
IJSART - Volume 3 Issue 12 –DECEMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 1154 www.ijsart.com

An Examination on Models of Mashup and web

Security Threats: Web Application

Narendra M Kandoi1, Dr. Vilas M Thakare2

Department of Computer Science & Engineering

1 Research Scholar, S.G.B. Amravati University Amravati, Maharashtra, India
2Associate Professor, S.G.B. Amravati University Amravati, Maharashtra, India

Abstract- over the most few years, numerous security

researchers proposed to enrich the web stage with more

thorough, explanatory establishments. Their objective is

designing models which take into consideration an exact

thinking on web security issues and creating compelling

apparatuses to make the Web a more secure place, relieving at

any rate some portion of this weight from the shoulders of web

engineers and program merchants. Mashups are significantly

more powerful than traditional (binary) software segments.

Since mashups are all about combining content from multiple

web sites in a highly dynamic fashion, they cannot be built

easily with static programming languages that require advance

compilation, static type checking and binary files. Data

mashups, inverse to the consumer mashups, consolidate

comparable sorts of media and data from different sources into

a solitary portrayal. The combination of every one of these

assets makes another and unmistakable Web benefit that was

not initially given by either source. This approach is different

from the other dynamic techniques presented in this section

because it enforces specific policies for mashup integration;

however the policies are still safety properties.

Keywords- Web mashups, Same-Origin Policy, Web browser,.

I. INTRODUCTION

Web mashups are characterized as Web locales that

compose data from more than one website, yet this definition is

in tension with the same-inception approach, which prevents

such interactions [1]. Many data providers want to publish

information for any integrator site to use, but the same-origin

policy avoids the integrator Web page from providing XML

Http Requests to the data directly [2]. Security depends to some

degree on the unwavering quality of the supplier's substance

[3]. Be that as it may, mashups can likewise associate

powerfully to Web locales not really under the supplier's

control, which shows encourage security challenges [4].

Therefore, content providers should secure their servers and

validate content, which they don’t always do [5]. Cross- origin

collaboration inside the program is presently directed by the

Same-Origin Policy (SOP). SOP characterizes reports in view

of their causes [6].

Records from a similar origin may freely access each other's

substance, while such access is refused for reports of various

beginnings [7]. Unfortunately, the SOP mechanism ends up

being tricky for mashup security. Starting point following in

SOP is just fractional and enables content from various sources

to exist together under a similar beginning [8]. In browsers

today, any third-party content included in a document is

considered to have the document’s origin regardless of the

actual origin of the included content [9]. This turns problematic

in a mashup setting, because the third-party content may be

freely send to the document’s origin [10]. That is, third-party

content may not be sent to the document’s origin without being

declassified by the third-party [11], [12]. The seven challenges

are cataloguing, data integrity, making data web-enabled,

security and identity, sharing and reusing, trust certificates and

version control mechanisms [13]. In mashup improvement

there is significantly more concentrate on reusing the substance

instead of the execution of a site. While institutionalized

arrangements for different substance groups exist, it is

frequently shockingly hard to reuse the execution of a site in

different settings [14]. Because the current web technologies do

not make it easy to specify which parts of the web site are

intended to be reusable in other contexts and which not [15] are.

In a similar manner, numerous mashups reuse the visual

portrayal of sites only, while others reuse the substance

independently from its visual portrayal. No well-defined rules

or interfaces exist for keeping the content separate from its

visual representation [16].

II. MASHUP

Mashups are significantly more powerful than

traditional (binary) software segments. Since mashups are all

about combining content from multiple web sites in a highly

dynamic fashion, they cannot be built easily with static

programming languages that require advance compilation,

static type checking and binary files [17]. This has created a

trend towards more and more dynamic programming languages

such as JavaScript, Perl, PHP and Python. Because of the

increased focus on content rather than on implementation

techniques, the mashup developer base is different from

conventional software development projects [18]. The

IJSART - Volume 3 Issue 12 –DECEMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 1155 www.ijsart.com

distribution and sharing energy of the Web makes it particularly

simple to reuse content in unanticipated, unexpected ways [19].

