE MEASURES RELATED TO 

THE FIVE IDENTIFIED CLUSTERS. 

Cluster 
Our approach [15]’s approach  

     
 Precision% 

Recall
% Precision% Recall%  

      
Currency 
exchange 90.0 94.7 84.2 88.9  
Weather 94.1 100 70.0 87.5  
Address 
validation 83.3 93.7 60.0 93.7  
E-mail 
verification 80.0 100 58.3 87.5  
Credit card 
services 90.0 90.0 60.0 90.0  

 
TABLE IV : EVALUATING THE SIGNIFICANCE OF 

DIFFERENT CLASSIFICATION FEATURES. 
Cluster Precision% Recall% 

   
Currency 
exchange 82.6 78.9 
Weather 72.3 93.7 
Address 
validation 60.0 93.3 
E-mail 
verification 56.0 77.7 
Credit card 
services 60.0 88.9 

 
 

service because it uses very different 
<complexType> and <message> structures than the ones used 
by other credit card Web services. 

 
Table III shows the performance comparison (in 

terms of the precision and recall) for our approach versus Liu 
and Wong’s approach [15] relative to the five manually 
identified groups in our test set of Web services. We could not 
calculate the overall precision and recall since we could not 
manually identify all clusters in our dataset. We note that the 
low precision of our approach for the ”Address validation” 
and ”E-mail verification” clusters in Table III is due to the 
mutual correlation between these two groups as well as some 
individual services from the ip-to-country Web services 
domain. We also note that all Web services that are supposed 
to belong to ”E-mail verification” and ”Weather” groups are 
successfully placed in the clusters, as indicated by 100% recall 
value. 

Looking at the performance results of the two 
approaches in Table III, we note that our approach has higher 
precision and higher recall for all the identified categories. For 
example, our approach improved the precision for the 
”Address validation” group by 23.3% and 30% for ”Credit 
card services” group. 

 
We also conducted an experiment to evaluate the 

signif-icance of the common features used by our approach 
and Liu and Wong’s approach on the classification process. 
We ran our approach clustering only the service name and the 
content features. Table IV shows the performance measure 
form this experiment. Comparing the results in Table IV and 
Table III, we conclude that, performance is slightly increased, 
in general, by adding context and host name features. 
However, sometimes precision gets better and recall becomes 
higher if context and host name are not considered such as the 
case of increasing the precision from 70.0% to 72.3% for the 
”Weather” group. We believe that this negative contribution of 
these two features is due to the fact that Web services are 
published through providers’ website or public access 
uncategorized repositories, in which the surrounding pages of 
the WSDL documents have no relations to the functionality of 
the Web services that described by these WSDLs. On the other 
hand, our approach performs well by adding features such as 
complexTypes, messages and ports. The impact of these 
features improved the clustering reliability by increasing our 
precision and enhancing our recall. 
 

VII. CONCLUSION 
 
Effective Web service discovery is an important 

issue, especially for non-semantic Web services. Traditional 
UDDI-based and search engine-based Web service discovery 
lacks the ability to recognize the content of the Web service 
description file. In this paper, we propose an approach to 
improve service discovery of non-semantic Web services by 
clustering similar services through mining WSDL documents. 
We identify five key features that are extracted and integrated 
in order to group Web services into functionality-based 
clusters. 

 
Our clustering approach can be integrated into search 

engines to improve the quality of Web service discovery by 
helping to identify the Web services relevant to a user request. 
This will, in turn, add value to the discovery process by 
providing users with better quality options in selecting a 
service. Experiments show a performance improvement in the 
quality of the retrieval compared with previous approaches. As 
future work, we plan to improve features integration by 
choosing optimized weights for each feature using a linear 
programming approach. 



IJSART - Volume 3 Issue 2 –FEBRUARY 2017                                                                               ISSN [ONLINE]: 2395-1052 
 

Page | 209                                                                                                                                                                     www.ijsart.com 
 

REFERENCES 
 

[1] Michael P. Papazoglou, Paolo Traverso, Istituto Ricerca, 
Scientifica Tecnologica, “ Service-Oriented Computing: 
State of the Art and Research Challenges,” Computer, 
VOL. 40, NO. 11, pp 38-45, Nov. 2007.  

 
[2]  “Web Services Architecture,” February 11, 2004. [on-

line] Available: http://www.w3.org/TR/ws-arch. 
[Accessed: Feb. 26, 2010].  

