Water Quality Analysis Using Geographic Information System At Moshi, Pune

Ashish Pawar¹, S.Mukhopadhyay²

Department of Environmental and Water Resources Engineering ^{1, 2} College of Engineering Pune (CoEP), Maharashtra, India.

Abstract- Ground water quality in the Moshi ward of Pune have been studied using geographic information system (G.I.S.) and remote sensing (R.S.). Moshi landfill is located in Moshi ward which pollutes the ground water in the nearby areas. Overall 17 samples of ground water were collected from the Moshi ward and were analyzed for the physicochemical parameters like pH, turbidity, colour, odour, total hardness, alkalinity, total dissolved solids, chlorides, sulphates and MPN. Surface water samples were also collected from a stream near the landfill and were analyzed for the waste water parameters like BOD, COD, oil and grease, heavy metals like lead, etc. Results showed that the values of all these parameters were very high and so the stream water and ground water was highly polluted. Then the Spatial variation of each of the ground water parameter throughout the Moshi ward was plotted using the IDW interpolation technique in the ARC GIS. Overall water quality map was prepared for the whole ward using the Water Quality Index (WQI) to find the residential areas where the ground water is highly polluted.

Keywords - GIS, Ground Water Pollution, Landfill, Spatial Maps, WQI

I. INTRODUCTION

Ground water is one of the most important natural resources of water known to man since ages. Most of the rural population depend on it for drinking, domestic use and for irrigation. So the ground water quality is a matter of great concern especially in the industrial areas or in the areas where solid waste is disposal areas.

Moshi ward has the 81 acre landfill where all the industrial and domestic waste is dumped from nearby areas by PCMC. They are doing it since more than 25 years and people knew that there is some problem and they wanted some solution. But to find the solution the exact ground water quality with all the important parameters should be known. So the water quality near the Moshi landfill is found out with respect to various parameters like pH, turbidity, colour, odour, total hardness, alkalinity, total dissolved solids, chlorides, sulphates and MPN. 17 locations were selected for the sample collection. Then spatial variation maps were plotted followed by integrated water quality map to find the overall water quality of the area. Surface water quality was also analyzed form the samples collected from the stream passing the

OBJECTIVES – Following are the objectives of the study:

1. To take samples from various sampling stations and find their water quality with respect to various water quality parameters.

2. To map the spatial variability of water quality parameters using GIS approach.

3. Find the water quality using integrated water quality map.

II. STUDY AREA

Moshi ward comes under PCMC (Pimpri Chinchwad Municipal Corporation). It is selected as the study area as it contains Moshi landfill which is the reason for ground water pollution in the nearby area. Moshi ward is the 18 Km2 area and lies between 73049'30''E to 73053'30''E and 18038'30''N to 18041'30''N. Moshi landfill is the 81 acre area in the ward in which 650 metric tonnes of garbage is dumped daily. It contains industrial, medical and domestic wastes.

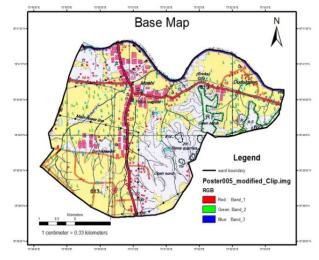


Fig. (1) - Base Map of the Moshi ward

Land Use/Land Cover Map- Prepared by overlapping 5 Google map images on ward map, geo-referencing them and then digitizing all the layers precisely.

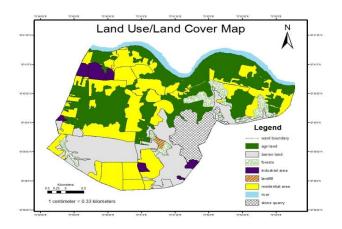


Fig. (2) - Land Use/Land Cover Map

III. METHODOLOGY

1. LOCATIONS FOR SAMPLE COLLECTION

1.1 SURFACE WATER (STREAM) - 4 leachate samples were collected from the stream which has passed through the landfill area. Drainage map was prepared by tracing on steams from the toposheet.

