
IJSART - Volume 3 Issue 1 –JANUARY 2017                                                                                   ISSN [ONLINE]: 2395-1052 

Page | 247                                                                                                                                                                     www.ijsart.com 
 

Analysis and Attenuation of NoSQL Injection 
Vulnerability attacks on Web Applications 

 
Pritesh Patil1, Rutuja Hirve2, Ankita Urade3, Rachana Badekar4, Ashwini Gaikwad5 

1, 2, 3, 4, 5 AISSMS Institute of Information Technology 
 
Abstract- NoSQL data storage systems have become very 
popular due to their scalability and ease of use. SQL Injection 
is one of the most widely exploited web application 
vulnerability of the web 2.0 era. Flexibility and scalability of 
NoSQL databases are major cause for adoption and 
popularity. Today is the world of information era, where web 
applications interact with the back-end database to retrieve 
data as and when requested by the user. The global exposure 
of these applications makes them prone to the attacks because 
of presence of vulnerabilities. These security vulnerabilities 
continue to infect the web applications through injection 
attacks. The main mechanism of SQL attacks relevant in 
NoSQL can be divided into five classes Tautologies, Union 
queries, JavaScript injections, Piggybacked queries and 
Origin violation. In our proposed system by observations and 
providing detailed examples of NoSQL injection attacks we 
will take actions that needs to mitigate the risks of NoSQL 
attacks NoSQL JavaScript injection, PHP Tautology injection 
and NoSQL Union Query injection. 
 
Keywords- NoSQL injection, Mitigation, Security, Web application 
 

I. INTRODUCTION 
 

The need to handle data in web-scale systems, in 
particular Big Data systems, has led to the creation of 
numerous NoSQL databases. Database security has been one 
of the most critical aspects of application security. Recently, 
the NoSQL databases have become more and more popular 
because NoSQL databases provide looser consistency 
restrictions than traditional SQL databases do. NoSQL 
databases often offer performance and scaling benefits by 
requiring fewer relational constraints and consistency 
checks[1]. Some examples are MongoDB [8], and Cassandra 
[9]. MongoDB can be adapted to all sizes of businesses and 
individuals since it is open source database. The data pattern 
can be updated flexibly with the development of the 
application while providing a secondary index and complete 
inquiry system. But does that mean NoSQL database systems 
are immune to injections? As an alternative to traditional 
relational database, NoSQL is a wide class of database 
management systems that are not traditional relational 
database management systems. They do not use SQL language 
as the primary query language, nor do they typically require 
fixed table schemas. NoSQL database system allows a user to 

change data attributes at any time, and data can be added 
anywhere. There is no need to specify a document design or 
even a collection up-font. NoSQL databases pay more 
attention to real-time data processing capability and they are 
good at directly operation on data access, which greatly 
promote the development of interactive software system. One 
of the biggest advantages is the ability to change attributes 
because of the weakening of structural, so modification 
process is very convenient.  
 

However, this big advantage also affects its safety 
where the highest incidence of attacks is injection attacks. 
Access to a database grants an attacker a dangerous amount of 
control over the most critical information. For example, SQL 
injection is a code injection technique that is used to attack 
data driven applications, in which malicious SQL statements 
are inserted into an entry field for execution. The malicious 
user can use SQL commands insert to the Web form 
submission or enter the domain name to achieve the purpose 
of tricking the server to execute malicious SQL commands.  
We all use internet in our daily routine but we are not aware of 
the fundamental principles of information security and 
privacy. 
 

Attacks are often confused with vulnerabilities so we 
must have a clear idea between vulnerability and attack.. By 
knowing the design loopholes an attacker can submit 
anNoSQL query directly to the database to get unlimited and 
unauthorized access. An unauthorized access is the threat to 
the confidentiality, integrity and authority [14]. Databases are 
still potentially vulnerable to injection attacks, even if they do 
not use the traditional SQL syntax, because these NoSQL 
injection attacks may be executed within a procedural 
language, rather than in the declarative SQL language such as 
PHP injection attack and arbitrary JavaScript injection. In this 
paper we hope to raise the awareness of developers and 
information security owners to NoSQL security with our 
examples in both injection and protection. 

