
IJSART - Volume 2 Issue 6 –JUNE 2016 ISSN [ONLINE]: 2395-1052

Page | 193 www.ijsart.com

Energy Efficient and Verifying Smart Phone
Applications

Renugadevi. R1, Dr. N. Shenbagavadivu2

1, 2 Department of Computer Applications

1, 2 Anna university BIT- Campus, Trichy

Abstract- Energy efficiency in smart phone applications are
most important but many android application suffer from
serious energy inefficiency problem .The aim of the project is
to develop mobile application which will manage energy
utilization efficientlyin smart phones, tablet computers and
other mobile devices. This application may reduce battery
usages. Especially the Blue-tooth, Wi-Fi and GPS are the
main concerns that drain the battery power. It manage the
battery level in smart device . Initially the mobile user get the
battery level from the mobile device are the current battery
Percentage, battery health, voltage and temperature in next
part we set a threshold value for the battery level when it gets
lower the threshold value the screen gets weak Blue-tooth, WI-
Fi , GPS gets turned off. So provide Green droid tool to
analyse state space for each application using model checker
concept. Then privacy protection against mobile applications
on mobile devices is becoming a serious concern as user
sensitive data may be leaked without proper justification.

Keywords- smart phone, energy efficient, battery power, greendroid,
temperature, privacy production

I. INTRODUCTION

One of the most widely used mobile OS these days
is ANDROID. Android is a software bunch comprising not
only operating system but also middleware and key
applications. Android Inc was founded in Palo Alto of
California, U.S. by Andy Rubin, Rich miner, Nick sears and
Chris White in 2003. Later Android Inc. was acquired by
Google in 2005. After original release there have been number
of updates in the original version of Android. The OS uses
touch inputs that loosely correspond to real-world actions, like
swiping, tapping, pinching, and reverse pinching to
manipulate on-screen objects, and a virtual keyboard. Despite
being primarily designed for touch screen input, it has also
been used in game consoles, digital cameras, regular P Cs, and
other electronics. As of 2015, Android has the largest installed
base of all operating systems Android is a Linux- based
operating system designed primarily for touch screen mobile
devices such as smart phones and tablet computers. Initially
developed by Android, Inc., which Google backed financially
and later bought in 2005, Android was unveiled in 2007 along
with the founding of the Open Handset Alliance: a consortium

of hardware, software, and telecommunication companies
devoted to advancing open standards for mobile devices. The
first Android-powered phone was sold in October 2008.

These factors have allowed Android to become the
world's most widely used smart phone platform, overtaking
Sembilan in the fourth quarter of 2010, and the software of
choice for technology companies who require a low-cost,
customizable, lightweight operating system for high tech
devices without developing one from scratch. As a result,
despite being primarily designed for phones and tablets, it has
seen additional applications on televisions, games consoles,
digital cameras and other electronics. Android's open nature
has further encouraged a large community of developers and
enthusiasts to use the open source code as a foundation for
community-driven projects, which add new features for
advanced users or bring Android to devices which were
officially released running other operating systems. Android
had a worldwide smart phone market share of 75% during the
third quarter of 2012, with 500 million devices activated in
total and 1.3 million activations per day. The operating
system's success has made it a target for patent litigation as
part of the so-called "smart phone wars" between technology
companies.

Android devices are vulnerable to threats and some

of the noticeable vulnerabilities are denial of service attacks,
execution of code by the attackers using Android debugger
bridge (adb), stack based buffer overflow resulting in arbitrary
code execution, memory corruption to gain root privileges,
SQL injection to retrieve useful information, cross site
scripting to redirect to other vulnerable domains and to steal
user credentials etc. Some other issues are intercepting SMS to
gain user credentials and in some cases API’s can be queried
for retrieving information.

In this project apply static analysis with the aim to

understand the significance of permissions for the
identification of unseen samples. Investigation is carried out to
identify the most prominent permissions that contribute in
mobile malware classification with few features based on the
permissions it request this project, the proposed a two-layered
permission based detection scheme for detecting malicious
Android applications. Proposed monitor application for

IJSART - Volume 2 Issue 6 –JUNE 2016 ISSN [ONLINE]: 2395-1052

Page | 194 www.ijsart.com

execution and perform dynamic data flow analysis at a byte
code instruction level. Implement Java Path Finder (JPF)
which is an explicit-state model checker that directly works
with Java byte code instructions. Improved Green droid tool
find application execution while sharing application at time of
blue tooth sharing can extend our framework to analyse model
checking each state space.

Analyse both energy and malware detection in smart

phone applications. Implement secure applications to avoid
man in middle attack. One application is to help smart phones
determine their approximate location or context. With the help
of green droid a smart phone's software can approximately
find its relative location to green droid in a store. Green droid
can help a phone show notifications of items nearby that are
on sale, and it can enable payments at the point of sale (POS)
where customers don’t need to remove their wallets or cards to
make payment Green droid technology works using the
Bluetooth Low Energy (BLE) technology, also known as
Bluetooth Smart. Green droid uses Bluetooth low energy
proximity sensing to transmit a universally unique identifier
picked up by a compatible app or operating system. The
identifier can then be looked up over the internet to determine
the device's physical location or trigger an action on the device
such as a check-in on social media or a push notification .With
these findings, the propose an approach to automatically
diagnosing such energy problems in Android applications. Our
approach explores an Android application’s state space by
systematically executing the application using Java Path
Finder (JPF), a widely-used model checker for Java programs .

