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Abstract- Protein-protein interaction plays key role in 
predicting the protein function of target protein and drug 
ability of molecules. The majority of genes and proteins 
realize resulting phenotype functions as a set of interactions 
one of the most pressing issues of the post-genomic era is 
characteristic protein functions. Clustering Protein-Protein-
Interaction networks may be a systems biological approach to 
the current problem. Traditional Graph clustering ways are 
crisp and allow only members of every node in at the most one 
cluster. However, most real-world networks contain 
overlapping clusters. Recently the requirement for scalable, 
correct and efficient overlapping graph clustering ways has 
been recognized and numerous soft (overlapping) graph 
clustering strategies are proposed. During this paper, AN 
efficient, novel, and quick overlapping clustering methodology 
is proposed based on purifying and filtering the coupling 
matrix (PFC). PFC is tested on PPI networks. The 
experimental results show that PFC methodology outperforms 
several existing ways by a number of orders of magnitude in 
terms of average statistical (hyper geometrical) confidence 
regarding biological enrichment of the identified clusters. 
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I. INTRODUCTION 
 
 Protein–protein interactions (PPIs) are the physical 
contacts of high specificity established between two or 
more protein molecules as a result of biochemical events 
steered by electrostatic forces including the hydrophobic 
effect. Many are physical contacts with molecular associations 
between chains that occur in a cell or in a living organism in a 
specific bimolecular context.[1] 
 

Proteins rarely act alone as their functions tend to be 
regulated. Many molecular processes within a cell are carried 
out by molecular machines that are built from a large number 
of protein components organized by their PPIs. These 
interactions make up the so-called interactomics of the 

organism, while aberrant PPIs are the basis of multiple 
aggregation-related diseases, such as Creutzfeldt–
Jakob, Alzheimer's disease, and may lead to cancer.. 

 
PPIs have been studied from different 

perspectives: biochemistry, quantum chemistry, molecular 
dynamics, signal transduction, among others.[2] All this 
information enables the creation of large protein interaction 
networks – similar to metabolic or genetic/epigenetic 
networks – that empower the current knowledge 
on biochemical cascades and molecular etiology of disease, as 
well as the discovery of putative protein targets of therapeutic 
interest. 
 

To describe the types of protein–protein interactions 
(PPIs) it is important to consider that proteins can interact in a 
"transient" way (to produce some specific effect in a short 
time) or to interact with other proteins in a "stable" way to 
build multi-protein complexes that are molecular machines 
within the living systems. A protein complex assembly can 
result in the formation of homo-oligomeric or hetero-
oligomeric complexes. In addition to the conventional 
complexes, as enzyme-inhibitor and antibody-antigen, 
interactions can also be established between domain-domain 
and domain-peptide. Another important distinction to identify 
protein-protein interactions is the way they have been 
determined, since there are techniques that measure direct 
physical interactions between protein pairs, named “binary” 
methods, while there are other techniques that measure 
physical interactions among groups of proteins, without pair 
wise determination of protein partners, named “co-complex” 
methods.[1] 
 
Homo-oligomers vs. hetero-oligomers 

 
Homo-oligomers are macromolecular complexes 

constituted by only one type of protein subunit. Protein 
subunits assembly is guided by the establishment of non-
covalent interactions in the quaternary structure of the protein. 
Disruption of homo-oligomers in order to return to the initial 
individual monomers often requires denaturation of the 
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complex.[5] Several enzymes, carrier proteins, scaffolding 
proteins, and transcriptional regulatory factors carry out their 
functions as homo-oligomers. Distinct protein subunits 
interact in hetero-oligomers, which are essential to control 
several cellular functions. The importance of the 
communication between heterologous proteins is even more 
evident during cell signaling events and such interactions are 
only possible due to structural domains within the proteins (as 
described below). 
 