 
 
 
 
 

 



IJSART - Volume 3 Issue 1 –JANUARY 2017                                                                                   ISSN [ONLINE]: 2395-1052 

Page | 248                                                                                                                                                                     www.ijsart.com 
 

 
 

II. NOSQL VULNERABILITIES 
 

Vulnerabilities are the weakness, bugs, loopholes, 
fault or flaw in the existing application[10]. NoSQL is 
vulnerable the same way SQL databases are vulnerable. Some 
attacks which are relevant in SQL databases become obsolete 
in NoSQL databases. However, NoSQL databases does not 
mean zero risk. NoSQL databases suffer from CSRF(Cross-
site Request Forgery)and other vulnerabilities.The web 
programming languages have vulnerabilities due to some 
syntax constraints. The poor programming/coding practice 
leads to vulnerabilities like improper sanitization of inputs, 
type checking, over privilege accounts and detailed error 
messages. These loopholes attract the attacker to customize 
attacks. The attacker can plan a particular attack according to 
the specific vulnerability present in the application. Besides 
these vulnerabilities the attacker uses the diversity of SQL 
language to implement the attacks [3]. The SQLIV are placed 
according to the Attack intention. The table 1 shows the list of 
known vulnerabilities, their basic ideas and their 
corresponding SQL Injection Attacks. Exploitation of these 
vulnerabilities can be done at input provided by user or at the 
address bar of the web applications. 
 

 
 
2.1 NoSQL Invasion Course 
 

Many database security threats are caused by 
database vulnerability. As for injection, there are many 
methods to learn. Database type, version, and other 
information are used to identify the motivation for this type of 
attack. One purpose is to collect the type and structure of the 
database to prepare for other types of attacks, which can be 
described as a preparatory step attack. The main mechanisms 
of SQL attacks relevant in NoSQL can be divided into five 
classes[1]. 



IJSART - Volume 3 Issue 1 –JANUARY 2017                                                                                   ISSN [ONLINE]: 2395-1052 

Page | 249                                                                                                                                                                     www.ijsart.com 
 

1. Tautology: In this type of attack, the injection is by using 
conditional OR operator so that the will evaluates to 
TRUE. In this type of attacks normally the user will 
authenticate and get the data by using WHERE clause. 
This query transforms all the user information and so the 
database tables are open to an unauthorized users[4]. 

2. Piggy Backed Query: This attack is different from others 
because the attacker will inject some additional queries 
into the original query or normal query, and so the 
database will receive multiple queries. Now the first 
query is executed normally and it is valid. The additional 
queries are injected queries, which are executed additional 
to the first. Hence the system is vulnerable to this attack 
and allows several multiple statements in a single 
query[4].  

3. Union queries: This attack can be done by injecting a 
UNION query into a vulnerable parameter which will 
return a dataset.This dataset is the union of the result of 
original query and the injected query. The SQL UNION 
operator will combines the result of two or more queries 
and produce the result set in the UNION from the 
participating queries.  

4. Javascript injections: This is a new class of vulnerabilities 
introduced by NoSQL databases which allow execution of 
Javascript in the database context. Javascript allows 
running complicated transactions and queries on the 
database engine. Passing unsanitized user input to these 
queries may allow injecting arbitrary javascript code by 
an attacker that may result in illegal data extraction or 
data alteration[4]. 

5. Origin violation HTTP  REST  API’s  are  a  popular  module  
in  NoSQL  databases. This introduces a new class of 
vulnerabilities that allow the attacker to attack the 
database even from another domain. In cross origin 
attacks a legitimate user and its web browser are exploited 
to perform some unwanted action on behalf of the 
attacker. Here, we show such violations in the form of a 
Cross-Site Request Forgery (CSRF) attack in which the 
trust that a site has in a user's browser is exploited to 
perform an illegal operation on a NoSQL database. By 
injecting an HTML form into a vulnerable website or 
tricking a user into a website of his own, an attacker may 
perform a POST action on the target database, 
compromising the database[1]. 