Table (1)) – Details	of Leachate	e Samples	Collected
1 4010 (1		or Detteritter	- Security 100	001100000

Sr. No.	latitude	Longitude	date	Time
11	18.65952	73.85433	03/12/15	11:47am
12	18.66233	73.8513	12/02/16	12:40pm
13	18.66208	73.85223	12/02/16	9:00 am
14	18.66273	73.85058	26/02/16	9:15 am

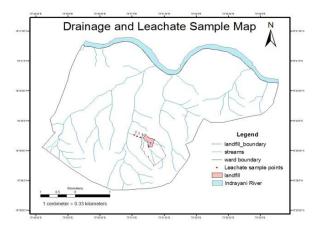
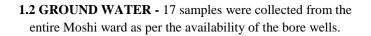



Fig.(3) Drainage and Leachate sample locations

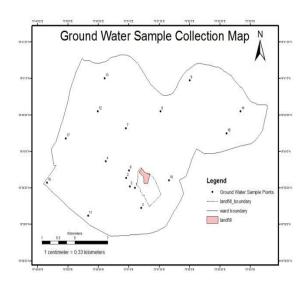


Fig.(4) Ground Water sample locations

Sr. no.	Latitude	Longitude	ngitude Date '	
1	18.65835	73.8517	24/03/16	11:15 am
2	18.66057	73.8493	24/03/16	11:35 am
3	18.65377	73.8534	24/03/16	12:13 pm
4	18.66445	73.8437	24/03/16	12:35 pm
5	18.65867	73.8503	24/03/16	12:53 pm
6	18.6623	73.8501	24/03/16	1:50 pm
7	18.67198	73.8492	24/03/16	2:02 pm
8	18.67582	73.8587	24/03/16	2:45 pm
9	18.6829	73.8667	25/03/16	1:30 pm
10	18.66008	73.861	25/03/16	11:40 am
11	18.65197	73.8389	25/03/16	12:13 pm
12	18.67583	73.8415	25/03/16	12:30 pm
13	18.67582	73.8806	25/03/16	12:52 pm
14	18.68337	73.8433	25/03/16	1:07 pm
15	18.65955	73.8275	25/03/16	1:20 pm
16	18.67083	73.8768	25/03/16	1:35 pm
17	18.66965	73.8327	25/03/16	1:45 pm

Table (2) – Details of the Ground water Samples Collected

2. TESTING OF THE WATER SAMPLES – Heavy metals and the oil and grease test was done in Microtech lab, Pune while all the water samples were in the COEP Environmental Laboratory. All the standard methods adopted for the testing are given in Appendix 1.

2.1 LEACHATE SAMPLES -

Table (3) – Chemical Biological Parameters.

Sr.	рН	Cl	TDS	BOD	COD	OIL AND GREAS E	
No	5.5- 9	mg/l	mg/l	30	250	max 10	
		0		0			mg/l
11	8	2299	4888	290	600	123	
12	7.7	5318	12708	665	2000	909	
13	8.1	4039	14560	1150	2700	236	
14	8.2	4219	15620	900	2500	448	

Table (4) - Heavy Metals

G	Hg	Pb	As	Cd
Sr. No	max. 0.01	max. 0.1	max. 0.2	max. 2
	mg/l	mg/l	mg/l	mg/l
11	0	NT	NT	NT
12	0	0.7	0	0
13	0	6	0	0
14	0	0.6	NT	NT

NT- Not Tested

2.2 GROUND WATER SAMPLES -

Table (5) – Physical Water Quality Parameters for Ground water

Sr. No.	PHYS	PHYSICAL PARAMETERS					
51. NO.	colour	odour	turbidity				
1	Pale yellow	agreeable	0				
2	Pale yellow	agreeable	0				
3	colourless	agreeable	0				
4	colourless	agreeable	0				
5	Pale yellow	agreeable	0				
6	Pale yellow	agreeable	0				
7	colourless	agreeable	0				
8	colourless	agreeable	0				
9	colourless	agreeable	0				
10	colourless	agreeable	0				
11	colourless	agreeable	0				
12	colourless	agreeable	0				
13	colourless	agreeable	0				
14	colourless	agreeable	0				
15	colourless	agreeable	0				
16	colourless	agreeable	0				
17	colourless	agreeable	0				

Table (6) – Chemical and Biological Water Quality Parameters.

