
IJSART - Volume 3 Issue 10 – OCTOBER 2017 ISSN [ONLINE]: 2395-1052

Page | 354 www.ijsart.com

Introduction to NoSQL Database

Sruthi Paramkusham

Dept of Computer Science and Engineering
Opentext Technologies India Pvt Ltd

Hyderabad, India

Abstract- This papers introduces overview of NOSQL
databases, types of NOSQL databases such as Key-Value
databases, Document databases, Column family stores and
Graph Databases. It also describes the limitations of SQL
over NOSQL databases and the wide range of applications of
NOSQL Databases in Big Data applications.

Keywords- Aggregate Data Models, Distribution Models, CAP
Theorem

I. INTRODUCTION

 Over the last few years we have seen the rise of a
new type of databases, known as NoSQL databases, that are
challenging the dominance of relational databases. Relational
databases have dominated the software industry for a long
time providing mechanisms to store data persistently,
concurrency control, transactions, mostly standard interfaces
and mechanisms to integrate application data, reporting. The
dominance of relational databases, however, is cracking. A
NoSQL (originally referring to "non SQL" or "non-
relational")[1] database provides a mechanism for storage and
retrieval of data that is modeled in means other than the
tabular relations used in relational databases.

II. WHAT DOES NoSQL MEAN

 What does NoSQL mean and how do you categorize
these databases? NoSQL means Not Only SQL, implying that
when designing a software solution or product, there are more
than one storage mechanism that could be used based on the
needs. NoSQL was a hashtag (#nosql) chosen for a meet up to
discuss these new databases. The most important result of the
rise of NoSQL is Polyglot Persistence. NoSQL does not have
a prescriptive definition but we can make a set of common
observations, such as:

• Not using the relational model
• Running well on clusters
• Mostly open-source
• Built for the 21st century web estates
• Schema-less

Why NoSQL Databases

Application developers have been frustrated with the

impedance mismatch between the relational data structures
and the in-memory data structures of the application. Using
NoSQL databases allows developers to develop without
having to convert in-memory structures to relational
structures. There is also movement away from using databases
as integration points in favor of encapsulating databases with
applications and integrating using services. The rise of the
web as a platform also created a vital factor change in data
storage as the need to support large volumes of data by
running on clusters. Relational databases were not designed to
run efficiently on clusters. The data storage needs of an ERP
application are lot more different than the data storage needs
of a Facebook or an Etsy, for example.

Aggregate Data Models:

Relational database modelling is vastly different than
the types of data structures that application developers use.
Using the data structures as modelled by the developers to
solve different problem domains has given rise to movement
away from relational modelling and towards aggregate
models, most of this is driven by Domain Driven Design, a
book by Eric Evans. An aggregate is a collection of data that
we interact with as a unit. These units of data or aggregates
form the boundaries for ACID operations with the database,

IJSART - Volume 3 Issue 10 – OCTOBER 2017 ISSN [ONLINE]: 2395-1052

Page | 355 www.ijsart.com

Key-value, Document, and Column-family databases can all
be seen as forms of aggregate-oriented database.

Aggregates make it easier for the database to manage
data storage over clusters, since the unit of data now could
reside on any machine and when retrieved from the database
gets all the related data along with it. Aggregate-oriented
databases work best when most data interaction is done with
the same aggregate, for example when there is need to get an
order and all its details, it better to store order as an aggregate
object but dealing with these aggregates to get item details on
all the orders is not elegant.

Aggregate-oriented databases make inter-aggregate

relationships more difficult to handle than intra-aggregate
relationships. Aggregate-ignorant databases are better when
interactions use data organized in many different formations.
Aggregate-oriented databases often compute materialized
views to provide data organized differently from their primary
aggregates. This is often done with map-reduce computations,
such as a map-reduce job to get items sold per day.

Distribution Models:

Aggregate oriented databases make distribution of data

easier, since the distribution mechanism has to move the
aggregate and not have to worry about related data, as all the
related data is contained in the aggregate. There are two styles
of distributing data:

• Sharding: Sharding distributes different data across

multiple servers, so each server acts as the single
source for a subset of data.

• Replication: Replication copies data across multiple
servers, so each bit of data can be found in multiple
places. Replication comes in two forms,

• Master-slave replication makes one node the
authoritative copy that handles writes while slaves
synchronize with the master and may handle reads.

• Peer-to-peer replication allows writes to any node;
the nodes coordinate to synchronize their copies of
the data.

Master-slave replication reduces the chance of update

conflicts but peer-to-peer replication avoids loading all writes
onto a single server creating a single point of failure. A system
may use either or both techniques. Like Riak database shards
the data and also replicates it based on the replication factor.

