
IJSART - Volume 2 Issue 9 –SEPTEMBER 2016 ISSN [ONLINE]: 2395-1052

Page | 51 www.ijsart.com

Prediction of Software Defects Based on Software
Metrics Using Support Vector Machine

R. Sathya1, Dr. P. Sudhakar2

1, 2 Department of Computer Science & Engineering
1, 2 Annamalai University, Annamalai Nagar, India

Abstract- The prediction of defects in the software plays a key
role in enhancing the software quality and eventually it helps
to reduce the cost and time for software testing. The defect
prediction in software is considered as an essential skill
required during the software project planning. The defect
prediction is a complex task and it needs great effort. The
prediction is carried out using the available dataset
containing software metrics collected from the defective and
non-defective software modules. Conventionally the software
metrics are used for defining the program complexity and
estimating the time required to develop the software. At
present to increase the software-quality extensive researches
are being carried out for the prediction of defects in a
software module. This research work will help software
developers to find defects on the developed code using the
available software metrics. This in turn helps them to identify
modules that require further attention. This kind of predictions
will help to increase the reliability of the software. The
objective of this research work is to increase the prediction
accuracy by selecting an optimal subset of attributes using the
Genetic Algorithm. The feature The Support Vector Machine
(SVM), k- Nearest Neighbor (kNN), and Gaussian Mixture
Model (GMM) are the classifiers used in this work.

Keywords- Defect Prediction, software metrics, software quality,
Genetic Algorithm, support vector machine.

I. INTRODUCTION

At present the software systems are highly complex
and versatile and hence it requires great effort to develop and
test it. Therefore it is very essential to find and eliminate
software defects. Accurate prediction of defects in software
modules using the software metrics will help to enhance the
software quality. Software metrics are the measure of property
of a part of the software and they are measure during the
design and development phase of the software project.
Software metrics are used for the evaluation of the quality of
the software. The defect in a software product can be due to
mismatch between the requirements mentioned by the end
user and the developed code. To put it in other way, a defect in
software product is a bug in the code or the program logic
which makes the software to malfunction or to generate
inappropriate results. The prediction of defects in the software

is the task of identifying defects in the software modules. To
produce high quality software without any defects this early
prediction of defects will help to a greater extent and also this
will lead to reduction in the development cost. The rework
effort required when defects are detected after testing will be
reduced. Hence to achieve the software quality this defect
prediction is essential. The software metrics used to predict
defects can be categorized in to two types namely code and
process metrics. These metrics are used to build defect
prediction model. The development team can use these models
to predict defects in the software modules during the initial
phases of the software development. Software metrics are
usually utilized to evaluate the potential of the software to
meet the required objective. Code metrics namely size,
McCabe [1], Halstead [2], Object Oriented (OO), and CK are
used frequently than the process metrics. The Cyclomatic
Complexity metric measures the structural complexity of the
code whose value depends on the number of unique code path
in the developed software. The halsteads metrics denotes the
quantitative measures of the code complexity with respect to
the volume of the operands, operators, and length of the
program [3]. The product metrics has the lines of code (LOC)
which indicates the approximate number of line in the code.
OO metrics help to find faults, and helps developer to make
their classes and objects simpler [4].

Many researchers have proposed various techniques

to detect or predict defects in the developed code using static
code metrics. These techniques include the conventional
statistical methods such as logistic regression and the machine
learning algorithms like ANN, Bayesian Classifiers, Decision
trees, SVM [5]. In [6] a novel method using Adaptive Neuron
Fuzzy Inference System (ANFIS) is proposed to predict
software defects. They achieved a classification accuracy of
77.95, 86.85, and 85.73 when classifiers such as support
vector, neural network and ANFIS respectively are trained
using McCabe metrics. In [7] using Ward neural network and
General Regression neural network (GRNN), prediction of
number of defects in a class and prediction of number of lines
changed per class are carried out respectively. In [8] the
authors focused on the classification analysis rather than the
classification performance. The basic objective is to find how
the training data are being classified by the Support Vector
Machine. In [9] Iterative Dichotomiser algorithm was used for

IJSART - Volume 2 Issue 9 –SEPTEMBER 2016 ISSN [ONLINE]: 2395-1052

Page | 52 www.ijsart.com

the classification of the defective modules from non-defective
modules based on metrics namely Volume, Program length,
Difficulty, Effort and Time Estimator. In [10] addressed two
practical issues of a software defect prediction process. It is
generally difficult to collect a huge volume of data for training
a model and there are much less defective modules than defect
less modules. Therefore, the training data will be an
imbalanced dataset, so they proposed a semi supervised
training algorithm called Random Committee with Under
Sampling (ROCUS)

II. DATASET AND SOFTWARE METRICS

The dataset used in this study for experiments are
from NASA software projects and they are publicly available
for research purpose under NASA IV&V Facility Metrics
Data Program. The dataset JM1 [11] is from software projects
written in a procedural language (C)where the software is
divided in to modules called functions. The dataset
comprises10885 samples with 21 software metrics
(independent variables) representing a module of the software
and a Boolean variable to mention whether the attributes
represent a defective or non-defective module. The 21
independent attributes includes McCabe metrics, Halstead
metrics, Line Count, and Branch Count. Table 1 lists these
metrics.

