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Abstract- This paper attempts to study the circular chromatic 

number  c G
 of a graph G was introduced by Vince  (also 

known as the Star Chromatic number) is a natural 
generalization of the chromatic number of a graph.  In this 
paperwe concentrating on the relations among the circular 
chromatic number, the chromatic number and some other 

parameters.We prove that if an  1m
 critical graph has 

large girth, then its star chromatic number is close to m. 
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I. INTRODUCTION 

 
 Let C be a circle of (Euclidean) length r.  An r-
circular coloring of a graph G is a mapping c which assigns to 

each vertex x of G an open unit length arc  c x
 of C, such 

that for every edge  ,x y
 of G,    c x c y 

.  We say 
a graph G is r-circular colorable if there is an r-circular 
coloring of G. 

The circular chromatic number of a graph denote by  c G
, 

is defined 

as,    inf :  is circular colorablec G r G r  
. 

It is easy to see that if  c G r 
, then for any 'r r , 

there is an 'r -circular coloring of G.  nother 
trivial observation is that if H is a subgroup of G then 

   c cH G 
. 

 
Lemma:1 
 
Suppose G is a finite graph, and that c is an r-circular coloring 

of G.  If  cD G
 is acyclic then there is an 'r -circular 

coloring 'c  of G such that 'r r  and  cD G
 contains a 

directed cycle. 

Proof:Suppose  cD G
 is acyclic. 

For each vertex x, define the level  l x
 to be the length of a 

longest directed path in D which ends at x.  (since  cD G
 is 

acyclic, such a path exists).Let 0x  be a vertex with maximum 

level.  Then the interval  0c x
 can be shifted to the right (i.e. 

to the clockwise direction) by a small distance, without 
violating the condition that adjacent vertices are assigned to 
disjoint intervals. 

After the shifting, the vertex 0x  because an isolated vertex in 
the corresponding digraph.  By repeating this process we 

obtain another r-circular coloring ''c  such that the digraph 

 ''cD G
 has no arcs. 

Therefore each interval  ''c x
 can be stretched to a longer 

interval, say an interval of length 1s   and still satisfying the 
condition that adjacent vertex corresponds to disjoint intervals. 

We now uniformly shrink the circle C into a circle 'C of 
/r s .Each interval of C of length s is shrink to an interval of 
'C of length 1.  Thus we obtain an /r s -circular coloring of 

G. 

We may repeat this process, if needed, to obtain 'r -circular 

coloring 'c  with 'r r  and such that  'cD G
 contains a 

directed cycle. 
This completes the proof of lemma. 
 
Lemma:2 
 
If G is r-circular colorable and for every r-circular coloring c 

of G,  cD G
 contains a directed cycle, then  c G r 

.  

Therefore a graph G has  c G r 
 if and only if G is r-

circular colorable and for every r-circular coloring c of G, 

 cD G
 contains a directed cycle. 

Proof:For a k d , a  ,k d
- coloring of a graph 

 ,G V E
is a mapping  : 0,1, , 1f V k  

 such 
that for every edge xy of G. 
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   | |d f x f y k d   
. 

As shown in the next section, the circular chromatic number 
can be defined as 

    min / :  admits a , - coloringc G k d G k d 
.Fo

r a  ,k d
- coloring   of a graph G,  Let  D G  be the 

digraph with vertex set  V G
 and xy is a directed edge of 

 D G if and only if xy is an edge of G and 

     mody x d k  
. 

The digraph  D G  is analog to  cD G
for a /k d - 

circular coloring and they have similar properties. 

In particular, lemma 3 is true for  D G  i.e. we have the 
following lemma, which is proved in [2]. 
 
Theorem:  

Suppose G is a graph and  X V G
 is a subset of the 

vertex set of G.  If G is  ,k d
- colorable, and for any 

 ,k d
- coloring f of G    0,1, , 1f X p  

 and the 

restriction |f X  is unique up to a permutation of the colors, 

then   /G k d 
. 

 
Proof: 
 
Assume G is a graph satisfying the conditions above.  Since G 

is  ,k d
- colorable, we have   /c G k d 

.Assume to the 

contrary that   /c G k d 
. 

