
IJSART - Volume 3 Issue 11 – NOVEMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 873 www.ijsart.com

Embedded Security for Internet of Things

Akula Rajitha

Dept of ECE
CMR Technical Campus, Telangana

Abstract- Internet of Things (IoT) consists of several tiny
devices connected together to form a collaborative computing
environment. IoT imposes peculiar constraints in terms of
connectivity, computational power and energy budget, which
makes it significantly different from those contemplated by the
canonical doctrine of security in distributed systems. In order
to circumvent the problem of security in IoT domain, networks
and devices need to be secured. In this paper, we consider the
embedded device security only, assuming that network
security is properly in place. It can be noticed that the
existence of tiny computing devices that form ubiquity in IoT
domain are very much vulnerable to different security attacks.
In this work, we provide the requirements of embedded
security, the solutions to resist different attacks and the
technology for defying temper proofing of the embedded
devices by the concept of trusted computing. Our paper
attempts to address the issue of security for data at rest.
Addressing this issue is equivalent to addressing the security
issue of the hardware platform. Our work also partially helps
in addressing securing data in transit.

Keywords- ubiquitous computing; Internet of things (IoT);
security, embedded device; Trustzone; ARM; confidentiality;

I. INTRODUCTION

 Wireless and mobile communication technologies are
already widely deployed and their capabilities are ever
increasing. New technologies, such as WiMAX, ZigBee,
Wireless Mesh Networks, and 4G Networks emerge giving
rise to the notion of ubiquitous computing. The vision of Mark
Weiser in his famous 1991 article “The Computer of the 21st
Century”, according to which “the most profound technologies
are those that disappear; they weave themselves into the fabric
of everyday life until they are indistinguishable from it,” is
today a reality [1]. Dix et al. define ubiquitous computing as:
“Any computing activity that permits human interaction away
from a single workstation” [2]. Since then, there have been
tremendous advances in mobile and wireless technologies
toward supporting the envisioned ubiquitous and continuous
computation and, consequently, ubiquitous applications that
are intended to exploit the foregoing technologies have
emerged and are constantly pervading our life [3]. We can
observe that from cars to smart phones, refrigerators to
multimedia players - embedded computing increasingly

pervade our lives. But most of them are unsecured in nature.
Security for these systems is an open question and could prove
a more difficult long-term problem than security does today
for desktop and enterprise computing. Security issues are
nothing new for embedded systems. However, as more
embedded systems are connected to the Internet, the potential
damages from such vulnerabilities scale up dramatically.
Internet connections expose applications to intrusions and
malicious attacks. Unfortunately, security techniques
developed for enterprise and desktop computing might not
satisfy embedded application requirements. Internet
connections expose applications to intrusions and malicious
attacks. Unfortunately, security techniques developed for
enterprise and desktop computing might not satisfy embedded
application requirements [4]. System designs for embedded
devices are complicated, including multiple independent
processor cores, secondary bus masters such as DMA engines,
and large numbers of memory and peripheral bus slaves. In
addition to these functional components there is typically a
parallel system infrastructure that provides invasive and
noninvasive debug capabilities, as well as component
boundary scan and Built-In-Self-Test (BIST) facilities. Due to
this kind of importance as well as the pervasive deployment of
embedded devices from home to big enterprises, embedded
device security becomes a big issue. Many research initiatives
have been undertaken to counter the issues of security in
embedded systems. In fact, security has been the subject of
intensive research in the context of general-purpose computing
and communications systems. However, security is often
misconstrued by embedded system designers as the addition of
features, such as specific cryptographic algorithms and
security protocols, to the system. In reality, it is a new
dimension that designers should consider throughout the
design process, along with other metrics such as cost,
performance, and power. The challenges unique to embedded
systems require new approaches to security covering all
aspects of embedded system design from architecture to
implementation. The diverse security requirements are
especially apparent in embedded systems where increased
connectivity, portability, and pervasive design objectives are
need to be considered. In fact, pervasive networks have led to
widespread use of embedded systems, like cell phones, PDAs,
RFIDs etc., in increasingly diverse applications. Many of these
embedded system applications handle sensitive data (e.g.,
credit card information on a mobile phone/PDA) or perform