The history of the web browser as a document viewing

environment is apparent when analyzing the restrictions and

limitations that web browsers have in the area of networking

and security [20].

Many of these limitations date back to the conventions that

were established early on in the design and historical evolution

of the web browser [21]. Most web applications handle get to

utilizing three interrelated security systems:

• Authentication

• Session administration

• Access control [22]

Each of these mechanisms represents a significant area of an

application’s attack surface, and each is absolutely fundamental

to an application’s overall security posture [23]. Because of

their interdependencies, the overall security provided by the

mechanisms is only as strong as the weakest link in the chain.

A deformity in any single part may empower an attacker to

increase unhindered access to the application's usefulness and

data [24].

Over the most few years, numerous security researchers

proposed to enrich the web stage with more thorough,

explanatory establishments. Their objective is designing

models which take into consideration an exact thinking on web

security issues and creating compelling apparatuses to make the

Web a more secure place, relieving at any rate some portion of

this weight from the shoulders of web engineers and program

merchants. One natural question is whether formal methods

have been successful in this field or whether they can only be

considered a theoretical exercise as of now: practical

applications are important to showcase the effectiveness of

formal methods at dealing with the problems mentioned above

and encourage the web security community to integrate efforts

with the formal methods community. Hence, the main goal of

this research is to design such a unique security framework

based on Aspect Oriented Programming (AOP) that even if the

developer had not considered security as a one of the

component of web application in the beginning, at a later stage

it should be free (safe) from major vulnerabilities and attacks

[24].

III. TYPES OF MASHUP

There are many sorts of mashup, for example, business

mashups, purchaser mashups and information mashups. The

most well-known sort of mashup is the shopper mashup, which

is gone for the overall population [25].

Fig. 1 Types of Mashup

Business (or enterprise) mashups characterize applications that

join their own assets, application and information, with other

outer Web administrations. They focus information into a

solitary introduction and take into account synergistic activity

among organizations and engineers. This functions admirably

for a coordinated advancement venture, which requires joint

effort between the engineers and client (or client intermediary,

normally an item administrator) for characterizing and

actualizing the business necessities. Undertaking mashups are

secure, outwardly rich Web applications that uncover

noteworthy data from differing inner and outside data sources.

Consumer mashups consolidate information from various open

sources in the program and arrange it through a straightforward

program UI. (e.g.: Wikipedia vision joins Google Map and a

Wikipedia API).

Data mashups, inverse to the consumer mashups, consolidate

comparable sorts of media and data from different sources into

a solitary portrayal. The combination of every one of these

assets makes another and unmistakable Web benefit that was

not initially given by either source.

IV. DIFFERENT SECURITY MODELS OF MASHUP

With the development of the web, the new sort of web

applications showed up: mashups. These applications include

the content from multiple sources, for example a housing rental

website combines the information about the houses and maps

them to Google maps. The inclusion of the remote content is

usually implemented by the use of frames that separate this

content from the main page. Inside, the program executes the

Document Object Model (DOM) that is a tree portrayal of the

got WebPages.

a) Web Jail: Security architecture for mashups

The client-side security engineering that enables minimum

benefit combination of parts into a web mashup based on aspect

weaving while the security policies are specified for every

IJSART - Volume 3 Issue 12 –DECEMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 1156 www.ijsart.com

iframe of the page. The language of the security policy is

relatively simple and is similar to the Content Security Policy

(CSP). The security arrangement determines a self-

characterized white list for each classification of APIs. For

instance, "extcomm: [google .com, youtube .com]" implies that

outside correspondence are just permitted to the given spaces.

b) Security policies

The arrangement is another characteristic of an iframe in a

mashup, which implies that a mashup integrator can force

confinements on the conduct of untrusted outsider components.

In the iframe policy, particular security-sensitive events can be

fully enabled, fully disabled or enabled only for a self-defined

whitelist [25].

c) Formal guarantees

No formal guarantees are provided.