Then ,G has a  ,k d
- coloring   such that  D G  is 

acyclic. 

We define the level of a vertex v of  D G  to be the length 
of a longest directed path ending at v (such a path exists, 

because  D G  is acyclic). 

Let *v X  be a vertex of X  whose level is maximum.  Let 
' be the mapping defined as follows: if there is a directed 

path in  D G  from *v  to x, 

then      ' 1 modx x k  
 

Otherwise,    ' x x 
. 

Then it is straight forward to verify that '  is also a  ,k d
- 

coloring of G.Moreover, ' | |X X  , except that 

   ' * *v v 
.  Therefore ' | X  cannot be obtained 

from | X  by a permutation of colors.  (Because some 

vertices which are colored by different colors by   are now 

colored by the same color by ' ).  This is in contrary to our 
assumption. 
 

II. EQUIVALENT FORMULATIONS 
 

The circular chromatic number  c G
 of a graph 

was introduced by Vince in 1988 as “the star-chromatic 
number”. 

 
However, the definition given in the previous section 

is not the original definition of Vince, but an equivalent 
definition given by the author in a slightly different form.  The 
original definition of Vince is as follows:For two integers 

1 d k  , a  ,k d
- coloring of a graph G is a coloring c of 

the vertices of G with colors  0,1, 2, , 1k 
 such that, 

       , | |x y E G d c x c y k d     
 

The circular chromatic number is defined as, 

    inf / :  there is a ,  coloring of c G k d k d G  

For any integer k, a  ,1k
- coloring of a graph G is just an 

ordinary k- coloring of G. 

Suppose c is  ,a k d
- coloring of G. 

Let    ' : 0, /c V G k d
 be the mapping defined as 

   ' |c x c x d
 then for every edge  ,x y

 of G, we have 

   1 | ' ' | / 1c x c y k d   
. 

Therefore  ,a k d
- coloring of G corresponds to a /k d - 

circular coloring of G. 

On the other hand, it is straight forward to verify that if 'c  is a 
/k d - circular coloring of G (viewed as a mapping from 

 V G
 to  0, r

 then the mapping c is defined as 

   'c x c x d     is a  ,k d
 - coloring of G. 

 
III. GRAPHS G FOR WHICH  
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   c G G 
 

 
It was shown by Guichard [2]that is in NP-hard to determine 
whether or not an arbitrary graph Gsatisfies 

   c G G 
. 

Indeed, using an oracle which determine whether or not an 

arbitrary graph Gsatisfies    c G G 
.  We can easily 

determine the chromatic number of a graph G as follows. 

Let G H  denote the disjoint union of graphs G and H and 

let 
d
kG  denote the graph with vertex set  0,1, , 1k  

 and 

in which i is adjacent to jwhen | |d i j k d    . 

It was shown in [1] that   /d
c kG k d 

.  Using this fact, it 
is straight forward to verify that a graph G is n-colorable if 
and only if the following two statements are true. 

i)    c n nG K G K  
 

ii)    2 2
2 1 2 1c n nG G G G   

 
 
Theorem:  
 

Suppose  G n 
.  If there is a non-trivial subset A of V 

(i.e., A V  and A  ) such that for any n-coloring c of G, 
each color class X of c is either contained in A or disjoint from 

A, then    c G G 
. 

 
Proof: 
 
Assume that A is a subset of V satisfying the condition above 

and assume to the contrary of theorem that  c G r n  
. 

Let c be an r- circular coloring of G.  First we show that for 

any    ,  ,  x A y V A c x c y    
. 

Otherwise, let    p c x c y 
 for some 

x A and y V A  . 
Starting from the point p, we evenly put n points 

1 2, , , np p p p   on the circle C. 

Thus the length of the arc from ip  to 1ip  is / 1r n  . 

Therefore each arc  c z
 contains at least one of the points 

1 2, , , np p p  . 

We color a vertex z of G with color i for some 

 ip c z
 and in particular, color x and y with color 1. 

 
This is an n coloring of G which has a color class, the 

class with color 1, that is neither contained in A nor disjoint 
from A.  Contrary to our assumption. 