IJSART - Volume 3 Issue 11 – NOVEMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 874 www.ijsart.com

critical functions (e.g., medical devices or automotive
electronics), and the use of security protocols is imperative to
maintain confidentiality, integrity and authentication of these
applications. Evolution of embedded systems towards devices
connected via Internet, wireless communication or other
interfaces as well as the trend towards always growing
numbers of devices (IoT) requires a re-consideration of
embedded systems engineering processes. It is no longer
possible to achieve the required level of security by adding
security measures late in the development process. Security
engineering as stated above needs to be part of the system
development in all stages of the process. Typically embedded
systems have low computing power and finite energy supply
based on a battery, and these factors are at odds with the
computationally intensive nature of the cryptographic
algorithms underlying many security protocols. In addition,
secure embedded systems are vulnerable to attacks, like
physical tampering, malware and side-channel attacks. Thus,
design of secure embedded systems is guided by the following
factors: small form factor, good performance, low energy
consumption (and, thus, longer battery life), and robustness to
attacks. The paper is organized as follows. In section II, we
have discussed the requirements of embedded security in IoT.
Then, in section III, embedded security solutions to counter
some of the security challenges are mentioned. In section IV,
we described trusted computing and its importance in IoT
security. Lastly, we conclude in section V.

II. EMBEDDED SECURITY REQUIREMENT IN IOT

With the advent of powerful computing and
communication gadgets and tools, the possibility of invasion
on our daily life is increased many folds. Now, with the advent
of IoT (Fig. 1), we are encountering a third wave of hacking—
one that encompasses not only wired computers and networks,
but intelligent devices: wireless phones, routers and switches,
printers, SCADA (Supervisory Control And Data Acquisition)
systems, and even medical devices. This new hacking wave is
poised to bypass the amateur “street-creed” phase and move
directly to well-honed, massively coordinated, sophisticated
attacks. It is now becoming clear that hacking’s third wave
will almost certainly include terrorist cyber-strikes against the
utility and industrial infrastructure (the “smart grid”)—a
danger we can no longer dismiss as a spy movie scenario. One
of the most common attacks on IoT is “war drives,” in which
hackers drive around a neighborhood, hunting for unsecured
wireless nodes. In the latest twist on war driving, a security
expert cruised around Fisherman’s Wharf, armed with a cheap
RFID scanner and a low-profile antenna, and managed to
clone half a dozen electronic, wallet-sized passports in an
hour. Ross Anderson has several chapters devoted to the basic
vulnerabilities of devices and systems used for banking,

energy metering, and wireless mobile communication,
signaling the increasing importance of this area.

Figure 1. IoT architecture

Another challenging area which embedded security

needs good amount of attention is: in-vehicular security. Ever
since electronic devices were installed into cars, they have
been a feasible target for malicious attacks or manipulations.
Mileage counter manipulation, unauthorized chip tuning or
tachometer spoofing [5] is already common. Many analyses
[7] can verify the safety and reliability of vehicle networks
against random failures. Analyses that consider also intended
malicious manipulations, i.e. discuss vehicular communication
security, are still very rare [8]. Thus, most existing automotive
communication systems are virtually unsecured against
malicious encroachments [9]. We can observe that from cars
to smart phones, refrigerators to multimedia players –
embedded computing increasingly pervade our lives. But most
of them are unsecured in nature. Security for these systems is
an open question and could prove a more difficult long-term
problem than security does today for desktop and enterprise
computing. Security issues are nothing new for embedded
systems. However, as more embedded systems are connected
to the Internet, the potential damages from such vulnerabilities
scale up dramatically. Internet connections expose
applications to intrusions and malicious attacks.
Unfortunately, security techniques developed for enterprise
and desktop computing might not satisfy embedded
application requirements. Internet connections expose
applications to intrusions and malicious attacks.
Unfortunately, security techniques developed for enterprise
and desktop computing might not satisfy embedded
application requirements [4]. With the advent of IoT and
pervasive nature of embedded computing, attacks on network,
data, hardware and software are in rise . Many embedded

IJSART - Volume 3 Issue 11 – NOVEMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 875 www.ijsart.com

systems are especially susceptible to a type of noninvasive
attacks called side-channel attacks. Non-invasive techniques
consist of software attacks (using viruses, worms, etc) and
attacks based on the statistical analysis of operational
characteristics of the device to extract secret information.
When a system is under attack, different goals are targeted; the
first kind of attack is the extraction of secret information, the
second one is trying to put the system out of order . Coron et
al. [29] formulated a set of statistical tests which can be used
to detect the presence of side-channel leakage from any given
cryptographic computation.