 
III. SYSTEM DESIGN 

 

 
 
3.1 Methodology: 
 
 A customer will register into the online shopping website 

by entering all his details along with his username and 
password. 

 The intimate details of the client are stored in the backend 
NoSQL database. 

 An attacker will attack the website by using any of the 
known NoSQL injection attacks like javascript union 
queries, php tautology etc. 

 This will thus compromise the intimate details about the 
customer which he fed into the website while registering. 

 Our web application will thus aim at mitigating these 
attacks by the use of best practices of code and running 
the application through a Dynamic Application Security 
Testing (DAST) or Static Application Security Testing 
(SAST)[6]. 

 
 



IJSART - Volume 3 Issue 1 –JANUARY 2017                                                                                   ISSN [ONLINE]: 2395-1052 

Page | 250                                                                                                                                                                     www.ijsart.com 
 

This study presents an experimental evaluation of 
NoSQL engines dependability based on fault injection. 
Dependability is an integrating concept that includes the 
following attributes: 
 availability – readiness for correct service. 
 reliability – continuity of correct service. 
 safety – absence of catastrophic consequences on the 

user(s) and the environment. 
 integrity – absence of improper system alterations. 
 maintainability – ability to undergo modifications and 

repairs. In the context of NoSQL engines, availability and 
integrity assume a special importance.  

 
The goal of this study is to understand how NoSQL 

engines perform in the presence of faults, in particular how 
these faults impact the integrity of the data and the availability 
of the engine. 
 

IV. NOSQL INJECTION ATTACKS 
 
4.1 NoSQL Union Query Injection 
 

JavaScript also has troubles with NoSQL databases. 
As compared to php, breaking the query structure, as has been 
done in SQL injection, is more difficult with a JSON 
structured query. A typical insert statement in MongoDB 
could be the following: 
 
db.books.insert({  title: ‘Harry Potter’,  author: ‘J. K. Rowling’   
}) 
 

This inserts a new document into the books collection 
with a title and author field. A typical query could be 
 
db.books.find({ title: ‘Harry Potter’ }) 
 

This is an example of the login form of our web 
application which will send the username and password via 
HTTP post to the backend which constructs the query by 
concatenating strings. 
 
string query = “{ username: ‘” + post_   username + “’, 
password:   ‘” + post_passport + ‘ “ }” 
 
With (J.K Rowling + Harry Potter), this would build the 
query: 
 
{ username: ‘J.K Rowling’, password:    ‘Harry Potter’ } 
 
An example of the malicious input in which the password field 
turns out worthless is: 
 

username=J.K Rowling’, $or: [ {}, {‘a’:   ‘a&password=’ }], 
$comment: ‘successful MongoDB   injection’ 
 
This input constructes into the query 
 
{ username: ‘J.K Rowling’, $or: [ {}, {   ‘a’: ‘a’, password ‘’ } 
], $comment: ‘successful MongoDB   injection’ } 
 
As long as the username is correct, this query suceeds. In SQL 
terminology, this query is similar to 
 
SELECT * FROM logins WHERE username =    ‘J.K 
Rowling’ AND (TRUE OR (‘a’=’a’ AND password = ‘’))  
{ username: ‘J.K Rowling’, $or: [ {}, {    ‘a’: ‘a’, password ‘’ 
} ], $comment: ‘successful MongoDB    injection’ } 
 

This query succeeds because the password part 
becomes redundant. This attack will succeed in any case in 
which the username is correct 
 
4.2 PHP Tautology Injections 
 

In this example, a web application is built with a php 
backend. Php encodes the requests to the JSON format like the 
array below: 
 
array(‘title’ => ‘Harry Potter’,   ‘author’ => ‘J. K. Rowling’); 
would be encoded by PHP to the following JSON: 
{“title”: “Harry Potter”, “author”:   “J. K. Rowling”} 
 
The typical url encoded by php looks like the following: 
username=Rowling&password=Harry 
 
The back-end PHP code to process it and query Mongo DB for 
the user would look like the following: 
db->logins->find(array(“username”=>$_   
POST[“username”],   “password”=>$_POST[“password”])); 
 