Let   ;  for some P p c p c x x A   
 

Then  c y P 
 for any y V A  . 

As A is a non-trivial subset of V, we know that P is a non 
trivial subset of C. 
Let q be a boundary point of P, then it is easy to see that 

 q c z
 for any z V  (Note that each arc  c z

 is an 
open subset of C). 
Therefore we may cut the circle C atq to obtain an r-interval 
coloring of G, contrary to our assumption that 

 G n r  
. 

Hence the proof. 
 
Theorem:  
 

If   ,  c G r e xy  
 is an edge of G and  : ,Q a b

 is a 
strong r-circular superedge, then by replacing the edge eby 

 : ,Q a b
, the resulting graph   , : ,G e Q a b

 also has 
circular chromatic number r. 
 
Proof: 
 

Let f  be a  ,p q
- coloring of G. 

Then    | |pf x f y q 
. 

By the definition of a strong r -circular super edge, the 

coloring f can be extended to a  ,p q
- coloring of 

  , : ,G e Q a b
. 

Therefore 
   , : , /c G e Q a b p q 

. 

It remains to show that   , ; , /c G e Q a b p q 
. 

Assume to the contrary that there is an 0  and there is an 

 r
 circular coloring cof   , : ,G e Q a b

. 
By the definition of a strong r- circular super edge, we know 

that    c a c b 
. 
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Hence c is an  r 
-circular coloring of G. Contrary to the 

assumption that  c G r 
. 

Hence the proof. 
 
Theorem:  
 

For any rational number / 3r p q  , and for any integer 

3g  , there is a graph G of grith at least g and  c G r 
. 

 
Proof: 

If there is a strong r-circular suberedge  : ,Q a b
 such that Q 

has girth at least g and the distance between a and b is at least 

g, then we replace each edge of 
q
pG

 by a copy of  : ,Q a b
. 

Denote the resulting graph by G. 

Then it follows from theorem , that   /c G p q 
 on the 

other hand, it is easy to see that G has girth at least g. 
Thus it remains to show there is a strong r-circular 

superedge  : ,Q a b
 suchthat Q has girth at least g and the 

distance between a andb is at least g. 
We shall only consider the case that r n  is an integer.  The 

case 3r   is non-integer is technicallymore difficult we shall 
sketch the idea of a construction below. 

(For 2 3r  , no construction of a strong r-circular super 
edge is known, although the existence can be proved by 
probabilistic method). 

Let H be a graph of girth at least gwith   1H n  
. 

Moreover for any edge 'e aa  of H,  H e n  
.(There 

are a few known methods of constructing such graphs)  Delete 

an edge 'aa  and add a new vertex b and connect b to 
1a  by 

an edge.Denote the resulting graph by Q. 

We shall show that  : ,Q a b
is the required strong n-circular 

super edge. 
Obviously Q has girth at least g and a, b has distance at least 
g. 

Since H is not n colorable and H e  is n-colorable, we 

conclude that there is an n-coloring  f  of H e  such that 

   'f a f a
. 

Therefore, for any two distinct colors ,i j  there is an n-

coloring f of Q such that  f a i
and  f b j

. 

It remains to show that for any 0 , if f is an  n
- 

circular coloring of Q, then 

   f a f b 
. 

This would follow if we can prove that    'f a f a
 

because    'f b f a 
 by definition. 

Assume to the contrary that there is an  n
-circular 

coloring f of Q such that    'f a f a
. 

Recall that f maps each vertex v of Q to a unit length arc of a 
circle C of length n . 

Let 0p  be a point of C lies in the arc    'f a f a
.  

Starting from 0p , we put n points 0 1 1, , , np p p   on the 
circle C (consecutively along the clockwise direction) such 

that the distance from ip  and 1ip   is equal to 

  / 1n n 
.Since for any  ,  v f v

 is a unit length arc, so 

 f v
 contains at least one of the points ip .Define an n-

coloring c of Q as follows:  c v i
 if and only if 

 ip f v
 and  jp f v

 for any j i . 
This is indeed an n-coloring of Q, as every vertex of Q is 
colored by one of the n colors, and two adjacent vertices have 
distinct colors. 