III. EMBEDDED SECURITY SOLUTION

There are many existing solutions to counter different
attacks. Encryption of information is used for confidentiality.
The most popular cipher algorithms are: RSA, ECC, AES,
3DES.The hash of information is used to check the integrity of
a message by providing a signature which is unique for each
message. The most known algorithms are MD5 and SHA. In
addition, non-repudiation, availability and authenticity are
guaranteed by communication protocols like IPSec for
example. Most of these algorithms and processes are very
much computationally intensive. So, we require dedicated
hardware or Digital Signal Processors (DSP). A dedicated
processor implements specific instruction dedicated to security
primitives. An analogy can be done with DSP through its
multiplication-accumulation instruction for digital signal
processing. In most cases, security processors are dedicated to
one class of ciphering algorithm (symmetric or asymmetric).
Specific execution units are added into the datapath. Authors
propose processors with Instructions for symmetric ciphering
algorithms. Specific instructions have been defined like
logical operation (xor-add) or data permutation. In
CryptoManiac processor, a fast and flexible co-processor for
cryptographic workloads is developed. Authors have presented
an analysis of a 0.25um physical design that runs the standard
Rijndael cipher algorithm (3DES) 2.25 times faster than a
600MHz Alpha 21264 processor. For processors dedicated to
asymmetric ciphering algorithms, specific instructions are
defined. For instance to efficiently compute the modular
exponentiation is used in ECC and RSA. However, there still
exists significant difference between requirements of security
processing and the capability of an embedded processor. This
difference is termed security processing gap. System designs
for embedded devices are complicated, including multiple
independent processor cores, secondary bus masters such as
DMA engines, and large numbers of memory and peripheral
bus slaves. In addition to these functional components there is
typically a parallel system infrastructure that provides invasive
and non-invasive debug capabilities, as well as component
boundary scan and Built-In-Self-Test (BIST) facilities [8].

Due to this kind of importance, complexity as well as the
pervasive deployment of embedded devices from home to big
enterprises, embedded device security becomes a big issue.
Many research initiatives have been undertaken to counter the
issues of security in embedded systems. We find great
treatment on the issues of embedded system security in [10],
where authors have described security requirements, design
challenges, basic concepts, different security protocols like
Secure Socket Layer (SSL) [11], open SSL [12], architectures.
The SSL protocol is typically layered on top of the transport
layer of the network protocol stack, and is either embedded in
the protocol suite or is integrated with applications such as
web browsers. This is shown in Fig. 2.

Figure 2. SSL protocol, with an expanded view of the SSL

record protocol

IV. TRUSTED COMPUTING

In order to provide security at the physical or
execution level, we need to build our solution based on secure
execution environment (SEE). An SEE is a processing unit
which is capable of executing applications in a protected
manner, meaning the attacks originating from outside the SEE
cannot tamper with code and data belonging to the SEE. The
first building block of an SEE is of course a secure processor –
either a dedicated processor or one capable of supporting a
secure mode, which is hardware compartmentalized from the
non-secure mode. Utilizing a dedicated processor has the
advantage of ease of separation as well as offloading the main
processor from handling security tasks. The disadvantage of a
dedicated processor is the increase in silicon footprint. The
advantages of using one processor with two compartments is
exploiting remaining Millions Instructions Per Second (MIPS)
if available, while the disadvantages include the need for
better system design, and harder proof of security robustness.
The second building block is secure code and data memory –
most likely dedicated on-chip RAMs. It is important to

IJSART - Volume 3 Issue 11 – NOVEMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 876 www.ijsart.com

remember that whenever code is present outside the SEE
memory it should be integrity protected against modifications
(and possibly protected for confidentiality by means of
encryption if required). Whenever data is present outside the
SEE memory it should be protected both for confidentiality
and for integrity . In this respect, we find that recently good
amount of development has taken place in embedded platform
security. Among the commercial releases, Trusted Platform
Module by Atmel [13] and Trustzone by ARM [14] are worth
mentioning. Trusted platform module (TPM) is to provide the
minimal hardware needs to build a trusted platform in
software. While usually implemented as a secure coprocessor,
the functionality of a TPM is limited enough to allow for a
relatively cheap implementation – at the price that the TPM
itself does not solve any security problem, but rather offers a
foundation to build upon. Thus, such a module can be added to
an existing architecture rather cheaply, providing the lowest
layer for larger security architecture. The main driver behind
this approach is the Trusted Computing Group (TCG), a large
consortium of the main players in the IT industry, and the
successor to the Trusted Computing Platform Alliance
(TCPA) [15]. TrustZone consists of a hardware-enforced
security environment providing code isolation, together with
secure software that provides both the fundamental security
services and interfaces to other elements in the trusted chain,
including smartcards, operating systems and general
applications. TrustZone separates two parallel execution
worlds: the nonsecure ‘normal’ execution environment, and a
trusted, certifiable secure world. TrustZone offers a number of
key technical and commercial benefits to developers and end-
users. TrustZone software components are a result of a
successful collaboration with software security experts,
Trusted Logic, and provide a secure execution environment
and basic security services such as cryptography, safe storage
and integrity checking to help ensure device and platform
security. By enabling security at the device level, TrustZone
provides a platform for addressing security issues at the
application and user levels. Below (Fig. 3 & 4) we show the
hardware and software architecture of ARM Trustzone. It is to
be noted that one of the main features of trusted computing is
secure boot. Secure Boot (also known as High Assurance
Boot) is a technique for verifying and asserting the integrity of
an executable image prior to passing the control to it.
Assuming the verification mechanism is based on the digital
signature of the image being verified, the reliability of this
verification is at best as good as the reliability of the
protection mechanism provided in the device for the public
key of the image signer. The most important assumption here
is that the code that performs the integrity verification process
is itself trustworthy.