It analyses how sensory data are utilized at each

explored state, as well as monitoring whether sensors/wake
locks are properly used and unregistered/released.JPF was
originally designed for analysing conventional Java programs
with explicit control flows .It executes the byte code of a
target Java program in its virtual machine. However, Android
applications are event driven and depend greatly on user
interactions. Their program code comprises many loosely
coupled event handlers, among which no explicit control flow
is specified. At runtime, these event handlers are called by the
Android framework, which builds on hundreds of native
library classes. As such, applying JPF to analyse Android
applications requires: generating valid user interaction events,
and correctly scheduling event handlers. To address the first
technical issue, propose to analyse an Android application’s
GUI layout configuration files, and systematically enumerate
all possible user interaction event sequences with a bounded
length at runtime. It can show that such a bounded length does
not impair the effectiveness of our analysis, but instead helps
quickly explore different application states and identify energy
problems. To address the second technical issue, present an

application execution model derived from Android
specifications. This model captures application generic
temporal rules that specify calling relationships between event
handlers. With this model are able to ensure an Android
application to be exercised with correct control flows, rather
than being randomly scheduled on its event handlers. As it
will show in our later evaluation, the latter brings almost no
benefit to the identification of energy problems in Android
applications.

II. RELATED WORKS

[1]Anand, M. Naik discussed Mobile devices with advanced
computing ability and connectivity, such as smart phones and
tablets, are becoming increasingly prevalent. At the same time
there has been a surge in the development and adoption of
specialized programs, called apps, that run on such devices.
Apps pervade virtually all activities ranging from leisurely to
mission critical. Thus, there is a growing need for software-
quality tools in all stages of an app’s life-cycle, including
development, testing, auditing, and deployment. Apps have
many features that make static analysis challenging: a vast
SDK (Software Development Kit), asynchrony, inter-process
communication, databases, and graphical user interfaces
(GUIs). As a result, many proposed approaches for analyzing
apps are based on dynamic analysis

[2]W. Enck, P. Gilbert suggest A key feature of modern
smart phone platforms is a centralized service for
downloading third-party applications. The convenience to
users and developers of such “app stores” has made mobile
devices more fun and useful, and has led to an explosion of
development. Apple’s App Store alone served nearly 3 billion
applications after only 18 months . Many of these applications
combine data from remote cloud services with information
from local sensors such as a GPS receiver, camera,
microphone, and accelerometer. Applications often have
legitimate reasons for accessing this privacy sensitive data, but
users would also like assurances that their data is used
properly. Incidents of developers relaying private information
back to the cloud and the privacy risks posed by seemingly
innocent sensors like accelerometers .

[3] E. Cuervo, D. Cho suggested One of the biggest
obstacles for future growth of smart phones is battery
technology. As processors are getting faster, screens are
getting sharper, and devices are equipped with more sensors, a
smart phone’s ability to consume energy far outpaces the
battery’s ability to provide it. Unfortunately, technology trends
for batteries indicate that these limitations are here to stay and
that energy will remain the primary bottleneck for handheld
mobile devices.

IJSART - Volume 2 Issue 6 –JUNE 2016 ISSN [ONLINE]: 2395-1052

Page | 195 www.ijsart.com

[4] Dillig, T. Dillig saysWhile automatic memory
management via garbage collection has enjoyed considerable
success in many widely-used programming languages, such as
Java and C#, there are a number of situations where a
programmer still needs to pay attention to timely resource
reclamation. Consider the code , where the underlined code
segments deal solely with resource de-allocation . For
example, should the programmer forget to call socket .close at
lines 13 and 30—which apparently serve no functional
purpose in the application logic—there would be a leak of a
socket resource in the system. While the application-level
socket object can be reclaimed by the garbage collector when
the encapsulating Buffer

III. PROPOSED SYSTEM

 Proposed monitor application for execution and
perform dynamic data flow analysis at a byte code instruction
level. Implement Java Path Finder (JPF) which is an explicit-
state model checker that directly works with Java byte code
instructions.

 Improved Green droid tool is to find application
execution while sharing application at time of blue tooth
sharing.

 The proposed framework to analyse model checking
each state space also. Analyse both energy and malware
detection in smart phone applications. Implement secure
applications to avoid man in middle attack.

ADVANTAGE

Diagnosing energy problems arising from sensory data under
utilization.

 Overcome malicious application installation.

 Increase battery usages while running various state spaces.

Fig.1. Green Drawing

IV. METHODOLOGY

1. Apps Booted:

 In this module, helps to boot apps which are
downloaded from internet using GPRS services. Shared apps
from Bluetooth devices. List out the number apps in smart
phones. The application scan the application’s APK files that
include the state space. State space includes start, kill, and
pause and resumes states.