But   0c a 
and  ' 0c a 

. 
This means that c is indeed an n-coloring of H, contrary to our 

assumption that H has chromatic number 1n  . 
Hence the proof. 
 

IV. PLANAR GRAPHS 
 

Our next result concerns planar graphs. Vince 
[1]asked for families of planar graphs whose star chromatic 
numbers are strictly between 2 and 3. 

 
It seems that such graphs are abundant (See [3, 

4])while not many planar graphs are known to have star 
chromatic number exactly 3.  Obviously if a 3-chromatic 

planar graph G contains a triangle, then  * 3G 
.  The 

first triangle free planar graph G with  * 3G 
 was 

found by Gao (personal communication). 
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Denote by 2 1nW   the graph obtained from the circuit 2 1nC   
by adding a vertex v and connecting v to every vertex of the 

circuit 2 1nC  . 

The graph 2 1nW   is called the  2 1n 
-wheel, and the edges 

connecting v to vertices of 2 1nC   are called the spokes of the 
wheel. 
Through an existensive check, Gao showed that the graph 
obtained from the 5-wheel by subdividing each of the five 
spokes by precisely one additional vertex has star-chromatic 
number 3. 
We prove that for all integers n, the graph obtained from 

2 1nW   by subdividing its 2 1n   spokes has star-chromatic 
number 3. 
This is the first (non-trivial) infinite family of triangle free 
planar graphs with star-chromatic number 3. 
 
Theorem:  
 

Let 2 1nG   be the graph obtained from 2 1nW   by subdividing 

each of its 2 1n   spokes by precisely one additional vertex.  

Then  * 3G 
. 

 
Proof: 
 
We again use the definition of circular coloring in the proof let 

 1 0 1 2, , , , nV v x x x 
 be the vertex set of 2 1nW   while v 

is connected to all the 
'
ix s and the set  0 1 2, , , nx x x 

 

induces a circuit with edges  1,i ix x  . 

The graph 2 1nG   is obtained from 2 1nW   by subdividing each 

edge  , iv x
 into two edges. 

Let ,  0,1, , 2iu i n    be the vertex which subdivides the 

edge  , iv x
. 

It is easy to see that  2 1 3nG  
. 

Therefore  2 1* 3nG  
. 

Suppose  2 1* 3nG r   
 

Let    
2 1: r

nC V G C 
 be an r-circular coloring of 

2 1nG  .  As v is adjacent to all the 'i iu s  all the intervals 

 ic u
 are disjoint from  c v

. 

Since 3r   and  ic x
 is disjoint from  ic u

, we have 

   ic x c v 
, for 0,1, , 2i n  . 

For any  0,1, , 2i n 
 we cannot have    ic x c v

, 

for otherwise we would have    1i ic x c x  
.  While 

ix  is adjacent to 1ix  . 

Therefore  ic x
 contains one of the end points of  c v

. Let 

,p q  be the two end points of  c v
. Without loss of 

generality, We assume that  0c x
 contains p. 

Since  1c x
 is distinct from    0 1,  c x c x

 must contain q. 

For the same reason,      2 3 2, , , nc x c x c x 
 must 

alternately contain p and q. 

Thus  2np c x
and hence    2 0nc x c x 

. 
Contrary to our assumption that c is an r-circular, coloring of 

2 1nG  . 
This completes the proof. 
 

V. CRITICAL GRAPHS WITH LARGE GIRTH 
 

A graph G is called  1m
- critical if 

  1G m  
 and for any edge 

   ,  e E G G e m  
. 

We prove in this section that critical graphs G with large girth 

have star-chromatic numbers  * G
 close to   1G 

. 
Indeed we shall prove the following stronger statement. 
 
Theorem:  
 

Let 2m   and 1t   be integers.  Let G be a graph.  

If G has a vertex x such that G x  is m-colorable and any 

circuit of G containing x has length at least  1 2m t  
then 

  1* G m
t

  
. 
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Proof: 
 
To prove this theorem, we shall use a characterization of the 
star-chromatic number of a graph given by [11]. 
 