To assert this assumption, the implementations
typically put the public key material (as well as the
verification code) into non-writable areas of memory, which in
turn are protected using some sort of hardware protection
mechanism. Generic Secure boot architecture is shown in Fig.
5 [17]. In this approach, the first step after boot-up is to verify
the integrity of the Secure Boot code itself using digital
signature verification. Next, the Secure Boot code performs
integrity checking of basic security parameters (such as the
signers' public key), and then after that validation of system
images (such as the entire kernel or individual system
libraries) occurs, and finally the user-space application
validation takes place. The integrity of each layer relies on the
integrity of the layers underneath. At any point, if the
verification fails, the system can be put in a halt-state. In ARM
Trustzone, the secure boot scheme adds cryptographic checks
to each stage of the Secure world boot process. This process
aims to assert the integrity of all of the Secure world software
images that are executed, preventing any unauthorized or
maliciously modified software from running. The secure boot
process implements a chain of trust.

Starting with an implicitly trusted component, every

other component can be authenticated before being executed.
The ownership of the chain can change at each stage - a PuK
(Personal Unblocking Key) belonging to the device OEM
might be used to authenticate the first bootloader, but the
Secure world OS binary might include a secondary PuK that is
used to authenticate the applications that it loads. Unless a
design can discount hardware shack attacks the foundations of
the secure boot process, known as the root of trust, must be
located in the on-SoC ROM. The SoC ROM is the only
component in the system that cannot be trivially modified or
replaced by simple reprogramming attacks. Storage of the PuK
for the root of trust can be problematic; embedding it in the
on- SoC ROM implies that all devices use the same PuK. This
makes them vulnerable to class-break attacks if the PuK is
stolen or successfully reverse-engineered. On-SoC One-Time-
Programmable (OTP) hardware, such as poly-silicon fuses,
can be used to store unique values in each SoC during device
manufacture. This enables a number of different PuK values to
be stored in a single class of devices, reducing risk of class
break attacks. Another secure boot implementation is found
for Linux platform, which is part of SELinux [18]. To provide
the appropriate levels of protection, these environments are
enhanced with mandatory access control (MAC) mechanisms.
One method to achieve a MAC is by implementing Role-
Based Access Control (RBAC). NSA's SELinux, among other
features such as MLS (Multi Level Security), provides Linux
with MAC through RBAC [18]. With the explosive growth of
mobile devices and application, it is true that the next
generation of open operating systems won’t be on desktops or

IJSART - Volume 3 Issue 11 – NOVEMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 877 www.ijsart.com

mainframes but on the small mobile devices, which enables
greater integration with existing online services. Developed by
the Open Handset Alliance (led by Google), Android is a
widely anticipated open source operating system for mobile
devices that provides a base operating system, an application
middleware layer, a Java Software Development Kit (SDK),
and a collection of system applications. Android restricts
application interaction to its special APIs by running each
application as its own user identity. This controlled interaction
as several beneficial security features. Android protects
applications and data through a combination of two
enforcement mechanisms, one at the system level and the
other at the inter-component communication (ICC) level. ICC
mediation defines the core security framework. It is built on
the guarantees provided by the underlying Linux system. As
the central point of security enforcement, the Android
middleware mediates all ICC processes by reasoning about
labels assigned to applications and components. A reference
monitor provides MAC enforcement of how applications
access components. Security enforcement in Android occurs
in two places: each application executes as its own user
identity, allowing the underlying Linux system to provide
system-level isolation; and the Android middleware contains a
reference monitor that mediates the establishment of ICC.
Both mechanisms are vital to the phone’s security, but the first
is straightforward to implement, whereas the second requires
careful consideration of both mechanism and policy. In,
authors have presented SCANDROID, (Security Certifier for
anDroid) a tool for automated security certification of Android
applications.