This approach is different from the other dynamic

techniques presented in this section because it enforces specific

policies for mashup integration, however the policies are still

safety properties: the JavaScript programs are not allowed to

invoke the APIs that contradict the security policy.

The security of web mashups is an active field of

research that is strongly related to JavaScript security. The

recent sandboxing libraries techniques described above

contribute to this area, however, they are sometimes not

practical due to the fact that static analysis only covers a subset

of JavaScript. A recent contribution to this field that presented

Mashic Compiler. The mashup consists of an integrator code

and the gadgets to be added. Some of the researches considered

the gadgets that are added by a <script> tag. For this situation,

the device and the integrator would get appointed a similar

cause and thus, if the contraption is non-considerate, it can

break the security of the mashup [25].

Given the contraptions code and the incorporating

code, Mashic assembles the integrating code such that every

device and the integrator keep running in their own particular

iframe. A little library is additionally added to every

contraption, which are generally unmodified. It enables the

integrators to compose secure mashups where security is

accomplished by means of the Same Origin Policy. The

compiled code is proportional to the first code, when the

contraptions are kind. The meaning of an benign gadget is a

novel thought that is characterized through an decorated

semantics.

• The devices only learn what is being sent to them by

the integrator.

• The contraptions may only interact with the integrator

by replying to its messages, along these lines they can't

straightforwardly change the load of the integrator

[25].

d) The Mashic compiler Model

The Mashic compiler enhances mashup security. There are two

approaches to incorporate contraptions in a mashup:

• Using HTML script tags: for this situation, the

contraption is specifically implanted in the

incorporating site page and acquires the cause of the

last mentioned. This suggests the device keeps running

with similar benefits of the integrator;

• Using HTML iframe labels: for this situation, the

contraption is stacked in a confined domain and jelly

its own origin; henceforth as far as possible its

capacities on the incorporating site page. The

communications between the contraption and the

integrator are restricted to message passing.

 Unfortunately, web designers ordinarily forfeit security for

programming accommodation and implement mashup by

making utilization of script tags. The Mashic compiler takes in

input a current mashup and produces a protected mashup in

view of iframe labels and message passing. The paper presents

two formal outcomes: an accuracy result, demonstrating that the

yield of the Mashic compiler is equivalent to the first mashup

when the embedded device is " benign " and a security result,

proving confidentiality and integrity properties for the compiled

mashup.

e) The Yoshi Hama’s Browser Model

The model formalizes the browser using a big-step

operational semantics, covering the evaluation of client-side

scripts, the presence of multiple browser windows, the DOM,

cookies and HTTP requests. The model incorporates a few non-

trivial highlights of real web browsers, similar to document

content that may reference external resources (for example,

 and <script> tags), DOM transformation operations, an

eval build for dynamic code assessment, top notch capacities,

and event handlers. Unfortunately, the formalism was only

explained by a couple of inference rules showing how one may

give huge advance semantics for a web browser, yet it isn't

thorough or finishes enough to be usable in formal verifications.

The browser model utilizes data stream marks for fine-grained

get to control on sites, focusing on the protected combination of

substance from various, commonly distrusting websites

(mashup security). In this view, sites characterize sets of marks

with get to control properties and join these names to segments

of their HTML documents. The names are then naturally spread

by the web program and followed on singular DOM nodes and

script variables to uphold get to control checks. Verifiable data

IJSART - Volume 3 Issue 12 –DECEMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 1157 www.ijsart.com

streams where privileged insights are spilled by the execution

of contingent program branches relying upon private data.