Sr. No.	Chemic	al Param	eters	MPN		
	Ph	TDS	Cl	TH	as	CaCO3
	Alkalini	ity	Sulphat	te as SO4	4	
	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
	6.5-8.5 0	500	Max 25	50Max 30	00Max 2	00Max 400
1	7.2 2	745	200	539	313	45
2	6.9 6	639	165	500	284	48
3	7.47 0	278	38	165	147	30
4	7.16 0	347	37	283	176	71
5	6.76 2	885	263	876	512	48
6	7.15 6	688	184	684	364	41
7	7.37 0	580	28	349	202	32
8	6.87 0	590	36	408	332	47
9	7.4 0	620	44	415	372	64
10	7.33 0	648	28	511	340	28
11	7.04 0	360	48	261	160	75
12	6.85 0	340	43	203	170	45
13	7.28 0	370	34	230	148	28
14	6.97 0	440	13	334	222	34
15	7.1 0	490	18	351	241	43
16	7.43 0	510	40	321	177	53
17	6.8 0	390	46	290	232	69

GENERATING THEMATIC MAPS– The variation of all the water quality parameters in the ground water throughout the ward can be easily visualized from the Thematic Maps of all the parameters generated by using the Arc GIS 9.3. Input for generating these maps was the test results of 17 samples for all the parameters. For preparing the Thematic Maps using Spatial Analyst tool in the Arc GIS IDW method for interpolation was used as it best method suitable for water quality analysis.

Formula for IDW method of interpolation:

$$\lambda_{i} = \frac{D_{i}^{-\alpha}}{\sum_{i=1}^{n} D_{i}^{-\alpha}}$$

 λ_i : The weight of point, Di = the distance between point i and the unknown point, α = the power ten of weight.

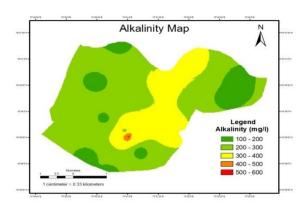


Fig.(5) Alkalinity Variation Map

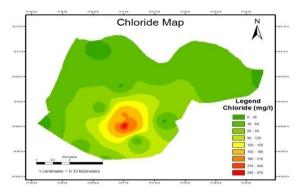


Fig.(6) Chloride Variation Map

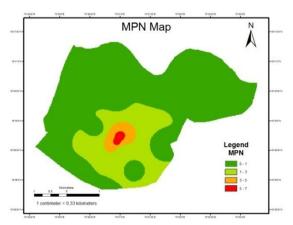


Fig.(7) MPN Variation Map

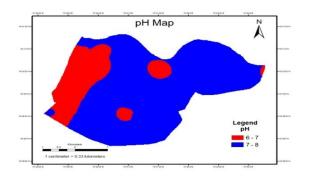


Fig.(8) pH Variation Map

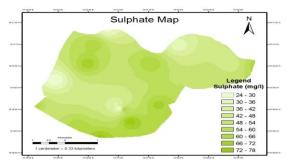


Fig.(9) Sulphate Variation Map

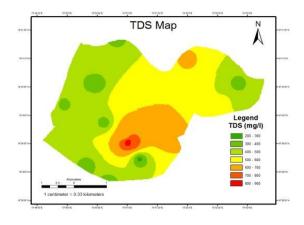


Fig.(10) Total Dissolved Solids Variation Map

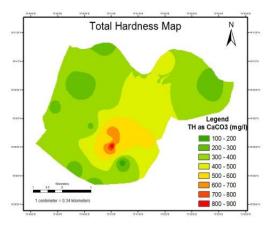


Fig.(11) Total Hardness Variation Map

4. CALCULATING WATER QUALITY INDEX (WQI) -

A water quality index may be defined as "a rating reflecting the composite influence of number of water quality parameters overall of water".

$WQI = \sum q_n Wn / \sum Wn$ $q_n = 100[V_n - V_{io}] / [S_n - V_{io}]$

qn - Quality rating for nth water quality parameter, Vn –Value of nth parameter in the given sample, W–Unit weight for nth parameter, Sn – Permissible limit for the nth parameter, Vio – Ideal value of the parameter.

Table (7) – Calculation of WQI for sample 1

Sr no	Paramete r	Observe d Values	Standard Values (Sn)		Unit Weigh t (Wn)	Quality Rating (Qn)	Wn*Qn
			Desirabl e	Permissibl e			
1	рН	7.2	6.5- 8.5	6.5-8.5	20	13.333 3	266.66 7
2	TDS (mg/l)	745	500	2000	6.665	37.25	248.27 1
3	Cl (mg/l)	200	250	1000	20	20	400
4	TH (as CaCO3) (mg/l)	539	300	600	6.667	89.833 3	598.91 9
5	Alkalinit y (mg/l)	313	200	600	6.667	52.166 7	347.79 5
6	Sulphate (as SO4) (mg/l)	45	200	400	13.33	11.25	150.00 8
7	E coli (by MPN)	2	0	0	26.67	200	5333.4
					100		7345.0 6
						WQI =	73.45

Similarly WQI for all the samples was calculated.