Table 1. List of Software Metrics

III. FEATURE SELECTION USING GENETIC
ALGORITHM

To overcome the problem of high dimensional

feature space and to increase the classification accuracy by
removing the redundant and irrelevant features two methods
are generally used feature extraction and feature selection. The
main objective of both feature extraction and feature selection
is to reduce the dimension of the feature vector and thereby
reducing the time required to train the model. The feature
selection deals with the task of selecting the best feature set
which reduces the classifier training time and as well as
increase the classification accuracy. From a given a set of d
features, the feature selection algorithm selects a subset of size
m which increases the classification accuracy. If the size of the
feature set is d then there will be 2d possible feature subsets.
The selection of best feature subset can be viewed as a
combinatorial optimization problem and is solved using
Genetic Algorithms [12]. The GA’s are insensitive to noise
and they are considered to be an excellent choice for the basis
of a more robust feature selection strategy for improving the
performance of the classification system. For the successful
implementation of any searching problem using GA requires
an suitable representation and a sufficient function to evaluate.
For the problem of feature selection, the importance of
selecting the appropriate representation and evaluation
function is essential. The simple scheme for representation is
the binary representation by which, all the features of the
candidate feature set is treated as a binary gene. Also each
feature consists of a fixed-length string of constant length in
binary form which represents certain subset of the given
feature set.

An initial set of features provided to the GA serves as

input and as a training set which represents positive and
negative training samples of the defective and non-defective
modules. A search procedure is used to explore the space of
all subsets in the given feature set. The performance of all the
selected feature subsets is calculated by using the evaluation
function and the classification result is also calculated. The
optimal feature subset found is then given as output as the best
set of features that can be used to train the classifiers of the
prediction system. The overall fitness function is evaluated
using the equation given below,

 
 


N

i

M

nj
jjii WSWSF

1 1

**
 (1)

IV. CLASSIFIERS FOR SOFTWARE DEFECT
PREDICTION

IJSART - Volume 2 Issue 9 –SEPTEMBER 2016 ISSN [ONLINE]: 2395-1052

Page | 53 www.ijsart.com

The three classifiers used in this work are Support
Vector Machine, k-Nearest Neighbors, and Gaussian Mixture
Model. All three classifiers don’t have built-in feature
selection ability and are commonly used in the machine
learning applications. Support Vector Machine (SVM) is a
mathematical model which has a supervised learning
algorithm capable of analyzing data and identifying patterns in
it. The classification process is done in two steps one is
training phase and the other one is testing phase. The labeled
data are fed as input during the training time and the data to be
classified is given in the testing phase. The accuracy of
classification depends on the efficiency of the trained model.
In this work the support vector machine with Gaussian kernel
is used and it is denoted by the equation,













 
 2

2

exp),(


yx
yxK

 (2)

From the results obtained it is being inferred that the
SVM classifier performed best when compared to other
classifiers. The k-Nearest Neighbors algorithm (or k-NN for
short) is a non parametric method that can be used to classify
N-dimensional data. The input for the algorithm is ak closest
training examples in the feature space and the algorithm
produces class membership as the result. An unknown feature
vector of data is classified based on the class of its neighbors
i.e. the feature vector is assigned to the class which is more
common among its k-nearest-neighbors. The value of k
positive and typically it is small. If k = 1, then the vector is
simply assigned to the class of that single nearest neighbor. A
commonly used distance metric and the metric used in this
work is Euclidean distance.

The Gaussian Mixture Model (GMM) is a useful

supervised learning classification algorithm which can be used
for classification of N-dimensional dataset. During the training
phase GMM is built for each class of data. In this work two
GMM has to be constructed to fit the defective and non-
defective data samples. There will not be any interactions
between GMM of different classes. At the classification phase
the unknown-class data is given as input to GMM of each
class. The predicted class is the one associated with the GMM
with the maximum probability.

V. EXPERIMENTS AND RESULTS

The block diagram of the proposed methodology for
software defect prediction is presented in the Fig. 1. The
feature selection is used to find a subset of the highly
discriminant features. It selects features that are capable of
discriminating samples that belong to defective and non-

defective classes. In this software defect prediction problem,
the classifier will be given a subset of the dataset of known
class on which training is run, and a dataset of unknown class
against which the model is tested. The cross validation is used
to partition the dataset into complementary subsets,
performing the analysis on one subset called the training set,
and validating the analysis on the other subset called the
testing set. The training dataset is given as input to the
classifier along with the class label to obtain a trained model.
Finally the test set is fed to the trained model and results are
compared against the expected output. The performance
measures used to analyze the efficiency of the classifiers are
Classification Accuracy, Precision, Recall, and F-Measure.