First we need a definition. 
Let G be a graph, and let D be an orientation of G.  For a cycle 

C in D, denote by C


 and C


 the sets of edges of C obtained 
‘forward’ and ‘backward’ respectively, with respect to a sense 
of traversal of C(which we may suppose chosen so 

that
1| | | |C C  ).Set 

     | |, 1,  max ,
| | C
Cf C D f D f C D
C



  
 

It is shown in [11] that  * G
is equal to the minimum of 

 f D
over all orientations D of G. 

We now proceed to prove theorem: 

Let G be a graph and let x be a vertex of G such that G x  is 
m-colorable, and any circuit of G containing x has length at 

least  1 2m t  
. 

To prove that, 

  1* G m
t

  
, it suffices to find an orientation D of G 

such that 
  1f D m

t
 

. 

Let      : 1,2, ,V G x m   
 be an m-coloring of 

G x . 

Let D be the orientation of G in which  ,u v
 is an arc of D if 

and only if  ,u v
 is an edge of G and either u x or 

   u v  
. 

Note that D x  contains no directed path of length more 
than m-1. 
Let C be a cycle of D. 

If x C  then  ,f C D m
 because C contains no 

directed path of length more than 1m  . 

If x C  then C x  is a path P of length at least  1m t 
, 

and P contains no directed path of length more than 1m  . 

Let P
 and P

 be the sets of forward and backward edges of 
P respectively.  Then 

    | | | | 1 ,  | | 1 | | 1P P m t P m P        
 

Hence, 

  | | 1, 1
| | 1
Pf C D
P






 

  
1

| | 1
m

P 
  

1m
t

 
 

Therefore 
    1* G f D m

t
   

. 
This completes the proof. 
 
VI. CIRCULAR CHROMATIC INDEX OF GRAPH OF 

GIRTH 
 

The circular chromatic index  ' G
 of G is defined 

to be the circular chromatic number of  L G
.  It is not 

difficult to show that  ' 1c G    
 for every graph G 

with maximum degree  . 
 

Decompositions of Graphs:  
 

In this we introduce the notions of decomposable 
graphs and graph decompositions which play a key role in our 
arguments. 

 

Let G be a graph of maximum degree  .  For an 
integer k a sub k-factor of G is any spanning subgraph of 
maximum degree at most k.  Note that a 1-factor of graph is a 
perfect matching, while a sub-1-factor is just a matching. 

 
An l-decomposition of a graph G is a decomposition 

of G into  / 2l
 edge disjoint sub-2-factors, one of which is 

required to be a matching if l is odd. 
If G has an l-decomposition, then it is said to be l-
decomposable. 

 

For our purposes,  -decomposable graphs of 

maximum degree   will be of interest.  It is easy to find 
examples of graphs that are not of this type (Consider any 
cubic graph with no perfect matching).  However, graphs of 

even maximum degree always have a  -decomposition. 
 
Theorem:  
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A multigrpahG contains a 1-factor if and only if for each 

 S V G
.  The following holds, 

 \ | |oddC G S S
. 

Where,  oddC H
 denotes the number of components of H of 

odd order. 
 
Proof: 
 
The proof of the following lemma follows ides used to prove 
the theorem of Peterson [5] on the existence of 1-factors in 
bridgeless cubic graphs. 
 
Lemma:  
 
Let G be a connected multigraph.  Suppose that all the vertices 

of G have the same odd degree 3  , except possibly for 

one vertex u of degree at most  .  If G does not contain any 

edge-cut of size less than   with a possible exception of the 
cut formed by all the edges incident with u, then G contains a 

matching that covers  V G . 
 
Proof: 
 
We distinguish two cases regarding the parity of the order of 
G. 

Assume first that  | |V G
 is even. 

We use theorem  to show that G contains a 1-factor consider a 

subset  S V G
. 

If S  , then  \ 0oddC G S 
 as G is connected.  

Otherwise, the number of edges between the vertices of S and 

  \V G S
 is atmost | |S .  Since each vertex of S has 

degree at most  . 
On the other hand, G contains at most one edge cut of size less 

than   and so all but at most one component of \G S  are 

joined to the vertices of S by at least   edges.  In particular, 

  \ 1 | |oddC G S S   
. 

which implies  \ | |oddC G S S
 are required. 

