
IJSART - Volume 2 Issue 5 –MAY 2016 ISSN [ONLINE]: 2395-1052

Page | 536 www.ijsart.com

Parallel FIM using Hadoop

Suraj Ghadge1, PravinDurge2, Vishal Bhosale3, Sumit Mishra4

1, 2, 3, 4 Department of Computer Engineering
1, 2, 3, 4 JSPM’s ICOER

Abstract- Frequent itemsets mining (FIM)is the initial step for
deriving association rules. The problem related to FIM is its
significant amount of time consumption. When datasets
become excessively large, single machine algorithms do not
perform up to the mark. Speeding up FIM is indispensable and
several algorithms have been developed to do the same.
Existing algorithms lack a mechanism that brings automatic
parallelization, load balancing, data distribution and fault
tolerance. In this paper, we introduce an algorithm for FIM
process which solves the performance problem of existing
algorithms when exposed to huge datasets. This algorithm
incorporates parallelism with the use of Hadoop’smapreduce.

Keywords- Frequent Itemsets Mining, Parallel Mining Algorithms,
Data Mining, MapReduce, Hadoop

I. INTRODUCTION

Data mining is a process of discovering and
deriving previously unknown and useful information from
huge databases. The most widely used data mining
technologies include association rules discovery, clustering,
classification, and sequential pattern mining. Among them, the
most popular technology is association rules mining, which is
mining the possibility of simultaneous occurrence of items,
and then building relationships among them in databases.

Association rules mining can be divided into two
parts: find all frequent itemsets, and generate reliable
association rules straightforward from all frequent itemsets.
Because FIM is the most time-consuming procedure, it plays
an essential rolein mining association rules.

The two well-known categories of existing FIM
algorithms are Apriori [1] and FP growth[2] algorithms.
Aprioriis an algorithm using the generate-and-test process that
generates a large number of candidate itemsets. Apriorihas to
repeatedly scan an entire database which is indeed time
consuming. To reduce the time required for scanning
databases, FP-growth algorithm was developed which avoids
generating candidate itemsets.

The scalability problem was addressed by Apriori
and FP-growth like parallel FIM algorithms. However, they
had their limitations too. Apriori like parallel FIM algorithms
suffer potential problems of high I/O and synchronization

overhead, which makes it strenuous to scale up these parallel
algorithms. And the major disadvantage of FP-growth like
parallel algorithms lies in the infeasibility to construct in-
memory FP trees to accommodate large-scale databases.

Rather than considering Apriori and FP-growth, we
introduce a parallel algorithm using Hadoop’smapreduce[3]-
[8]which solves the problem related scalability and
performance.

II. BACKGROUND

In this section, we briefly explain association rules.
Then basic idea of Hadoop’sMapreduce programming model.

A. Association Rules

Association rules mining(ARM) provides a strategic

resource for decision support by extracting the most important
frequent patterns that frequently occur in large transactional
database. A typical example of ARM is market basket
analysis. An association rule, for example, can be “if a
customer buys A and B, then 70% of them also buy C.” In this
example, 70% is the confidence of the rule.

Apart from confidence, support is another measure of
association rules, each of which is an implication in the form
ofX ⇒Y. Here, X and Y are two itemsets, and X ∩Y = ∅. The
confidence of a rule X ⇒Y is defined as a ratio between
support(X ∪Y) and support(X). Note that, an itemsetXhas
support s if s% of transactions contain the itemset. We denote
s = support(X); the support of the rule X ⇒Y is support (X ∪Y).

The ultimate objective of ARM is to discover all
rules that satisfy a user-defined minimum support and
minimum confidence. The ARM process can be divided into
two phases:1) identifying all frequent itemsets whose support
is greater than the minimum support and 2) forming
conditional implication rules among the frequent itemsets. The
first phase is more challenging and complicated than the
second one. As such, most prior studies are primarily focused
on the issue of discovering frequent itemsets.

B. MapReduce Framework

IJSART - Volume 2 Issue 5 –MAY 2016 ISSN [ONLINE]: 2395-1052

Page | 537 www.ijsart.com

MapReduce is a parallel and scalable programming
model for data-intensive applications and scientific analysis. A
MapReduce program expresses a large distributed
computation as a sequence of parallel operations on datasets of
key/value pairs. A MapReduce computation has two phases,
namely, the Map and Reduce phases. The Map phase splits the
input data into a large number of fragments, which are evenly
distributed to Map tasks across the nodes of a cluster to
process. Each Map task takes in a key-value pairand then
generates a set of intermediate key-value pairs. After the
MapReduce runtime system groups and sorts all the
intermediate values associated with the same intermediate key,
the runtime system delivers the intermediate values to Reduce
tasks. Each Reduce task takes in all intermediate pairs
associated with a particular key and emits a final set of key
value pairs. Both input pairs of Map and the output pairs of
Reduce are managed by an underlying distributed file system.
MapReduce greatly improves programmability by offering
automatic data management, highly scalable, and transparent
fault-tolerant processing. Also, MapReduce is running on
clusters of cheap commodity servers—an increasingly
attractive alternative to expensive computing platforms.
Thanks to the aforementioned advantages, MapReduce has
been widely adopted by companies like Google, Yahoo,
Microsoft, and Facebook. Hadoop—one of the most popular
MapReduce implementations—is running on clusters where
Hadoop distributed file system (HDFS) stores data to provide
high aggregate I/O bandwidth. At the heart of HDFS is a
single NameNode—a master server that manages the file
system namespace and regulates access to files. The Hadoop
runtime system establishes two processes called JobTracker
and TaskTracker. JobTracker is responsible for assigning and
scheduling tasks; each TaskTracker handles Map or Reduce
tasks assigned by JobTracker.