2. Active path findings:

 This module, used to can get all state spaces for
applications and executed file lists using Java Path Finder.
This state space used to analyze in further process. Mobile
application testing is a specialized and complex field. Due to
mobile applications' event driven design and mobile runtime
environment, there currently exist only a small number of
tools to verify these applications. The JPF-ANDROID is
built on Java Pathfinder, a Java model checking engine. JPF-
ANDROID provides a simplified model of the Android
framework on which an Android application can run. It then
allows the user to script input events to drive the application
flow. JPF-ANDROID provides a way to detect common
property violations such as deadlocks and runtime exceptions
in Android applications.

3. Malware Prediction:

 Mobile virus is malicious software that targets mobile
phones, by causing the collapse of the system and loss or
leakage of confidential information. As phone networks have
become more and more common and have grown in
complexity, it has become increasingly difficult to ensure their
safety and security against electronic attacks in the form of
viruses or other malware. Finally it can predict and delete
malwares from our smart phones. It is performed on destroy
operation to delete malwares and preserve energy at the time
of application usage. And also save the energy with three
modes such as normal, aggressive and background mode.
These modes based implementation save energy in mobile
phones with improved accuracy rate.

4. Evaluation criteria:

 Our approach provide improved prediction rate and
minimized energy levels. The evaluation approach showed in
graph in unites before or after application used. And also
analyse power in normal and aggressive mode.

IJSART - Volume 2 Issue 6 –JUNE 2016 ISSN [ONLINE]: 2395-1052

Page | 196 www.ijsart.com

V. SAMPLE SCREEN SHOT

Fig. 2.Home page

Fig. 3. Malware detection

Fig. 3. Normal mode activation

Fig. 4.Aggressive mode activation

IJSART - Volume 2 Issue 6 –JUNE 2016 ISSN [ONLINE]: 2395-1052

Page | 197 www.ijsart.com

Fig. 5. Battery information

VI. CONCLUSION

Mobile devices have become popular in our lives

since they offer almost the same functionality as personal
computers. Among them, Android-based mobile devices had
appeared lately and, they were now an ideal target for
attackers. Android-based smart phone users can get free
applications from Android Application Market. But, these
applications were not certified by legitimate organizations and
they may contain malware applications that can steal privacy
information for users. In this project, a framework that can
detect android malware applications is proposed to help
organizing Android Market. The proposed framework intends
to develop a machine learning-based malware detection
system on Android to detect malware applications and to
enhance security and privacy of smart phone users. This
system monitors various permission based features and events
obtained from the android applications, and analyses these
features by using machine learning classifiers to classify
whether the application is good ware or malware. This
project, describe state based malware detection system for
android based smart phones users. This system exploits
machine learning techniques to distinguish between normal
and malware applications. Green Droid is useful and effective
for diagnosing energy problems in Android applications, and

its idea may also complement and contribute to existing
resource leak detection work on the Android platform.

REFERENCES

[1] S. Anand, M. Naik, M. J. Harrold, and H. Yang,

“Automated concolic testing of smartphone apps,” Proc.
ACM SIGSOFT 20th Int’l Symp. Foundations of Soft.
Engr. (FSE 12), ACM, 2012, pp. 59:1-59:11

[2] M. Arnold, M. Vechev, and E. Yahav, “QVM: an

efficient runtime for detecting defects in deployed
systems,” ACM Trans. Software Engi-neering and
Methodology, vol. 21, 2011, pp. 2:1-2:35

[3] Dillig, T. Dillig, E. Yahav, and S. Chandra, “The
CLOSER: automating resource management in Java,”
Proc. Int’l Symp. Memory Manage-ment (ISMM 08),
ACM, 2008, pp. 1-10.

[4] T. Azim and I. Neamtiu, “Targeted and depth-first

exploration for systematic testing of android apps,” Proc.
ACM SIGPLAN Int’l Conf. Object-oriented
Programming Systems Languages & Applica-tions
(OOPSLA 13), ACM, pp. 641-660

[5] M. Dong and L. Zhong “Sesame: Self-constructive high-

rate system energy modeling for battery-powered mobile
systems,” Proc. Int’l Conf. Mobile Systems, Applications,
and Services (Mobisys 11), ACM, 2011, pp. 335-348

[6] Jack Sampson, Manish Arora, Nathan Goulding-Hotta,

Ganesh Venkatesh, Jonathan Babb, Vikram Bhatt, Steven
Swanson, and Michael Bedford Taylor “An Evaluation of
Selective Depipelining for FPGA-based Energy-Reducing
Irregular Code Coprocessors”, ,2011 International
Conference on Field Programmable Logic and
Applications, September 2011.

[7] Manish Arora, Jack Sampson, Nathan Goulding-Hotta,
Jonathan Babb, Ganesh Venkatesh,Michael Bedford
Taylor, and Steven Swanson”Reducing the Energy Cost
of Irregular Code Bases in Soft Processor Systems” -
Programmable Custom Computing Machines, Annual
IEEE Symposium on:210-213, 2011

