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Abstract- In this paper, we investigate the oscillation of higher 
order delay differential equations with impulse of the form 
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 An example is given to illustrate the main results. 
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I. INTRODUCTION 
 
 In recent years, there has been an increasing interest 
on the oscillatory and non-oscillatory behavior of the solutions 
of impulsive delay differential equations attracted the attention 
of many growing researchers. Then there are only a few 
papers on higher order impulsive delay differential equations. 
      
 In this paper, we consider a kind of higher order 
impulsive delay differential equation. Some sufficient 
conditions for all bounded solutions of this kind of higher 
order impulsive delay differential equation to be non-
oscillatory are obtained by using a comparison theorem with a 
corresponding non-impulsive differential equation. Our results 
generalize and improve several known-results. 
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 And the delay differential problem 
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4( )H  k }  is a sequence of constants and k  1 .  

                                                                                                            
Definition: 1.2 
     For nay 0 0  and , a function 0:[ ),x     R  
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* x satisfies (1.1) ; 

* x is absolutely continuous in each interval  0 , ),( kt   1 ,( , )k kt t    

   0 ,k k 0 0min{k/ },kk t   ( )kx t  exist  and ( ) ( ),k kx xt t   

    the second condition in (1.1) holds; 

* x satisfies the first equation in (1.1) almost everywhere in 0( , )   . 

 Definition: 1.3 
 
 The solution x  of system (1.1) is said to be non-
oscillatory if it is eventually negative or eventually positive. 
Otherwise, it is said to be oscillatory. 

     By a solution y  of (1.2) on 0[ , )   we mean a function 

which has an absolutely continuous derivative yon 0[ , )   , 

satisfies (1.2) a.e. on 0[ , )    and satisfies (1.5) on 0 0, .[ ]t   

In this paper, we always suppose 0 0 0 0, .t      

 
II. MAIN RESULTS 

      
 In this section we shall establish theorems which 
enable us to redu-oscillation and non-oscillation of (1.1) to the 
corresponding problem (1.2). 
 
Theorem: 2.1 
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   is a solution of (1.2) 

on 0[t ), .   The proof is therefore complete.  

Using Theorem 2.1, we obtain the following results. 
 
Theorem: 2.2   

     Assume that  1 4( )H H hold. Then all solutions of (1.1) 

are oscillatory (non-oscillatory) if and only if all solutions of 
(1.2) are oscillatory (non-oscillatory). 
 
  Theorem: 2.3 
 

     Assume that  1 4( )H H hold. Then all solutions of (1.1) 

asymptotically approach to zero if and only if all solutions of 
(1.2) asymptotically approach to zero. 

  Let 
0
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  So v  maps  into . On the other hand,     { vy } is 

uniformly bounded. The continuity of v    is verified as 

follows: let ny   , y   with {1,3,..., m 1}N     

lim .
x n yy


  for any   0 , there exists a positive integer 

N such that | |ny y  4                                     for nay 

n  N . In particular, 

     | | 4 ,(t) y (t))n i iy g g    n  N ,  t  oT . 



IJSART - Volume 3 Issue 11 – NOVEMBER 2017                                                                           ISSN [ONLINE]: 2395-1052 
 

Page | 1003                                                                                                                                                                   www.ijsart.com 
 

Hence

(t) ( y (| v |) t)ny v   
2 1

10 0

1...... (u) (u)
(s)

m nt

i
i

T s

pr
r

 





     

            
(

3 2
u

1

)

(t)1 | | du ...dy (t))
i k

k n i i m m
g t u

y g g d  



 



   

                          
2 1

10 0

1...... (u) (u) x
(s)

4
m

i

nt

iT s

r p
r

 


 



      

                                 
(u)

1
3 21 du...d

i k

k m m
g t u

d  
 

 

   

                          14 . .
4

    

 
 So we know that v maps continuously into a 
compact subset of  .  Therefore, by Schauder-Tychonov’s  
fixed point theorem, v  has  a fixed point y in  . It is easy to 

check that the fixed point y  in .   it is easy to check that the 
fixed point y is a solution of (2.1). so (1.2) has a boundary 
non-oscillatory solution y . By Theorem 2.1, 

 x t
0

(1 ) (t)
k

k
t t t

y


   is a bounded non-oscillatory 

solution of (1.1). using condition ( 5H ),we eventually 

get  liminf | .| 0
t

x t


  the proof is therefore complete. 