By theorem ,G has a 1-factor. 

Assume now that  | |V G
 is odd. 

Let   be the degree of u. 

Since   is odd,     by the hand-shaking lemma. 

Thus, it is enough to show that the graph  ' \G G u
 has a 

1-factor. 

Note that 'G  is connected.  Otherwise, a proper subset of the 
edges incident with u would form an edge-cut in G, which was 
assumed not to be the case. 
We again use theorem, in order to show the existence of a 1-

factor in 'G . 

Let  ' 'S V G
 and set  'S S u 

. 

If 'S  , then  S u
 and the graph \ '\ 'G S G S  is 

connected. 
Since its order is even, the condition of theorem is satisfied. 

If 'S  , then the number of edges between   and 

  \V G S
 is atmost | ' |S   . 

Each component C of \G S  is joined by at least   edges to 
the vertices of S. 
Indeed, if not, then the edges incident with C from an edge-cut 

of size smaller than  . 
By the assumption of the lemma, the edges forming this edge-
cut must be exactly all the edges incident with the vertex u. 

Then, the graph 
 G C u  

 is a component of the graph G 

but since G is connected, we infer that 'S  . 

Hence, each component of \G S  is joined by at least   
edges to the vertices of S.  Since there are at most 

 | ' | | ' | 1S S    
 such edges, the graph 

\ '\ 'G S G S  consists of at most | ' |S  components. 

In particular,  '\ ' | ' |oddC G S S
 and 'G  contains a 1-

factor by theorem. 
Hence the proof. 
 
Lemma:  
 

Every essentially  -edge-connected multigraphG of odd 

maximum degree 3   has a matching which covers all the 

vertices of  V G . 
 
Proof: 
 

As long as G contains a pair of non-adjacent vertices v and 'v  

whose degree sum up to at most  , identify v  and 'v  
(preserving multiple edges if they arise).  Just like g, the 

resulting multigraph 'G  is essentially  -edge-connected. 
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If 'G  contains a pair of vertices u and v both of whose 

degrees arc smaller than  , add the edge uv to G (This 
preserves the essential edge-connectivity since the sum of the 

degrees of u and v is larger than  ). 
Repeat this process until there is no such pair of vertices and 

call the resulting multigraph ''G .  IF ''G  is  -regular it is 

also  -edge-connected. 

Otherwise, ''G  contains exactly one vertex z of degree 

smaller than   and the only edge-cut in ''G  of size less than 
  consists of the edges incident with Z. 

In each case, lemma implies that ''G  has a matching which 

covers  ''V G . The matching consisting of the 
corresponding edges in G has the required property.Hence the 
proof. 
 
Lemma:  

Let T be a tree of maximum degree   and  X V T
set 

  \T V T X 
.  If no vertex of T  has   neighbors in X, 

and atmost one vertex of T  has 1  neighbours in X, then 

there is a matching M in \T X  covering all vertices of T . 
 
Proof: 

We can assume that T  is non-empty for otherwise the claim 
holds for trivial reasons. 

Let r be a vertex of T  with 1  neighbours in X, if there is 

one otherwise, choose r to be an arbitrary vertex of T  orient 
the edges of the tree T away from the vertex r. 

Let 0M  be a set of edges obtained by choosing, for each 

vertex v T , one outgoing edge vw  ending in a vertex 
w X . 
Such a choice can always be made, since if v r , then 

atmost 2   out of the 1   outgoing edges end in X (and a 
similar argument applies to r). 

Finally, we change 0M  into a matching M by removing 

certain edges.  For every maximal directed path Pin 0M , 
remove every second edge (starting with the second one from 
the beginning of P). 
Clearly, M is a matching and since each P ends in a vertex not 

contained in T , M still covers all the vertices of T . 

Hence the proof. 
 

VII. CONCLUSION 
 

We already know that the chromatic number of any 
planar graph, while it is known that the chromatic number of a 
planar graph is NP-complete, and also we  present an infinite 
family of triangle – free planar graphs whose star chromatic 
number of color critical graphs. 
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