
IJSART - Volume 2 Issue 6 –JUNE 2016 ISSN [ONLINE]: 2395-1052

Page | 132 www.ijsart.com

Improving Performance of Hadoop in Handling
Small Files

Arshid Ahmed shah1, Mangala C.N2

1, 2 Department of computer science and engineering
1, 2 East West Institute of Technology, Bengaluru, Karnataka

Abstract- Hadoop is an open Source software stack for
processing unstructured and semi-structured data over the
cluster of Commodity hardware. It is a reliable, scalable and
low cost solution for storing and processing huge amounts of
data in a distributed form. It is designed for processing and
handling large files and faces performance penalty while
dealing with large number of small files. The large number of
small files put a heavy burden on the namenode memory
resulting in high Namenode memory usage. Also processing
large number of small files requires many map phases which
increase the overall map execution time. This Paper describes
the MapReduce merge mechanism to merge large number of
small files into a single merge file and then store and process
the corresponding Merge File. The small files are given as
input to a Map phase with key as filename and value as key
size which adds the files greater than some threshold (85 % of
the block size of 64 MB) to the list. This list is forwarded to the
Reduce phase that Outputs the Merged File. This approach is
quite effective than previous solutions with less node metadata
memory requirement and Improved Map execution time.

Keywords- Hadoop; MapReduce; HDFS; Namenode; Small
Files .

I. INTRODUCTION

The advancement of Internet and Popularity of Web
resulted in the generation of massive amounts of unstructured
data. In order to process this mammoth data, apache hadoop
was developed by a team at yahoo headed by Doug cutting
and mike cafarella as an offshoot of the Nutch project. Hadoop
is a scalable, reliable, fault tolerant, and cluster oriented
distributive approach for storing unstructured data on the
commodity hardware. It is a product of research by Google’s
published papers MapReduce and Google File System (GFS)
[1]. Hadoop Uses a Map Reduce Programming paradigm to
process the data by dividing the job into sub tasks and giving
the subtasks to the nodes in a cluster [2]. The sub tasks are
either map or reduce tasks where Reduce task are performed
after all the Map tasks are processed. This programming
model works on key value pairs and outputs the key value
pairs making hadoop a batch processing system. The map
Task takes input splits as an input, processes the input splits,

generates Key, value as an output. These Map outputs are
given to one or more reducers. The reducers reduce the data
and store an output in HDFS.

Another component of hadoop is HDFS, a scalable,
reliable, fault tolerant, and distributed file storage system
which stores data in blocks and replicates the blocks in
multiple nodes (default replication number is 3). This makes
HDFS fault tolerant in that if one node is lost, the data can still
be recovered or accessed from its replica on other nodes.
HDFS includes Namenode which stores the file system
metadata and is single point of failure.

The HDFS works well with the large files and faces a

performance penalty while dealing with large number of small
files as large number of small file put a heavy burden on the
namenode resulting in increased Namenode start time,
increased Namenode Memory requirement and more number
of map phases. The above problem is termed as small file
problem in hadoop terminology. This paper gives an map
reduce approach to merge thousands of small files into a few
merged files improving Namenode Memory Usage, improved
namenode load time and less map task requirement.

This paper is divide into number of sections, section

II gives the brief introduction about the background of
hadoop, section III describes the small file problem, section IV
explains the existing solutions and their limitations, section V
describes the Proposed solution, section VI explains the
experimental setup and analyses the different output
parameters, and section VII depicts conclusion and future
work.

II. BACKGROUND

Hadoop is an open source software stack for

processing data over a cluster of commodity hardware. The
two main components of hadoop are MapReduce and HDFS [2]

[3]. Map reduce is a programming model while as HDFS is a
distributed storage file system. HDFS is reliable, fault tolerant
and scalable file system which stores data in the cluster in
distributed form.

IJSART - Volume 2 Issue 6 –JUNE 2016 ISSN [ONLINE]: 2395-1052

Page | 133 www.ijsart.com

In hadoop cluster HDFS works in master slave
paradigm consisting of a two types of nodes, NameNode and
DataNode. Namenode stores metadata information of the file
system while as DataNodes store the actual data blocks in
their storage disks.