Stable interactions vs. transient interactions 
 

Stable interactions involve proteins that interact for a 
long time, taking part of permanent complexes as subunits, in 
order to carry out structural or functional roles. These are 
usually the case of homo-oligomers (e.g. cytochrome c), and 
some hetero-oligomeric proteins, as the subunits of ATPase. 
On the other hand, a protein may interact briefly and in 
a reversible manner with other proteins in only certain cellular 
contexts – cell type, cell cycle stage, external factors, presence 
of other binding proteins, etc. – as it happens with most of the 
proteins involved in biochemical cascades. These are called 
transient interactions. For example, some G protein-coupled 
receptors only transiently bind to Gi/o proteins when they are 
activated by extracellular ligands,[6] while some Gq-coupled 
receptors, such as muscarinic receptor M3, pre-couple with 
Gq proteins prior to the receptor-ligand binding.[7]Interactions 
between intrinsically disordered protein regions to globular 
protein domains (i.e. MoRFs) are transient interactions.[8] 

 
Covalent vs. non-covalent 
 
Main articles: Covalent bond and Non-covalent interactions 

 
Covalent interactions are those with the strongest 

association and are formed by disulphide bonds or electron 
sharing. Although being rare, these interactions are 
determinant in some posttranslational modifications, 
as ubiquitination and SUMOylation. Non-covalent bonds are 
usually established during transient interactions by the 
combination of weaker bonds, such as hydrogen bonds, ionic 
interactions, Van der Waals forces, or hydrophobic bonds.[9] 
 
Role of water 
 

Water molecules play a significant role in the 
interactions between proteins.[10][11] The crystal structures of 
complexes, obtained at high resolution from different but 
homologous proteins, have shown that some interface water 
molecules are conserved between homologous complexes. The 
majority of the interface water molecules make hydrogen 
bonds with both partners of each complex. Some interface 

amino acid residues or atomic groups of one protein partner 
engage in both direct and water mediated interactions with the 
other protein partner. Doubly indirect interactions, mediated 
by two water molecules, are more numerous in the 
homologous complexes of low affinity.[12] Carefully 
conducted mutagenesis experiments, e.g. changing a tyrosine 
residue into a phenylalanine, have shown that water mediated 
interactions can contribute to the energy of 
interaction.[13] Thus, water molecules may facilitate the 
interactions and cross-recognitions between proteins. 
 

Protein-protein interactions (PPIs) handle a wide 
range of biological processes, including cell-to-cell 
interactions and metabolic and developmental control [1]. 
Protein-protein interaction is becoming one of the major 
objectives of system biology. Noncovalent contacts between 
the residue side chains are the basis for protein folding, protein 
assembly, and PPI [2]. These contacts induce a variety of 
interactions and associations among the proteins. Based on 
their contrasting structural and functional characteristics, PPIs 
can be classified in several ways [3]. On the basis of their 
interaction surface, they may be homo- or heterooligomeric; as 
judged by their stability, they may be obligate or nonobligate; 
as measured by their persistence, they may be transient or 
permanent [4]. A given PPI may be a combination of these 
three specific pairs. The transient interactions would form 
signaling pathways while permanent interactions will form a 
stable protein complex. 
 

Homology based approaches have been the 
traditional bioinformatics approach to the problem of protein 
function identification. Variations of tools like BLAST [1] and 
Clustal and concepts like COGs (Clusters of orthologous 
Groups) have been applied to infer the function of a protein or 
the encoding gene from the known a closely related gene or 
protein in a closely related species. Although very useful, this 
approach has some serious limitations. For many proteins, no 
characterized homologs exist. Furthermore, form does not 
always determine function, and the closest hit returned by 
heuristic oriented sequence alignment tools is not always the 
closest relative or the best functional counterpart. Phenomena 
like Horizontal Gene Transfer complicate matters additionally. 
Last but not least, most biological Functions are achieved by 
collaboration of many different proteins and a proteins 
function is often context sensitive, depending on presence or 
absence of certain interaction partners.  

 
A Systems Biology Approach to the problem aims at 

identifying functional modules (groups of closely cooperating 
and physically interacting cellular components that achieve a 
common biological function) or protein complexes by 
identifying network communities (groups of densely 
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connected nodes in PPI networks). This involves clustering of 
PPI-networks as a main step. Once communities are detected, 
hyper geometrical p-value is computed for each cluster and 
each biological function to evaluate the biological relevance of 
the clusters. Research on network clustering has focused for 
the most part on crisp clustering. However, many real world 
functional modules overlap. The present paper introduces a 
new simple soft clustering method for which the biological 
enrichment of the identified clusters seem to have in average 
somewhat better confidence values than current soft clustering 
methods. 
 