CAP theorem:

In a distributed system, managing consistency(C),
availability (A) and partition toleration (P) is important, Eric

Brewer put forth the CAP theorem which states that in any
distributed system we can choose only two of consistency,
availability or partition tolerance. Many NoSQL databases try
to provide options where the developer has choices where they
can tune the database as per their needs. For example if you
consider Riak a distributed key-value database. There are
essentially three variables r, w, n where

• r=number of nodes that should respond to a read

request before it’s considered successful.
• w=number of nodes that should respond to a write

request before it’s considered successful.
• n=number of nodes where the data is replicated aka

replication factor.

In a Riak cluster with 5 nodes, we can tweak the
r,w,n values to make the system very consistent by setting r=5
and w=5 but now we have made the cluster susceptible to
network partitions since any write will not be considered
successful when any node is not responding. We can make the
same cluster highly available for writes or reads by setting r=1
and w=1 but now consistency can be compromised since some
nodes may not have the latest copy of the data. The CAP
theorem states that if you get a network partition, you have to
trade off availability of data versus consistency of data.
Durability can also be traded off against latency, particularly if
you want to survive failures with replicated data.

NoSQL databases provide developers lot of options

to choose from and fine tune the system to their specific
requirements. Understanding the requirements of how the
data is going to be consumed by the system, questions such as
is it read heavy vs write heavy, is there a need to query data
with random query parameters, will the system be able handle
inconsistent data. Understanding these requirements becomes
much more important, for long we have been used to the
default of RDBMS which comes with a standard set of
features no matter which product is chosen and there is no
possibility of choosing some features over other. The
availability of choice in NoSQL databases, is both good and
bad at the same time. Good because now we have choice to
design the system according to the requirements. Bad because
now you have a choice and we have to make a good choice
based on requirements and there is a chance where the same
database product may be used properly or not used properly.

An example of feature provided by default in

RDBMS is transactions, our development methods are so used
to this feature that we have stopped thinking about what would
happen when the database does not provide transactions. Most
NoSQL databases do not provide transaction support by
default, which means the developers have to think how to

IJSART - Volume 3 Issue 10 – OCTOBER 2017 ISSN [ONLINE]: 2395-1052

Page | 356 www.ijsart.com

implement transactions, does every write have to have the
safety of transactions or can the write be segregated into
“critical that they succeed” and “its okay if I lose this write”
categories. Sometimes deploying external transaction
managers like Zookeeper can also be a possibility.

III. TYPES OF NoSQL DATABASES

NoSQL databases can broadly be categorized in four types.

Key-Value databases:

Key-value stores are the simplest NoSQL data stores
to use from an API perspective. The client can either get the
value for the key, put a value for a key, or delete a key from
the data store. The value is a blob that the data store just
stores, without caring or knowing what's inside; it's the
responsibility of the application to understand what was
stored. Since key-value stores always use primary-key access,
they generally have great performance and can be easily
scaled.

Some of the popular key-value databases are Riak,

Redis (often referred to as Data Structure server), Memcached
and its flavors, Berkeley DB, upscaledb (especially suited for
embedded use), Amazon DynamoDB (not open-source),
Project Voldemort and Couchbase.

All key-value databases are not the same, there are

major differences between these products, for example:
Memcached data is not persistent while in Riak it is, these
features are important when implementing certain solutions.
Lets consider we need to implement caching of user
preferences, implementing them in memcached means when
the node goes down all the data is lost and needs to be
refreshed from source system, if we store the same data in
Riak we may not need to worry about losing data but we must

also consider how to update stale data. Its important to not
only choose a key-value database based on your requirements,
it's also important to choose which key-value database.

Document databases:

Documents are the main concept in document

databases. The database stores and retrieves documents, which
can be XML, JSON, BSON, and so on. These documents are
self-describing, hierarchical tree data structures which can
consist of maps, collections, and scalar values. The documents
stored are similar to each other but do not have to be exactly
the same. Document databases store documents in the value
part of the key-value store; think about document databases as
key-value stores where the value is examinable. Document
databases such as MongoDB provide a rich query language
and constructs such as database, indexes etc allowing for
easier transition from relational databases.

Some of the popular document databases we have

seen are MongoDB, CouchDB , Terrastore, OrientDB,
RavenDB, and of course the well-known and often reviled
Lotus Notes that uses document storage.

IJSART - Volume 3 Issue 10 – OCTOBER 2017 ISSN [ONLINE]: 2395-1052

Page | 357 www.ijsart.com

Column family stores:

Column-family databases store data in column

families as rows that have many columns associated with a
row key (Figure 10.1). Column families are groups of related
data that is often accessed together. For a Customer, we would
often access their Profile information at the same time, but not
their Orders.