Figure 1: HDFS Architecture

A. NameNode

Namenode stores the file system metadata in the
main memory and is the sole proprietor of file system Image
log. If Namenode fails, all the data in HDFS is lost. The
hadoop cluster includes two Namenodes, one is primary and
other is secondary. The secondary Namenode acts as a Backup
but is not in sync with primary namenode. To improve Fault
tolerance of NameNode, HDFS federation is employed where
Multiple Namenodes store the part of file System metadata
which means failure of one Namenode has no effect on other
Namenodes and only that part of file metadata is lost.

B. DataNode

DataNodes store the Actual data in their respective
disks and act as slave nodes. The data nodes continuously talk
with Namenode by sending the heart beat signal at regular
intervals. The data nodes store the multiple replicas of the
same blocks so that if a block on one DataNode is lost, it can
be recovered or accessed from its replica on another data node.

C. Job Tracker

In hadoop 1.x Job tracker assigns and schedules the
jobs to the hadoop cluster. When job is submitted to the client
it converts the input to input-splits and starts the multiple task
trackers. Each task tracker is given either a Map or Reduce
Task. In Hadoop 2.x YARN manages the scheduling while as
MapReduce Processes the task using map and reduce phase.

D. HDFS Client

In hadoop cluster, client node loads the data, submit
jobs and retrieve the results. It acts as interface to the hadoop
cluster and starts jobs and can read, write and delete data
including files and directories from HDFS.

E. Task Tracker

 Task tracker works on slave nodes and processes the
actual job in map and reduces phases. They periodically send
the job status to the Job tracker. If any task fails, job tracker
assigns the corresponding task to a new Task tracker with
same data replicas.

F. Resource Manager

Hadoop 2.x includes YARN (yet another resource
Negotiator) where resource manager schedules the tasks and
MapReduce process the same task in individual map and
reduce tasks.

III. SMALL FILE PROBLEM IN HADOOP AND

EXISTING APPROACHES

Hadoop is designed to work with large files and thus

large number of small files decreases the hadoop performance
by increasing the namenode memory usage and Map Reduce
execution time [7]. For example storing 10 million files require
almost 3GB of RAM [6] and therefore storing billions of files
requires terabytes of memory increasing the execution time
and NameNode Load time. Number of solution s have been
design to solve the problem out of which few are discussed
below

1) Hadoop Archive [9]

Hadoop Archive merges large number of small files
into a single archive file reducing the number of files in
HDFS. Reading files in HAR is slow because two indexes are
to be accessed before reading the file.

One is the master index for indexing the individual
HAR file and other is the indexes of the individual files. Thus
in order to increase the access speed, the file Locality should
be improved in HAR File [9].

IJSART - Volume 2 Issue 6 –JUNE 2016 ISSN [ONLINE]: 2395-1052

Page | 134 www.ijsart.com

Figure 2: HAR File

2) Consolidator [10]

It takes the files from one or more folders and merges

them into a single file. It has a disadvantage that original
filenames are lost.

3) SEQUENCE files [10]

This technique creates a sequential file of individual

files with key as name and value as content. The problem with
sequential approach is the time to create a sequence is very
high and there is no way to list all the files in the sequential
file.

Figure 3: Sequential File

4) Hbase [10]

Hbase stores data in Map Files which are indexed

sequential files and is a good choice for performing the
streaming analysis .It provides a better interface and faster
look up for files.

IV. PROPOSED APPROACH

This section describes the proposed approach by

firstly giving an overview and then describing the merge
algorithm.

The large number of small files decreases the hadoop

performance in terms of memory usage of Namenode and
increase in execution time of MapReduce. The proposed
approach uses the Map reduce merge algorithm to merge small
files into a merge file.

In the proposed approach the small files are given as

an input to the map phase in the form of key value pairs,
where key is the file name and value is the file size. The Map

phase adds the files to the list; if file size is less than a
threshold (90 % of hadoop block size 128 MB) .The Map
phase continues to add files to the list until default file size is
reached. The list is then passed to the reducer which merges
the files in the list into single file and stores it in the HDFS.