Fig. 1. Block diagram of the defect prediction process

Precision

Precision measures the correctness of the prediction
or classification process. Precision is the ratio of the number
of samples correctly predicted as defective to the total number
of samples predicted as defective. It is calculated as follows:

FPTP
TP


Precision
 (3)

Recall

Recall can be called as defect detection rate and it is
the ratio of the number of samples correctly predicted as
defective to the total number of samples that are actually
defective. It can be mathematically represented as below

FNTP
TP


Recall
 (4)

IJSART - Volume 2 Issue 9 –SEPTEMBER 2016 ISSN [ONLINE]: 2395-1052

Page | 54 www.ijsart.com

F-measure

F-measure considers both precision and recall equally

important by taking their harmonic mean It is calculated as
follows

RecallPrecision
Recall*Precision*2MeasureF




In the experiments with PROMISE datasets, the

objective is to compare the classifiers constructed using
feature subsets selected by the genetic algorithm with those
that use the entire set of attributes available. The Fig.2 shows a
sample plot of fitness value for each generation when only 18
attributes are selected from the whole feature set.

Fig. 2 Plot of Fitness value for each generation

Table 2. Prediction Result for JM Dataset with 21 attributes

Table 3. Prediction Result for JM Dataset with selected 18
attributes

Table 4. Prediction Result for JM Dataset with selected 15
attributes

The feature selection presents superior performance
and performs significantly better than feature set with no
feature selection. The classification models built with 18
features outperformed models built with fewer features or
more features. Among all the classifiers used SVM exhibits
better performance. The Fig.3 presents the comparison of the
prediction accuracy of different classifiers when using
different number of attributes. When the number of attribute is
reduced from 21 to 18 there is much progress in the prediction
accuracy but when it is again reduced to 15 the accuracy starts
decreasing. This shows that the set of 18 attributes is an
optimal subset of attributes which helps to construct a better
prediction model for efficiently predicting defects in the
software modules.

Fig. 3 Comparison of Accuracy for different classifiers

VI. CONCLUSION

The prediction of defects in software is the task of

finding defective modules before proceeding with the testing
phase. It is hard to eliminate defects completely during the
development phase but attempts should be made to keep the
defects to a lower count. The prediction of defects will reduce
the time and cost required for the development of the software.
At the same time it reduces the effort required to rework the
module after finding defects during the test phase. Ultimately
the defect prediction increases the customer satisfaction and
helps developer to build reliable software. Hence, defect
prediction become an important practice attain high software
quality. This work presents a model based on SVM to
overcome this problem. Furthermore, the results of the SVM
are compared with the prediction result of the other machine
learning techniques. These classifiers can be used to for early
prediction of defects in the software components currently
uner development. There exist a number of models for

IJSART - Volume 2 Issue 9 –SEPTEMBER 2016 ISSN [ONLINE]: 2395-1052

Page | 55 www.ijsart.com

predicting defects in the software but in this work it is
concluded that these models depends on the set of software
metrics given as input to them.Thus the feature selection plays
a major role in increasing the accuracy of the classifiers. The
results show that accuracy of the classifiers is increased when
selected subset is given as input to them.

REFERENCES

[1] T.J.McCabe, A complexity measure, Software

Engineering, IEEE Transactions, vol.4, pp.308-320,
1976.

[2] Halstead, H. Maurice, Elements of Software Science,

Elsevier North-Holland, New York,1977.

[3] A. Campan, G. Serban, T. M. Truta, and A. Marcus, An

algorithm for the discovery of arbitrary length ordinal
association rules, DMIN, vol. 6, pp. 107-113, 2006.

[4] E. E. Mills, Software metrics," 2000.

[5] R. Malhotra, Comparative analysis of statistical and

machine learning methods for predicting faulty
modules,Applied Soft Computing, vol. 21pp. 286-297
2014.

[6] E. Erturk and E. A. Sezer, A comparison of some soft

computing methods for software fault prediction, Expert
Systems with Applications, 2014.

[7] M. M. T. Thwin and T.-S. Quah, Application of neural

networks for software quality prediction using
objectoriented metrics, Journal systems and software,
vol. 76, no. 2, pp. 147-156, 2005.

[8] D. Gray, D. Bowes, N. Davey, Y. Sun, and B.

Christianson, Software defect prediction using static
code metrics underestimates defect-proneness, in Neural
Networks (IJCNN), The 2010 International Joint
Conference on, pp. 1-7, IEEE, 2010.

[9] Naidu, M. Surendra, and N. GEETHANJALI.

Classification of Defects in Software using Decision
Tree Algorithm, International Journal of Engineering
Science and Technology (IJEST) 5.06 (2013).

[10] D. Radjenovi_c, M. Heri_cko, R. Torkar, and A.

Zivkovi_c, Software fault prediction metrics: A
systematic literature review, Information and Software
Technology, vol. 55, no. 8, pp. 1397-1418 ,2013.

[11] J. Shirabad, Sayyad, and Tim J. Menzies, The PROMISE
repository of software engineering databases, School of
Information Technology and Engineering, University of
Ottawa, Canada, 2005.

[12] Yang, Jihoon, and Vasant Honavar, Feature subset

selection using a geneticalgorithm, Featureextraction,
construction and selection, Springer US, pp. 117-136,
1998.