This is what the developers intends to do with the query of: 
db.logins.find({ username: ‘Rowling’,   password: ‘Harry’}) 
 
Php has a build-in mechanism which lets attackers send 
malicious code such as the following: 
username[$ne]=1&password[$ne]=1 
This input in translated by php into: 
array(“username” => array(“$[ne] “ =>   1), “password” =>   
array(“$ne” => 1));, 
which is encoded into the MongoDB query 
db.logins.find({ username: {$ne:1 },   password {$ne: 1 }) 
 

Because $ne is MongoDB’s not equals condition, it 
queries all entries in the logins collection for which the 



IJSART - Volume 3 Issue 1 –JANUARY 2017                                                                                   ISSN [ONLINE]: 2395-1052 

Page | 251                                                                                                                                                                     www.ijsart.com 
 

username is not equal to 1 and the password is not equal to 1. 
Thus, this query will return all users in the logins collection. In 
SQL terminology, this is equivalent to: 
SELECT * FROM logins WHERE username <>   1 AND 
password <> 1 
 

In this scenario, the vulnerability gives attackers a 
way to log in to the application without valid credentials. In 
other variants, the vulnerability might lead to illegal data 
access or privileged actions performed by an unprivileged 
user. To mitigate this issue, we need to cast the parameters 
received from the request to the proper type, in this case, using 
the string 
db->logins->find(array(“username”=>(string) 
$_POST[“username”],“password”=>(string)$_POST[“passwo
rd”])); 
 
4.3 Cross-Origin Violations: 
 

 Another common feature of NoSQL databases is that 
they can often expose an HTTP REST API that enables 
database query from client applications. Databases that expose 
a REST API include MongoDB, CouchDB, and HBase. The 
exposure of a REST API enables simple exposure of the 
database to applications—even HTML5 only–based 
applications—because it terminates the need for a mediate 
driver and lets any programming language perform HTTP 
queries on the database. The advantages are clear, but does 
this feature come with a security risk? We answer this in the 
affirmative: the REST API exposes the database to CSRF 
attacks, letting attackers bypass firewalls and other perimeter 
defenses. As long as a database is deployed in a secure 
network behind security measures such as firewalls, to 
compromise the database, attackers must either find a 
vulnerability that will let them into the secure network or 
perform an injection that will let them execute arbitrary 
queries. When a database exposes a REST API inside the 
secured network, anyone with access to the secured network 
can perform queries on the database using HTTP only, thus 
allowing such queries to be initiated from the browser. If 
attackers can inject an HTML form into a website or trick 
users into the attackers’ own website, they can perform any 
post action on the database by submitting the form. Post 
actions include adding documents. In our research, we 
inspected Sleepy Mongoose, a full-featured HTTP interface 
for MongoDB. The Sleepy Mongoose API is defined by the 
URL as http:// {host name}/{db name}/{collection 
name}/{action}. Parameters for finding a document can be 
included as query parameters, and new documents can be 
added as request data. For example, if we want to add the new 
document { username: ‘attacker’ } to the collection admins in 
the database called hr on the safe.internal.db host, we would 

send a post HTTP request to http://safe 
.internal.db/hr/admins/_insert with the URL encoded data 
username=attacker. Now let’s see how a CSRF attack uses this 
functionality to add a new document to the admins collection, 
thus adding a new admin user to the hr database (which is 
located in the supposedly safe internal network), as Figure 5 
depicts. For the attack to succeed, a few conditions must be 
met. First, attackers must have control over a website either of 
their own or from exploiting a benign, unsecured website. 
Attackers place an HTML form in the website and a 
JavaScript that will submit the form automatically, such as 
<form action=” http://safe.internal. db/hr/admins/_insert” 
method=”POST” name=”csrf”><input type=”text” 
name=”docs” value=” [{&quot;username&quot;:attacker}]” 
/></form> 
<script>document.forms[0].submit(); </script> 
 

Second, attackers must trick users into entering the 
infected site by means of phishing or inject an infection into a 
site that users visit regularly. Finally, users must have 
permissions and access to the Mongoose HTTP interface. In 
this manner, attackers can perform actions—in this case, 
inserting new data into the database located in the internal 
network—without having access to the internal network. This 
attack is simple to execute but demands that attackers perform 
reconnaissance to identify the names of the host, database, and 
so on. 
 