MERGE ALGORITHM

MAP Phase

1) Read the input file name and size.
2) Check whether filename is greater than threshold

 (90 % of HDFS block size)
3) Add the small files less than threshold to the list
4) Pass the list to the reducer
5) Fetch new files

REDUCE Phase

1) Merge the files in the outputted list from Map

Phases.
2) Store the merged file in HDFS.

V. EXPERIMENT AND RESULTS

The experiments for the proposed solutions were
setup on live cluster with 3 nodes. Here 3 nodes indicate 1
Namenode and 2 DataNodes. All the three nodes are
configured with hadoop 2.7.2.

A) Node 1 is based on Intel® Core i7 processor with

 6 GB of RAM, 250 GB hard disk, and Operating
 system is Ubuntu 14.04.4 LTS .

B) Node 2 is based on Intel® Core i3 processor with
 4 GB of RAM, 1TB hard disk, and Operating
 system is Ubuntu 14.04.4 LTS.

C) Node 3 is based on Intel® Core i5 processor with
 4 GB of RAM, 1TB hard disk, and Operating
 system is Ubuntu 14.0.4 LTS.

A) Execution Time

In this solution we have considered the files in the
size of KB’s to few MB’s. The total size of the files is 872 MB
and the hadoop default size is taken as 128MB. The Files
which are greater than 128 MB are ignored by MapReduce
Merge Algorithm.

Without using any merging technique each file is
stored directly in the HDFS. Each file is allocated to at least
one block, thus having a lot of blocks require large number of
map tasks which increases the overall execution time. The

IJSART - Volume 2 Issue 6 –JUNE 2016 ISSN [ONLINE]: 2395-1052

Page | 135 www.ijsart.com

Table 1 shows the execution time for different scenarios. The
proposed solution takes less time to execute the same job.

LET,

A = time to convert small file into single file (Minutes)
B = Execution time to run word count program on converted
 files (Minutes)
C = total time to execute an application on small files
 (Minutes)

 Thus, C=A+B

Table 1: Execution time Comparison with different
 approaches

The figure 4 shows the comparison of previous and
proposed solutions. In HAR approach there is an
inconsistency with the block size and sequence approach takes
a lot of time to convert the small files into sequential file.

Figure 4: Execution time with different approaches

B) Namenode Memory usage

We used the Htop utility to evaluate how much
memory the namenode Process takes using its process ID.
The namenode memory analysis for storing 872 files has
provided the results shown in Figure 5. It is clear that the
proposed approach takes memory in the range of HAR and

sequential files but very less as compared to the original
HDFS

Figure 5: Memory usages with different approaches

VI. CONCLUSION AND FUTURE WORK

Improving hadoop performance in dealing with small

files is one of the core active researches in hadoop community.
The Mentioned solution improves performance as compared to
the existing solutions. Firstly it reduces the Namenode
memory requirement and secondly it reduces the Map
execution time. The solution has been applied to CSV and
Text files and has been found to be more effective than
previous solutions.

The work can be continued forward for image files or

other small file types. Image files are also type of small files
and also suffer from the performance issues as with the CSV
or Text files.

REFERENCE

[1] S. Ghemawat, H. Gobioff, and S.Leung, “The Google file
System,” Proceedings of ACM symposium on Operating
System Principles, PP 29-43, October 2003.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The

Hadoop Distributed File System,” IEEE 26th Symposium
on Mass Storage Systems and Technologies (MSST),
2010.

[3] Apache hadoop Framework, http://hadoop.apache.org

[4] HDFS Architecture Guide. http://hadoop.apache.org/

common/docs/current/hdfs/design.html, 2009.

[5] T. White, “The small files problem [online].” Available:

http://blog.cloudera.com/blog/2009/02/the-small-files-
Problem

IJSART - Volume 2 Issue 6 –JUNE 2016 ISSN [ONLINE]: 2395-1052

Page | 136 www.ijsart.com

[6] The-small-files-problem, Cloudera http://blog.cloudera.
comlblog/2009/02/the-small-files-probleml,February2009

[7] Small-file-problem-in-hadoop.html,

http://amilaparanawithana.blogspot.in/2012/06/small-file-
problem hadoop.html, June 2012

[8] Http://issues.apache.org/jira/browse/HADOOP-1687

[9] Hadoop archives, http://hadoop.apache.org/common/docs/

current/hadoop _archives.html.