V. WEB SECURITY THREATS

There are numerous dangers related with web perusing

and web applications, including phishing, drive-by downloads,

blog spam, account takeover, and snap extortion. Albeit some

of these dangers spin around misusing execution

vulnerabilities, (for example, memory wellbeing blunders in

programs or deceiving the client), we center, in this paper, on

routes in which an attacker can manhandle web usefulness that

exists by plan [26]. For instance, a HTML frame component

gives a vindictive web a chance to webpage create GET and

POST solicitations to discretionary sites, prompting security

dangers like cross-website request for fraud (CSRF). Sites

utilize various diverse procedures to protect themselves against

CSRF, yet we do not have a deductively thorough approach for

concentrate these resistances. By figuring a precise model of the

web, we can assess the security of these safeguards and decide

how they associate with augmentations to the web platform

[27].

Fig.2 Web Security Threat

Mashup security issues are somewhat different from

normal web app security issues

• Authentication to various backend administrations

with various certifications, confirmation protocols

• Authorization to various backend administrations

requiring qualities from divergent sources

• Bridging point-to-point protocol security systems, for

example, SSL

• Extending consistence principles and controls out to

the cloud

• Understanding the ramifications of information being

utilized as a part of new ways

Web application security concerns are partitioned into two

essential classifications: Physical security and semantic

security. The main class plans to cover issues, for example,

secure and dependable information trade. This gathering of

security concerns can profit by existing techniques and

methodologies of Web 1.0 to deal with the security and trust

issues [28]. The semantic security worries then again, handle

the data partaking in a more elevated amount by misusing the

authoritative arrangements so as to portray the common

information in a PC procedure capable way.

In any case, Mashup applications, by their tendency, include

communication between different page parts. Frequently these

parts are stacked from various causes. Cross-inception

collaboration inside the program is at present controlled by the

alleged Same-Origin Policy (SOP). SOP characterizes reports

in view of their starting points [29]. Records from a similar

birthplace may uninhibitedly get to each other's content, while

such access is denied for archives of various causes.

Lamentably, the SOP component ends up being hazardous for

mashup security.

There are two sorts of security issues with the mashups one the

issues that emerge specifically from the absences of innovation

and antagonistic mishandle of them and in other hand the issues

that emerge from the inquiries concerning reliability of content.

The last one is progressively an issue of standard and it exists

due to the idea of mashups. Today there are more than 5386

mashups recorded in http://www.programmableweb.com

which is a website that gathers data about mashups and mashup

advancements [30].

So there's a genuine downside to expanded dependence on Web

applications: they're inalienably shaky and effortlessly traded

off. All things considered, Symantec rates 73 percent of Web

application vulnerabilities as easy to manhandle. Helpless Web

applications not simply put compose structures and devices at

significantly more serious hazard; they additionally offer an

immediate course to classified client information, for example,

account history, charge card numbers and well being records,

and to delicate corporate data. This genuine disadvantage can

be overwhelmed by actualizing the best possible security

worries at run time alongside the improvement of web

application [31].

VI. LITERATURE SURVEY

 Samiha Ayedet al. [32] proposed a structure to

connect the security approaches with the detail and the

execution periods of uses characterized for the frameworks. The

proposed engineering depends on an AOP to enforce security

strategies considering both access and use control inside

distributed frameworks. The enforcement of security policies

had started by translating the set of security policy rules into an

IJSART - Volume 3 Issue 12 –DECEMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 1158 www.ijsart.com

AOP aware knowledge. Based on the translation, the aspect

generation phase taken place. During that phase, generic and

abstract patterns were derived on the basis of definition of

security policies. The sending of the structure modules,

proposed in this paper, considered the progressions that may

happen in the security approach amid the application execution.

They also presented the implementation as well as the

evaluation of our proposition.

M.I.P.Salaset al. [33] proposed a new approach to analyze the

robustness of Web Services by Fault Injection with WS Inject.

This allowed the emulation and generation of attacks; however,

the process was delayed and often not automated. In the

examination, the Cross-site Scripting (XSS) attack was copied.