V. MITIGATION 
 

Mitigating security risks in NoSQL deployments is 
important in light of the attack vectors we presented in this 
paper.  
 
Let’s examine a few recommendations for each of the threats: 
 Prepared Statements: Use prepared statements instead of 

building dynamic queries using string concatenation. 
 Input Validation: Validate inputs to detect malicious 

values. For NoSQL databases, also validate input types 
against expected types 

 Least Privilege: To minimize the potential damage of a 
successful injection attack, do not assign DBA or admin 
type access rights to your application accounts. Similarly 
minimize the privileges of the operating system account 
that the database process runs under. 

 Strong JSON structure queries. 
 Awareness about the use of sanitized input statements. 
 
The mitigation proposed by us will include two phases: 
 
1. Development and Testing: 



IJSART - Volume 3 Issue 1 –JANUARY 2017                                                                                   ISSN [ONLINE]: 2395-1052 

Page | 252                                                                                                                                                                     www.ijsart.com 
 

In this, we consider the threats involved in the 
software development lifecycle of our online shopping 
website. The various attacked modules will be mitigated by 
using the following techniques 
i. Using best practices of code like strong JSON structure, 

proper validation, prepared statement etc. 
ii. Looking closely through the design aspects such as what 

need to be protected and how will this occur. 
iii. Spreading awareness among the developers so that they 

are less likely to portray weaknesses in their code 
iv. Running dynamic and static security testing so as to 

detect the vulnerabilities in code for injection attacks. We 
will run various test cases to check the performance of the 
tester. 

 
2. Monitoring and Attack Detection 
           

A look at the importance of adopting intrusion 
detection systems will be shown. 
 

VI. CONCLUSION 
 

In general, developers should apply defense methods 
to their NoSQL database systems to prevent injections or any 
other attacks from happening. In addition, security layers are 
recommended to be built to keep malicious code away from 
the systems. We reviewed different attacks which are 
vulnerable to the database. 
 

In the future work, we plan to examine new injection 
possibilities and other vulnerabilities particularly on NoSQL 
databases, platforms and languages, as well as to study how to 
defend and mitigate attacks so that NoSQL databases are safe 
to use. 
 

REFERENCES 
 

[1] Aviv Ron, Alexandra Shulman-Peleg, and Anton Puzanov 
“Analysis and Mitigation of NoSQL                      
Injections” 
 

[2] A Lane, “No SQL and No Security,” blog, 9 Aug. 2011; 
www.securosis.com/blog/nosql-and-no-security.4. 
 

[3] L. Okman et al. “Security Issues in NoSQL Databases,” 
Proc. IEEE 10th Int’l Conf. Trust, Security and Privacy in 
Computing and Communications (TrustCom), 2011,  pp. 
541–547. 
 

[4] A. Ron, A. Shulman - Peleg and E. Bronshtein, “No SQL, 
No Injection? Examining NoSQL Security” 

[5] Haldar, Vivek, Deepak Chandra, and Michael Franz. 
"Dynamic taint propagation for Java." Computer Security 
Applications Conference, 21st Annual. IEEE, 2005.   
 

[6] 9 Advantages of Interactive Application Security Testing 
(IAST) over Static (SAST) and Dynamic (DAST) Testing 
http://www1.contrastsecurity.com/blog/9-reasons-why-
interactive-toolsare-better-than-static-or-dynamic-tools-
regarding-application-security   
 

[7] Least Privilege  mitigation to SQL injection 
https://www.owasp.org/index.php/SQL_Injection_Prevent
ion_Cheat_Sheet#Least_Privilege 
 

[8] MongoDB web site www.mongodb.org 
 

[9] http://cassandra.apache.org 
 

[10] Chandershekhar Sharma, Dr.S.C.Jain “Analysis and 
Classification of SQL Injection Vulnerabilities and 
Attacks on Web Applications” 