     
  Next we shall give an oscillation criterion for (1.1) . 
suppose  m is a given even number. First we some lemmas  
whose proofs are omitted, because their proofs are similar to 
[14] but without impulses. 
 
Lemma: 2.5. 
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Theorem: 2.8 Assume that 1 4( ) ( )H H , 6( )H  and 8( )H  hold, and 

9( )H ig has an absolutely continuous derivative ig  on  to ,and ig   0 ;  

10( )H  
0

1

1 (s)

1 (s) (t) 1
i k

n

i

m
i kt

g t s
r ds p s

 

 

    

11( )H   0G   such that  r t G . 

    Then all bounded solutions of (1.1) are oscillatory. 

 
 Proof: 
      
 We only need to prove that all bounded solutions of 
(2.1)are oscillatory. Suppose that the assertion is not true. 
Without of generality, we may suppose that there exists 

0T  such that (t) 0y  for t .T  
     First we consider the case when N=1. From Lemma 2.7, we 
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 So using 10(H ) , we obtain (t)y  as t , which is a 

contradiction. 
     Next we consider the case when 1.N   since 

(t) 0, y (t) 0, ,y t T    so y is increasing in 

[ , ).t T   We note 

(t) y(T) ( ) (T) y (T)(t T).
t

T

y y d y


     
 

        So (t) ,y   as t , which is a contradiction. The 
proof is complete. 
 
 The oscillation of higher order non-linear impulsive 
differential equations are investigated 

 mx ( t ) + ( t )  1mx   (t) + 
1

n

i
 ip (t) x  ( ig (t)) = 0,   t 0t ,  kt t , 

 jx ( kt ) −  jx  ( kt
 )  = ka  jx  ( kt

 ),  j  0 , 1 , 2 , 3…… , 1m    

      Where x ( t )  = 
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      When m   2, (1.1) reduces to the impulsive differential 
problem   
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  Oscillation and non-oscillation has been extensively 
investigated in 
 When m  2 , i (t) tg  , 1n  , reduces to the 

impulsive differential problem  

     11 1(t) a(t) (t) (t) (t) 0,p xx x       0t t ,   kt t  

          ( ) ( ) ( ),j j j
k k k kx t x t x t       j  0 , 1 ,   

  Oscillation and non-oscillation has been investigated 
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 denote the set of functions                 : 0 0 ] ,,[   R  
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AN EXAPLE: 
 
Consider the impulsive delay differential equation 
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and 1, 1,2,..,k kc d k   hypotheses 1(H ) to 3(H ) are 
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 Thus, 4(H ) is also satisfied. 

     Let (t)x and 1kk  for all 1k  . And since 

               0 0

(u) ,
t t

p du du
 

       

It follows from that all solutions (t)x  is oscillate 
 

III. CONCLUSION 
 

The theory of ordinary differential equation with 
impulses has been developed extensively over the past few 
years. Although there exists a well-developed oscillation 
theory of differential equation with and without delay, the 
oscillation of impulsive differential equations with and 
without delay seems to have rarely been considered. Finally in 
view of the known results obtained for differential equations 
without impulses new oscillation and non-oscillation criteria 
for higher order impulsive differential equations are derived.  

 
The oscillation of higher order non-linear impulsive 

differential equations are investigated 
 

 mx ( t ) + ( t )  1mx   (t) + 
1

n

i
 ip (t) x  ( ig (t)) = 0, t 0t , kt t ,                                                        

 jx ( kt ) −  jx  ( kt
 )  = ka  jx  ( kt

 ),  j  0 , 1 , 2 ,… , 1m     

 Where x ( t  )  = 
0

lim
x 

( h) ( )
h

k kx xt t  ,                                                                                         

x ( kt
 ) = x ( kt )    

0
lim
x 

( h) ( )
h

k kx xt t 
 

 On applying the suitable impulses, the non-oscillation 
equation change into oscillation which is the purpose of this 
dissertation. Bring out many interesting aspects in the study of 
linear system. 
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