As per the research cited, this was a fairly frequent attack,

whose impacts were much crushed for servers and users of Web

Services. The results of the Penetration Testing phase helped to

develop the rules for vulnerabilities analysis. Be that as it may,

the outcomes got by soap UI demonstrated an large percentage

of false positives and false negatives. They likewise confirmed

the security provided by WS-Security standard with the extra

Security Token against XSS attack. In the two stages, the

utilization of WS-Security lessened the quantity of

vulnerabilities altogether. Be that as it may, this was enhanced

with the utilization of different details. One advantage position

of the proposed approach was that it depended on the utilization

of a fault injector of universally useful, which was utilized to

imitate a few sorts of assaults and created variations of the

same, which was typically constrained in the apparatuses

regularly utilized for security testing, as the vulnerabilities

scanners.

Jose Fonseca et al. [34] proposed a strategy and a model

apparatus to assess the web application security components.

The approach was based on the possibility that injecting

practical vulnerabilities in the web application and attacking

them consequently were utilized to assist the evaluation of

existing security components and apparatuses in the custom

setup situations. The proposed vulnerability and attack injection

structure depended on the investigation of an extensive number

of vulnerabilities in real web applications to give consistent

with life comes about. Notwithstanding the generic

methodology, the paper depicted the execution of the

Vulnerability and Attack Injector Tool (VAIT) that permitted

the automation of the whole procedure. VAIT is utilized to run

an arrangement of examinations that showed the attainability

and the viability of the proposed system. The tests incorporated

the assessment of scope and bogus positives of an interruption

location framework for SQL Injection attacks and the

evaluation of the adequacy of two best business web application

helplessness scanners. The o results showed that the injection

of vulnerabilities and attacks was indeed an effective way to

evaluate security mechanisms and to point out not only their

weaknesses but also ways for their improvement.

 Junjieet al. [35] proposed the hierarchical Stochastic game nets

(SGN) model and analysis methods, included important

theorems and corollaries based on which the complicated attack

and defense processes were described and the identity,

confidentiality, availability and integrity in web services were

analyzed and evaluated quantificationally. SGN had a powerful

modeling and analyzing ability for the complicated and

dynamic game problems, by which the complexity of the

security issues of web services were solved properly. A series

of simulation results were presented to show that, by applying

hierarchical SGN model to describe the attack and defense

behaviors in web services, quantifiable results can be

successfully obtained for the evaluation of important attributes.

Rui Andre Oliveira et al. [36] presented an experimental

approach that permitted understanding how well a given web

service framework was prepared to handle Denial of Service

(DoS) attacks. DOS attacks may exact serious harm to the web

service co-ops, included monetary and reputation losses It was

important that the web service framework was able to provide

a secure environment, so that the services were delivered even

when facing attacks. The model was based on a set of phases

that included the execution of a large number of well-known

DoS attacks against the target framework and the classification

of the observed behavior. Results showed that four out of the

six frameworks tested were vulnerable to at least one type of

DoS attacks and indicated that even very popular platforms

required urgent security improvements.

VII. CONCLUSION

With the development of the web, the new sort of web

applications showed up: mashups. These applications include

the content from multiple sources, for example a housing rental

website combines the information about the houses and maps

them to Google maps. This gathering of security concerns can

profit by existing techniques and methodologies of Web to deal

with the security and trust issues. The semantic security worries

then again, handle the data partaking in a more elevated amount

by misusing the authoritative arrangements so as to portray the

common information in a PC procedure capable way. In any

case, Mashup applications, by their tendency, include

communication between different page parts. Frequently these

parts are stacked from various causes.

IJSART - Volume 3 Issue 12 –DECEMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 1159 www.ijsart.com

REFERENCES

[1] Wang, Helen J., Xiaofeng Fan, Jon Howell, and Collin

Jackson, "Protection and communication abstractions for

web browsers in Mashup OS", In ACM SIGOPS Operating

Systems Review, Vol. 41, No. 6, pp. 1-16, 2007.

[2] Giffin, Daniel, Amit Levy, Deian Stefan, David Terei,

David Mazieres, John Mitchell, and Alejandro Russo,

"Hails: Protecting data privacy in untrusted web

applications", Journal of Computer Security, pp. 1-35,

2012.