Each column family can be compared to a container

of rows in an RDBMS table where the key identifies the row
and the row consists of multiple columns. The difference is
that various rows do not have to have the same columns, and
columns can be added to any row at any time without having
to add it to other rows.

When a column consists of a map of columns, then

we have a super column. A super column consists of a name
and a value which is a map of columns. Think of a super
column as a container of columns.

Cassandra is one of the popular column-family

databases; there are others, such as HBase, Hypertable, and
Amazon DynamoDB. Cassandra can be described as fast and
easily scalable with write operations spread across the cluster.
The cluster does not have a master node, so any read and write
can be handled by any node in the cluster.

Graph Databases:

Graph databases allow you to store entities and

relationships between these entities. Entities are also known as
nodes, which have properties. Think of a node as an instance
of an object in the application. Relations are known as edges
that can have properties. Edges have directional significance;
nodes are organized by relationships which allow you to find
interesting patterns between the nodes. The organization of the
graph lets the data to be stored once and then interpreted in
different ways based on relationships.

Usually, when we store a graph-like structure in

RDBMS, it's for a single type of relationship ("who is my
manager" is a common example). Adding another relationship
to the mix usually means a lot of schema changes and data
movement, which is not the case when we are using graph
databases. Similarly, in relational databases we model the
graph beforehand based on the Traversal we want; if the
Traversal changes, the data will have to change.

In graph databases, traversing the joins or

relationships is very fast. The relationship between nodes is
not calculated at query time but is actually persisted as a
relationship. Traversing persisted relationships is faster than
calculating them for every query.

IJSART - Volume 3 Issue 10 – OCTOBER 2017 ISSN [ONLINE]: 2395-1052

Page | 358 www.ijsart.com

Nodes can have different types of relationships
between them, allowing you to both represent relationships
between the domain entities and to have secondary
relationships for things like category, path, time-trees, quad-
trees for spatial indexing, or linked lists for sorted access.
Since there is no limit to the number and kind of relationships
a node can have, they all can be represented in the same graph
database.

Relationships are first-class citizens in graph

databases; most of the value of graph databases is derived
from the relationships. Relationships don't only have a type, a
start node, and an end node, but can have properties of their
own. Using these properties on the relationships, we can add
intelligence to the relationship—for example, since when did
they become friends, what is the distance between the nodes,
or what aspects are shared between the nodes. These
properties on the relationships can be used to query the graph.

Since most of the power from the graph databases

comes from the relationships and their properties, a lot of
thought and design work is needed to model the relationships
in the domain that we are trying to work with. Adding new
relationship types is easy; changing existing nodes and their
relationships is similar to data migration, because these
changes will have to be done on each node and each
relationship in the existing data.

There are many graph databases available, such as

Neo4J, Infinite Graph, OrientDB, or FlockDB (which is a
special case: a graph database that only supports single-depth
relationships or adjacency lists, where you cannot traverse
more than one level deep for relationships).

Why choose NoSQL database:

 We've covered a lot of the general issues you need to
be aware of to make decisions in the new world of NoSQL
databases. It's now time to talk about why you would choose
NoSQL databases for future development work. Here are
some broad reasons to consider the use of NoSQL databases.

• To improve programmer productivity by using a

database that better matches an application's needs.
• To improve data access performance via some

combination of handling larger data volumes, reducing
latency, and improving throughput.

It's essential to test your expectations about programmer

productivity and/or performance before committing to using a
NoSQL technology. Since most of the NoSQL databases are

open source, testing them is a simple matter of downloading
these products and setting up a test environment.

Even if NoSQL cannot be used as of now, designing

the system using service encapsulation supports changing data
storage technologies as needs and technology evolve.
Separating parts of applications into services also allows you
to introduce NoSQL into an existing application.

Choosing NoSQL database:

Given so much choice, how do we choose which NoSQL
database? As described much depends on the system
requirements, here are some general guidelines:

• Key-value databases are generally useful for storing

session information, user profiles, preferences, shopping
cart data. We would avoid using Key-value databases
when we need to query by data, have relationships
between the data being stored or we need to operate on
multiple keys at the same time.

• Document databases are generally useful for content
management systems, blogging platforms, web analytics,
real-time analytics, and ecommerce-applications. We
would avoid using document databases for systems that
need complex transactions spanning multiple operations
or queries against varying aggregate structures.

• Column family databases are generally useful for content
management systems, blogging platforms, maintaining
counters, expiring usage, heavy write volume such as log
aggregation. We would avoid using column family
databases for systems that are in early development,
changing query patterns.