II. PREVIOUS WORK 
 

Examples for crisp clustering methods include HCS 
[4], RNSC [5] and SPC [6]. More recently, soft or overlapping 
network clustering methods have evolved. The importance of 
soft clustering methods was first discussed in [7], the same 
group of authors also developed one of the first soft clustering 
algorithms for soft clustering, Clique Percolation Method or 
CPM [8]. An implementation of CPM , called CFinder [9] is 
available online. The CPM approach is basically based on the 
“defective cliques” idea and has received some much deserved 
attention. Another soft clustering tool is Chinese Whisper [10] 
with origins in Natural Language Processing. According to its 
author, CW can be seen as a special case of the Random 
Walks based method Markov-Chain-Clustering (MCL) [11] 
with an aggressive pruning strategy. 
 

Recently, some authors [12, 13] have proposed and 
implemented betweenness based [14] Clustering (NG) 
method, which makes NG’s divisive hierarchical approach 
capable of identifying overlapping clusters. NG’s method 
finds communities by edge removal. The modifications 
involve node removal or node splitting. The decisions about 
which edges to remove and which nodes to split, are based on 
iterated all pair shortest path calculations. 

 
In this paper, we present a new approach, called PFC, 

which is based on the notion of Coupling matrix (or common 
neighbors). In the rest of the paper, we first describe PFC and 
compare its results with the best results achieved by the 
aforementioned soft approaches. The second part of this work 
aims to illustrate the biological relevance of soft methods by 
giving several examples of how the biological functions of 
overlap nodes relate to biological functions of respective 
clusters. 
 

III. PFC METHOD 
 

The method introduced here is based on the 
purification and filtering of coupling matrix, PFC. PFC is a 

soft graph clustering method that involves only a few matrix 
multiplications/ manipulation. Our experimental results show 
that it outperforms the above mentioned methods in terms of 
the p-values for MIPS functional enrichment [15] of the 
identified clusters. The PPI net works we used in the paper are 
yeast PPI networks (4873 proteins and 17200 interactions). 
 
3.1 Coupling Matrix 
 

Bibliographical coupling is an idea from text 
classification: If two documents (for example two scientific 
papers) share a significant number of cited references, they are 
likely to deal with similar topics. A coupling matrix in a 
network describes the number of shared neighbors (or paths of 
length two) for each node pair. For undirected graphs like PPI 
networks, this matrix is symmetric and can be easily obtained 
from the original adjacency matrix A by: B = A * A. Notably, 
for second degree neighbors, the entry in coupling matrix is 
nonzero, even if there is no edge between the nodes. The 
importance of second degree neighbors in PPI networks has 
been emphasized before in the literature. For example: [16] 
note that “A substantial number of proteins are obs erved to 
share functions with level-2 neighbors but not with level-1 
neighbors.” 
 
3.2 Purification of the Coupling Matrix 
 

Adjacency matrices of biological networks are in 
general very sparse. The coupling matrix described above is 
slightly denser. However, not all nonzero-values are equally 
valuable. In the purification step, we determine the number of 
nonzero values (in unweighted graphs like PPI-Networks, this 
corresponds to the row sum), the maximum entry and the 
minimum non-zero value for each line of the coupling matrix. 
Rows in which the minimum nonzero entry and the maximum 
value are relatively close are considered homogenous and left 
unchanged. For other rows, we delete nonzero entries that 
don’t make a significant contribution to the row sum. The 
Purification Process is summarized below: 
 

 
 

This purification step is robust in regard to choice of 
values for its parameters. In particular in our experiment with 
a yeast PPI network, the results for α = 0.8 and β = 1.2 did not 
differ from those for α = 0.7 and β = 1.3 . 
 
3.3 Filtering of the purified coupling matrix 
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The set of nonzero entries in each line of the Purified 
Coupling matrix can be considered as a candidate cluster. For 
a network of _ nodes, this generally means _ candidate 
clusters. However, not all rows are equally interesting. The set 
of nonzero entries (the information content) of many rows is 
likely to be very similar to, or contained largely within the sets 
of nonzero entries of other rows. This means that many rows 
are likely to represent spurious or redundant clusters. In the 
filtering step, we address this problem and try to select the 
most relevant and interesting rows of the purified coupling 
matrix. The set of nonzero entries in each of the selected lines 
of the purified coupling matrix represent our final clusters. 
The filtering step of PFC is a flexible step. Two alternative 
filtering approaches are discussed below. 
 