 
[3]  “Web Services Description Language (WSDL) Ver-sion 

2.0 Part 1: Core Language,” June 26, 2007. [Online]. 
Available: http://www.w3.org/TR/wsdl20. [Accessed: 
Feb. 26, 2010].  

 
[4] Eyhab Al-Masri, Qusay H. Mahmoud, “Investigating web 

services on the world wide web,” International World 
Wide Web Conference (WWW 2008), pp. 795-804, 2008.  
 

[5] Richi Nayak, “ Data mining in Web services discovery 
and monitoring ,” International Journal of Web Services 
Research, Vol. 5, No. 1, pp. 63-81, January, 2008.  

 
[6] Wei Liu, “Trustworthy Service Selection and Composi-

tion Reducing the Entropy of Service-oriented Web,” 3rd 
International Conference on Industrial Informat-
ics(INDIN 2005), pp. 104-109, 2005.  

 
[7] M. Burstein, J. Hobbs, O. Lassila, D. Mcdermott, S. 

Mcilraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne, 
E. Sirin, N. Srinivasan, K. Sycara, D. Martin (ed.) “OWL-
S: Semantic Markup for Web Services,” W3C Member 
Submission, 2004.  

 
[8] H. Lausen, A. Polleres, “Web Service Modeling Ontol-

ogy (WSMO),” W3C Member Submission, 2005.  
 

[9] Matthias Klusch, Benedikt Fries, Katia Sycara, “Au-
tomated semantic web service discovery with owls-mx,” 
Proceedings of 5th International Conference on 
Autonomous Agents and Multi-Agent Systems 
(AAMAS), 2006.  

 
[10] John D. Garofalakis, Yannis Panagis, Evangelos 

Sakkopoulos and Athanasios K. Tsakalidis, 
“Contemporary Web Service Discovery Mechanisms,” 
Journal of Web Engineering, Vol. 5, No. 3, pp. 265-290, 
September 2006.  

 
[11] Guan Hong-Jie, Meng Fan-Rong, Sun Jin-Fei, Du Peijun, 

“Web service discovery based on the cooperation of 

UDDI and DF,” 4th International Conference on Wireless 
Communications, Networking and Mobile Computing 
(WiCOM), pp. 1-4, 2008.  

 
[12] Shuiguang Deng, Zhaohui Wu, Jian Wu, Ying Li, Jian-

wei Yin, “An Efficient Service Discovery Method and its 
Application,” International Journal of Web Services 
Research, Vol. 6, No. 4, pp. 94-117, 2009.  

 
[13] Xin Dong, Alon Halevy, Jayant Madhavan, Ema Nemes, 

Jun Zhang, “Similarity Search for Web Services,” Pro-
ceedings of the 30th VLDB Conference, Toronto, Canada, 
pp. 372-383, 2004.  

 
[14] Natallia Kokash, “A Comparison of Web Service Inter-

face Similarity Measures,” Frontiers in Artificial Intelli-
gence and Applications, Vol. 142, pp.220-231, 2006.  

 
[15] Wei Liu, Wilson Wong, “Web service clustering using 

text mining techniques,” International Journal of Agent-
Oriented Software Engineering, Vol. 3, No. 1, pp. 6-26, 
2009.  

 
[16] M. F. Porter, “An Algorithm for Suffix Stripping”, Pro-

gram, Vol. 14, No. 3, pp. 130-137, 1980.  
 

[17] Slava M. Katz, “Distribution of content words and 
phrases in text and language modeling,” Natural Lan-
guage Engineering, Vol. 2, No. 1, pp. 15-59, March 1996.  

 
[18] Jain AK, Dubes RC, Algorithms for clustering data. 

Prentice-Hall, Englewood Cliffs, 1988.  
 

[19] Cilibrasi, Rudi L, Vitnyi, Paul M. B., “ The Google 
similarity distance,” IEEE Transactions on Knowledge 
and Data Engineering, Vol. 19, No. 3, pp. 370-383, March 
2007.  
 

[20] Ethan Cerami, Web Services Essentials. O’Reilly & As-
sociates, ISBN:0-596-00224-6, February 2002Knowledge 
and Data Engineering, Vol. 19, No. 3, pp. 370-383, March 
2007.  

 
 
 