[3] Lawton, George, "Web 2.0 creates security challenges",

Computer, Vol. 40, No. 10, 2007.

[4] Liu, Xuanzhe, Yi Hui, Wei Sun, and Haiqi Liang,

"Towards service composition based on mashup", In

Services IEEE Congress, pp. 332-339, 2007.

[5] Oppliger, Rolf, RuediRytz, and Thomas Holderegger,

"Internet banking: Client-side attacks and protection

mechanisms", Computer, Vol. 42, No. 6, 2009.

[6] Magazinius, Jonas, AslanAskarov, and Andrei Sabelfeld,

"A lattice-based approach to mashup security", In

Proceedings of the 5th ACM symposium on information,

computer and communications security, pp. 15-23, 2010.

[7] Singh, Kapil, Alexander Moshchuk, Helen J. Wang, and

Wenke Lee, "On the incoherencies in web browser access

control policies", In Security and Privacy (SP), pp. 463-

478, 2010.

[8] Patel, Ahmed, Samaher Al-Janabi, Ibrahim AlShourbaji,

and Jens Pedersen, "A novel methodology towards a

trusted environment in mashup web applications",

Computers & Security, Vol.49, pp. 107-122, 2015.

[9] Oda, Terri, Glenn Wurster, Paul C. van Oorschot, and Anil

Somayaji, "SOMA: Mutual approval for included content

in web pages", In Proceedings of the 15th ACM conference

on Computer and communications security, pp. 89-98,

2008.

[10] Felt, Adrienne, Pieter Hooimeijer, David Evans, and

Westley Weimer, "Talking to strangers without taking their

candy: isolating proxied content", In Proceedings of the 1st

Workshop on Social Network Systems, pp. 25-30, 2008.

[11] Hashimoto, Gilberto Tadayoshi, Pedro Frosi Rosa, Edmo

Lopes Filho, and Jayme Tadeu Machado, "A Security

Framework to Protect Against Social Networks Services

Threats", In Systems and Networks Communications

(ICSNC), Fifth International Conference, pp. 189-194,

2010.

[12] Koschmider, Agnes, Victoria Torres, and Vicente

Pelechano, "Elucidating the mashup hype: Definition,

challenges, methodical guide and tools for mashups", In

Proceedings of the 2nd Workshop on Mashups, Enterprise

Mashups and Lightweight Composition on the Web at

WWW, pp. 1-9, 2009.

[13] Kim, D. and Solomon, M.G., “Fundamentals of

information systems security”, Jones & Bartlett Learning,

2016.

[14] Taivalsaari, Antero, and TommiMikkonen, "Mashups and

modularity: Towards secure and reusable web

applications", In Automated Software Engineering-

Workshops, 23rd IEEE/ACM International Conference,

pp. 25-33, 2008.

[15] Ankolekar, A., Krötzsch, M., Tran, T. and Vrandecic, D.,

“The two cultures: Mashing up Web 2.0 and the Semantic

Web”, In Proceedings of the 16th international conference

on World Wide Web, pp. 825-834, 2007.

[16] Bry, François, Sebastian Schaffert, Denny Vrandečić, and

KlaraWeiand, "Semantic wikis: Approaches, applications,

and perspectives", Reasoning Web, Semantic

Technologies for Advanced Query Answering, pp. 329-

369, 2012.

[17] Fensel, Dieter, Mick Kerrigan, and Michal Zaremba,

"Implementing semantic web services", The SESA

Framework 2008.

[18] Daniel, Florian, and Maristella Matera, “Mashups:

Concepts, Models and Architectures” Springer, 2014.

[19] Mikkonen, Tommi, ArtoSalminen, and Antero Taivalsaari,

"Enabling Global, Dynamic Web-Based Software Reuse--

Mashware Revisited", In Software Engineering and

Advanced Applications (SEAA), 40th EUROMICRO

Conference, pp. 475-478, 2014.