3.4 Filtering by Simple, Local Criteria 
 

The first Filtering approach is motivated by 
assumptions about the nature of the data and size of the target 
clusters. PPI data are for the most part results of high 
throughput experiments like yeast two hybrid and are known 
to contain many false positive and many false negative entries. 
For certain, more thoroughly studied parts of the network, 
additional data might be available from small scale, more 
accurate experiments. In PFC, the emphasis lies on common 
second degree neighbors and this can magnify the effects of 
noise. Under the assumption that Nodes with low degree 
belong in general to the less thoroughly examined parts of the 
network, it is conceivable that the current data for the graph 
around these low nodes contains many missing links. Missing 
links in these areas can have dramatic effects on the 
constellation of second degree neighbors. This means the 
Coupling data for low degree nodes is particularly unreliable. 
On the other hand, many extremely well connected nodes are 
known to be central hubs that in general help to connect many 
nodes of very different functionality with each other, hence, 
their second degree neighbors compromise huge sets that are 
less likely to be all functionally related. Additionally, it has 
been shown that most functional modules are meso-scale [6]. 
There are also some fundamental physical constrains on the 
size and shape of a protein complex that make very large 
modules unlikely. Taking these considerations into account, a 
filter is easily constructed by the following rules: 
 
 

Discard all clusters (rows of purified coupling 
matrix) where the labeling node (the _th node in the _th row) 
has a particularly low (< 14) or particularly high (>30) degree. 
Discard all clusters where the module size is too small (<35) 
or particularly large (>65). 
 

The selected minimum and maximum values for 
degree of labeling nodes and module size are heuristically 
motivated. The intervals can be easily changed to obtain or 
discard more clusters, but the enrichment results for these 
intervals seem reasonably good. The peak log value for the 
enrichment of selected clusters is at -91.00 and the average 
lies at -18.99. Using this filter, by clustering yeast PPI 
networks, PFC yields 151 clusters from 52 different 
Functional categories. Figure 1 gives an example. 
 

 
Figure 1 This Figure shows the community for the row labeled 

“YKL173w” in the purified coupling matrix o f yeat PPI 
network. It is one of the clustered selected by PFC1. Out of 

the 63 proteins in this community, 58 belong to MIPS Funcat 
11.04.03.01. 

 
IV. EXPERIMENTAL RESULTS AND  

DISCUSSIONS 
 

The results of the PFC are compared with results 
obtained by other soft clustering methods. A PPI network of 
yeast with 4873 Nodes and 17200 edges is used as the test 
data set. The other methods are an in-house implementation of 
Pinney and Westhead‘s Betweenness Based proposal [12], 
Chinese Whisper [10], CPM as implemented in C-Finder [9]. 
Whenever other methods needed additional input parameters, 
we tried to choose parameters that gave the best values. The 
results from different methods are summarized in Table 1. 
 
4.1 Biological Functions of Overlap Nodes 
 

The hyper geometric evaluation of individual clusters 
is the main pillar in assessing the quality of crisp clustering 
methods. For soft clustering methods, further interesting 
questions arise that deal with relationships between clusters. A 
possible conceptual disadvantage, production of widely 
overlapping, redundant clusters was addressed in previous 
sections. Figure 2 is a clustering results of the PFC. The result 
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demonstrates an important advantage of soft methods against 
crisp ones: They show how soft clustering can adequately 
mirror the fact that many proteins have context dependent 
functions, and how in some cases overlap nodes can act as 
functional bridges between different modules. 
 

Table 1 Comparison of results from different methods 

 
 

 
Figure 2. Result #1: There is a relatively large overlap (yellow 
nodes). All 10 overlap nodes are involved in “nucle ar mRNA 
splicing, via splice some-A”. The same is true for c a.25% (12 
out of 45) of the green nodes to the left and 68% (17 out ofOf 
the green nodes to the right of the overlap. Furthermore, two 

of the overlap nodes are also involved in splice some assembly 
the total number of such nodes in the entire network is 19. 

 
V. CONCLUSIONS 

 
This paper introduced PFC, a new clustering concept 

based on purification and filtering of a coupling (common 
neighbor) matrix. It discussed a very different filtering 
method. PFC consists of only a few matrix multiplications and 
manipulations and is therefore very efficient. The PFC 
outperforms current soft clustering methods on PPI networks 
by a few orders of magnitude in terms of average statistical 
confidence on biological enrichment of the identified clusters. 
The paper illustrated the importance of soft clustering methods 
in systems biology by giving a few concrete examples of how 
the biological function of the overlap nodes relates to the 
functions of the respective clusters. 
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