Table (8) – WQI for all the Ground Water Samples

Sr. No.	WQI	Water Quality
1	73.45	Poor
2	177.07	Poor
3	12.42	Very Good
4	11.49	Very Good
5	81.76	Poor
6	181	Poor
7	14.6	Very Good
8	14.2	Very Good
9	19.15	Very Good
10	17.5	Very Good
11	9.87	Very Good

12	9.63	Very Good
13	10.77	Very Good
14	9.43	Very Good
15	11.33	Very Good
16	15.53	Very Good
17	12.98	Very Good

5. GENERATING THE INTEGRATED WATER QUALITY MAP – It is the Thematic Map of intergrated water quality genrated from the WQI of all the 17 sample points.

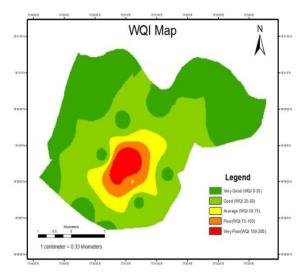


Fig (12) – WQI map for the Moshi ward

IV.CONCLUSION

1. Ground water of large areas of Khandesh Nagar, Borate Vasti is polluted (high values of MPN and chloride) because of landfill.

2. Ground water of some areas of Borade Vasti and Sector 6 is also polluted because of landfill.

3. Stream water near the landfill is very highly polluted and the presence of very poisonous heavy metal Lead is the matter of concern

4. From the water quality maps of various parameters we can predict water quality at any point in Moshi ward

CONLCUDING MAP – It is prepared by overlaying Residential layer (60% transparent) with the WQI map.

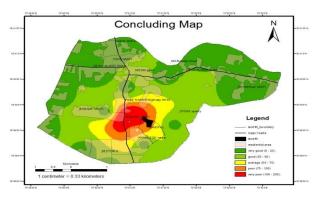


Fig (13) – Water Quality Map Showing the ground water polluted areas in Moshi ward

APPENDIX

TESTS	METHOD USED
pН	Digital pH Meter
Total Dissolved Solids	Gravimetric Method
Chloride	Standard Silver Nitrate Method
Total Hardness	Complexometric Titration using E.D.T.A
Alkalinity	Using Acidimetric Titration
Sulphate	Gravimetric Method
MPN	Multiple Fermentation Technique
BOD	Winkler's Method with Azide Modification
COD	Winkler's Method with Azide Modification
Oil and Grease	Partition Gravimetric Method
Mercury	Atomic Absorption Spectroscopy
Lead	Atomic Absorption Spectroscopy
Arsenic	Atomic Absorption Spectroscopy
Cadmium	Atomic Absorption Spectroscopy

REFERENCES

- [1] Guide Manual: Water and Waste Water Analysis. s.l. CPCB
- [2] pH in drinking water. s.l. WHO. 2003
- [3] Total Dissolved solids in drinking water. s.l . WHO. 2003
- [4] Sulphate in Drinking water. s.l. WHO. 2004
- [5] Chlorine in Drinking water. s.l. WHO. 2004

Page | 277

- [6] General Standards for Discharge of Environmental Pollutants Part- A: Effluents. The Environment Protection Act, 1986
- [7] K.Yogendra and E.T.Puttaiah. Determination of WQI and suitability of an Urban Water body in Shimoga Town, Karnataka. The 12th world Lake Conference. 2008
- [8] Saif Ullah Khan, Azmatullah Noor and Izharul Haq Farooqi. GIS application for ground water management and quality mapping in rural areas of Agra. Inernational journal of Water Resources and Arid Environments. 2015
- [9] Colin Childs, ESRI Education Services. Interpolating surfaces in Arc GIS Spatial Analyst. July- Sept. 2004

[10] GIITA.

http://www.gitta.info/ContiSpatVar/en/html/Interpolatio_l earningObject2.xhtml. Distance Based interpolation.

[11] Anupama Barde, S.S Jain and S.T.Mali. Groundwater Contamination due to Landfill Leachate at Urali devachi and Validation with Argus One. IJRAT. May 2014