[20] Akhawe, Devdatta, Adam Barth, Peifung E. Lam, John

Mitchell, and Dawn Song, "Towards a formal foundation

of web security", In Computer Security Foundations

Symposium (CSF), 23rd IEEE, pp. 290-304, 2010

[21] Taivalsaari, Antero, TommiMikkonen, Dan Ingalls, and

Krzysztof Palacz, "Web browser as an application

platform: The lively kernel experience", 2008

[22] Gollmann, Dieter, "Computer security", Wiley

Interdisciplinary Reviews: Computational Statistics, Vol.

2, No. 5, pp. 544-554, 2010.

[23] Stuttard, Dafydd, and Marcus Pinto, “The web application

hacker's handbook: finding and exploiting security flaws”,

John Wiley & Sons, 2011.

[24] Van Eeten, Michel J., and Johannes M. Bauer, "Economics

of malware: Security decisions, incentives and

externalities", OECD Science, Technology and Industry

Working Papers, No. 1, pp. 0-1, 2008.

[25] Di Lorenzo, Giusy, Hakim Hacid, Hye-young Paik, and

BoualemBenatallah, "Data integration in mashups", ACM

Sigmod Record, Vol. 38, No. 1,pp. 59-66, 2009

IJSART - Volume 3 Issue 12 –DECEMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 1160 www.ijsart.com

[26] Jang-Jaccard, Julian, and Surya Nepal, "A survey of

emerging threats in cyber security", Journal of Computer

and System Sciences, Vol. 80, No. 5,pp. 973-993, 2014.

[27] Grier, Chris, Shuo Tang, and Samuel T. King, "Designing

and implementing the op and op2 web browsers", ACM

Transactions on the Web (TWEB), Vol. 5, No. 2,pp. 11,

2011

[28] Papazoglou, Mike P., and Willem-Jan Heuvel, "Service

oriented architectures: approaches, technologies and

research issues", The VLDB Journal—The International

Journal on Very Large Data Bases, Vol. 16, No. 3,pp. 389-

415, 2007.

[29] Daniel, Florian, and Maristella Matera,“Mashups:

Concepts, Models and Architectures”, Springer, pp. 1-341,

2014.

[30] Costa, Cristiano Andre da, Adenauer Correa Yamin, and

Claudio Fernando Resin Geyer, "Toward a general

software infrastructure for ubiquitous computing", IEEE

pervasive computing: mobile and ubiquitous systems, Los

Alamitos, Vol. 7, No. 1, pp. 64-73, 2008.

[31] Guragai, Binod, Nicholas C. Hunt, Marc P. Neri, and

Eileen Z. Taylor, "Accounting information systems and

ethics research: Review, synthesis, and the future", Journal

of Information Systems, Vol. 31, No. 2,pp. 65-81, 2015.

[32] Ayed, Samiha, Muhammad SabirIdrees, Nora Cuppens,

and Frederic Cuppens, "Achieving dynamicity in security

policies enforcement using aspects", International Journal

of Information Security, PP. 1-21, 2017.

[33] Salas, M. I. P., and Eliane Martins, "Security testing

methodology for vulnerabilities detection of xss in web

services and ws-security", Electronic Notes in Theoretical

Computer Science, Vol. 302, pp. 133-154, 2014.

[34] Fonseca, Jose, Marco Vieira, and Henrique Madeira

"Evaluation of web security mechanisms using

vulnerability & attack injection", IEEE Transactions on

Dependable and Secure Computing, Vol. 11, No. 5, pp.

440-453, 2014

[35] Lv, Junjie, Yuanzhuo Wang, Jingyuan Li, Kun Meng, and

Chuang Lin, "Security analysis for Web service behaviors

based on hierarchical stochastic game model", Chinese

Journal of Electronics, Vol. 24, No. 3, pp. 449-454, 2015.

[36] Oliveira, Rui André, NunoLaranjeiro, and Marco Vieira,

"Assessing the security of web service frameworks against

Denial of Service attacks", Journal of Systems and

Software, Vol. 109, pp. 18-31, 2015.