• Graph databases are very well suited to problem spaces
where we have connected data, such as social networks,
spatial data, routing information for goods and money,
recommendation engines

Schema-less ramifications:

All NoSQL databases claim to be schema-less, which
means there is no schema enforced by the database
themselves. Databases with strong schemas, such as relational
databases, can be migrated by saving each schema change,
plus its data migration, in a version-controlled sequence.
Schema-less databases still need careful migration due to the
implicit schema in any code that accesses the data.

Schema-less databases can use the same migration

techniques as databases with strong schemas, in schema-less
databases we can also read data in a way that's tolerant to
changes in the data's implicit schema and use incremental

IJSART - Volume 3 Issue 10 – OCTOBER 2017 ISSN [ONLINE]: 2395-1052

Page | 359 www.ijsart.com

migration to update data, thus allowing for zero downtime
deployments, making them more popular with 24*7 systems.

IV. LIMITATIONS OF SQL VS NoSQL

• Relational Database Management Systems that use SQL

are Schema –Oriented i.e. the structure of the data should
be known in advance ensuring that the data adheres to
the schema.

• Examples of such predefined schema based applications
that use SQL include Payroll Management System,
Order Processing, and Flight Reservations.

• It is not possible for SQL to process unpredictable and
unstructured information. However, Big Data
applications, demand for an occurrence-oriented
database which is highly flexible and operates on a
schema less data model.

• SQL Databases are vertically scalable – this means that
they can only be scaled by enhancing the horse power of
the implementation hardware, thereby making it a costly
deal for processing large batches of data.

• IT enterprises need to increase the RAM, SSD, CPU,
etc., on a single server in order to manage the increasing
load on the RDBMS.

• With increasing size of the database or increasing
number of users, Relational Database Management
Systems using SQL suffer from serious performance
bottlenecks -making real time unstructured data
processing a hard row to hoe.

• With Relational Database Management Systems, built-in
clustering is difficult due to the ACID properties of
transactions. NoSQL in Big Data Applications
1. HBase for Hadoop, a popular NoSQL database is

used extensively by Facebook for its messaging
infrastructure.

2. HBase is used by Twitter for generating data, storing,
logging, and monitoring data around people search.

3. HBase is used by the discovery engine Stumble upon
for data analytics and storage.

4. MongoDB is another NoSQL Database used by
CERN, a European Nuclear Research Organization
for collecting data from the huge particle collider
“Hadron Collider”.

5. LinkedIn, Orbitz, and Concur use the Couchbase
NoSQL Database for various data processing and
monitoring tasks.

The Database Landscape is flooded with increased data

velocity, growing data variety, and exploding data volumes
and only NoSQL databases like HBase, Cassandra, Couchbase
can keep up with these requirements of Big Data applications.

Storage, Manage and Retrieve Unstructured Data by
mastering your Big Data NoSQL DatabaseSkills!

V. THE DARK SIDE OF NoSQL

There is a dark side to most of the current NoSQL
databases. People rarely talk about it. They talk about
performance, about how easy schemaless databases are to use.
About nice APIs. They are mostly developers and not
operation and system administrators. No-one asks those. But
it’s there where rubber hits the road.

• ad hoc data fixing – either no query language available

or no skills
• ad hoc reporting – either no query language available or

no in-house skills
• data export – sometimes no API way to access all data.

VI. CONCLUSION

All the choice provided by the rise of NoSQL
databases does not mean the demise of RDBMS databases.
We are entering an era of polyglot persistence, a technique
that uses different data storage technologies to handle varying
data storage needs. Polyglot persistence can apply across an
enterprise or within a single application.

REFERENCES

[1] Jian Du, Beijing University of Posts and
Telecommunications,Beijing, 100876, China. Survey on
NoSQL Database.

[2] A B M Moniruzzaman and Syed Akhter
Hossain,Department of Computer Science and
Engineering,Daffodil International Universitypp.68–73.,
NoSQL Database: NoSQL database-New Era of
Databases for Big data Analytics - Classification,
Characteristics and Comparison

[3] https://en.wikipedia.org/wiki/NoSQL.
[4] Yishan Li and Sathiamoorthy Manoharan,Department of

Computer Science,University of Aucklandunpublished: A
performance comparison of SQL and NoSQL databases:

[5] Ameya Nayak,Anil Poriya,Dikshay Poojary: Type of
NOSQL Databases and its Comparison with Relational
Databases

[6] Francesca Bugiotti, Luca Cabibbo, Paolo Atzeni,
Riccardo Torlone: Database Design for NoSQL Systems:

[7] Vatika Sharma1 , Meenu Dave: SQL and NoSQL
Databases.