SCANDROID statically analyzes data flows through
Android applications, and can make security-relevant
decisions automatically, based on such flows. In particular, it
can decide whether it is safe for an application to run with
certain permissions, based on the permissions enforced by
other applications. Alternatively, it can provide enough
context to the user to make informed security-relevant
decisions.

Figure 3. Trustzone hardware architecture

Figure 4. Trustzone software architecture

Figure 5. Generic secure boot architecture

Figure 6. Android security architecture

V. CONCLUSION AND FUTURE WORK

With the advent of pervasive nature of today’s

computing, security is becoming very critical for wide range
of applications. As most of today’s and next generation
computing applications involve embedded systems, in this
work, we have presented the requirements, issues, designs and

IJSART - Volume 3 Issue 11 – NOVEMBER 2017 ISSN [ONLINE]: 2395-1052

Page | 878 www.ijsart.com

solutions of embedded design to counter the different attacks.
While some aspects of security have been addressed in the
context of traditional general-purpose computing systems,
embedded systems usher in many new challenges. We have
highlighted the security-related problems faced by designers
of embedded systems, and outlined recent developments and
innovations to address them. Several issues, however, still
remain open to find a holistic solution to the problem of
embedded system security. Efficient security processing alone
is of limited use if an embedded system does not successfully
address attacks that could potentially compromise its security.
A clear cost and risk analysis becomes essential to determine
the levels of attack resistance that a device must support. Since
attacks continue to increase in sophistication, the development
of countermeasures remains a challenging and on-going
exercise. It is also important to remember that
countermeasures applicable to one system (e.g., smartcards)
may not be able to applicable to other embedded systems (e.g.,
PDAs or smart phones). Thus, system-specific attack-
resistance measures are crucial. IoT mainly consists of tiny
devices with limited processing power. As the attackers
become sophisticated, it becomes necessary to dedicate entire
co-processor with high scalability to offer entire security
features that an embedded system may require. It is very
crucial to reduce susceptibility to sidechannel attacks through
the use of hardware techniques that reduce correlation
between data values and side-channel information, like power,
time, etc.

REFERENCES

[1] Mark Weiser, "The Computer for the Twenty First
Century," Scientific American, pp. 94-104, September,
1991.

[2] A. Dix, J. Finlay, G. Abowd, and R. Beale, "Human-
Computer Interaction," Prentice Hall, 3e, 2004.

[3] G.D. Abowd, G.R. Hayes, G. Iachello, J.A. Kientz, S.N.
Patel, and M.M. Stevens, "Prototypes and paratypes:
Designing mobile and ubiquitous computing
applications," IEEE Pervasive Computing, vol. 4, no. 4,
pp.67–73, 2005.

[4] P.Koopman, "Embedded system security," IEEE
Computer, vol. 37, issue. 7, pp. 95-97, 2004.

[5] Ross J. Anderson, "On the security of digital
tachographs," 5th European Symposium on Research in
Computer Security (ESORICS ’98), pp. 111–125,
Springer-Verlag, London 1998.

[6] Richard Evans and Jonathan D. Moffett, "Derivation of
safety targets for the random failure of programmable
vehicle based systems," In SAFECOMP, pp.240–249,
2000.

[7] Maxim Raya and Jean-Pierre Hubaux, "The security of
vehicular networks," Technical report, Laboratory for
Computer Communications and Applications (LCA),
School of Computer and Communication Sciences, EPFL,
Switzerland, March 2005.

[8] M. Abramovici, C. Stroud, and J. Emmert, “On-Line
BIST and BISTBased Diagnosis of FPGA Logic Blocks,”
IEEE Trans. on VLSI Systems, Vol. 12, No. 12, pp. 1284-
1294, 2004.

[9] K. Lemke, C. Paar, and M. Wolf (Eds.), "Embedded
Security in CarsSecuring Current and Future Automotive
IT Applications," Springer-Verilag, 2006.

[10] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady,
"Security in Embedded Systems: Design Challenges,"
ACM Transactions on Embedded Computing Systems,
vol. 3, no. 3, pp. 461 – 491, 2004.

[11] URL: http://wp.netscape.com/eng/ssl13
[12] URL: http://www.openssl.org
[13] URL: http://www.atmel.com
[14] URL: http://www.arm.com
[15] URL: https://www.trustedcomputinggroup.org
[16] T. Alves and D. Felton, "TrustZone: Integrated Hardware

and Software Security, Enabling Trusted Computing in
Embedded Systems," ARM Whitepaper, July 2004.

[17] H. Nahari, J. Ready, "Employ a secure flavor of Linux,"
Embedded Systems Design, pp. 20 - 29, Oct, 2007.

[18] URL: http://www.nsa.gov/research/selinux/