III. MAPREDUCE-BASED ALGORITHM

In light of the Hadoop’sMapReduce programming
model, we introduce a parallel FIM algorithm that enables
automatic parallelization, load balancing and data distribution
for parallel mining of frequent itemsets on large clusters.

Aiming to improve data storage efficiency and to
avert building conditional pattern bases, this algorithm
incorporates the concept of ultrametric tree rather than
traditional FP trees.

A. First MapReduce Job

The first MapReduce job discovers all frequent items
or frequent one-itemsets (see Algorithm 1). In this phase, the

input of Map tasks is a database, and the output of Reduce
tasks is all frequent one-itemsets.

Algorithm 1 :Parallel Counting: To Generate All Frequent
One-Itemsets

Input: minsupport, DBi;
Output: 1-itemsets;
1: function MAP(key offset, values DBi)
2: //T is the transaction in DBi
3: for all T do
4: items ← split each T;
5: for all item in items do
6: output(item, 1);
7: end for
8: end for
9: end function
10: reduce input: (item,1)
11: function REDUCE(key item, values 1)
12: sum=0;
13: for all item do
14: sum += 1;
15: end for
16: output(1-itemset, sum); //item is stored as 1-itemset
17: if sum >minsupportthen
18: F − list ← the (1-itemset, sum) //F-list is a CacheFile
is storingfrequent 1-itemsets and their count.
19: end if
20: end function

B. Second MapReduce Job

The second MapReduce job scans the database again

to generate k-itemsets by removing infrequent items in each
transaction (Algorithm 2)

Algorithm 2: Generate k-itemsets: To Generate All k-Itemsets
by Pruning the Original Database

Input: minsupport, DBi;
Output: k-itemsets;
1: function MAP(key offset, values DBi)
2: //T is the transaction in DBi
3: for all (T) do
4: items ← split each T;
5: for all (item in items) do
6: if (item is not frequent) then
7: prune the item in the T;
8: end if

IJSART - Volume 2 Issue 5 –MAY 2016 ISSN [ONLINE]: 2395-1052

Page | 538 www.ijsart.com

9: k-itemset←(k, itemset) /*itemset is the set of frefrquent
items after pruning, whose length is k */

10: output(k-itemset,1);
11: end for
12: end for
13: end function
14: function REDUCE(key k-itemset, values 1)
15: sum=0;
16: for all (k-itemset) do
17: sum += 1;
18: end for
19: output(k, k-itemset+sum);//sum is support of this I

itemset
20: end function

C. Third MapReduce Job

The second phase of FIUT involving the construction

of a k-FIU(ultrametric) tree and the discovery of frequent k-
itemsets is handled by a third MapReduce job, in which h-
itemsets (2 <= h <= M) are directly decomposed into a list of
(h − 1)-itemsets, (h − 2)-itemsets,etc.In the third MapReduce
job, the generation of short itemsets is independent to that of
long itemsets. In other words, long and short itemsets are
created in parallel by our parallel algorithm.

Algorithm 3 : Mining k-itemsets: Mine All Frequent Itemsets

Input: Pair(k, k-itemset+support);//This is the output of the
second MapReduce.
Output: frequent k-itemsets;

1: function MAP(key k, values k-itemset+support)
2: De-itemset← values.k-itemset;
3: decompose(De-itemset,2,mapresult); /* To decompose each
De-itemset into t-itemsets (t is f from 2 to De-
itemset.length), and store the
results to mapresult. */
4: for all (mapresult with different item length) do
5: //t-itemset is the results decomposed by k-Iteitemset(i.e. t ≤
k);
6: for all (t-itemset) do
7: t − FIU − tree ← t-FIU-tree generation(local- F I FIU-
tree, t-itemset);
8: output(t, t-FIU-tree);
9: end for
10: end for
11: end function
12: function REDUCE(key t, values t-FIU-tree)
13: for all (t-FIU-tree) do

14: t − FIU − tree ← combining all t-FIU-tree from each
mapper;
15: for all (each leaf with item name v in t-FIU-tree)do
16: if (count(v)/| DB |≥ minsupport) then
17: frequent h − itemset← pathitem(v);
18: end if
19: end for
20: end for
21: output(h, frequent h-itemset);
22: end function

The decomposition procedure of each mapper is
independent of other mappers and this fact makes third
mapreduce task highly scalable. In other words multiple
mappers can perform decomposition process parallel. This
improves data storage efficiency and I/O performance.[9]
Figure 1 illustrates the overview of the algorithm with sample
example.

Fig1. Overview of MapReduce-based algorithm

IV. RELATED WORK

Parallel frequent itemsets mining algorithms based on

Apriori can be classified into two camps, namely, count
distribution (e.g., count distribution (CD), fast parallel mining,
and parallel data mining (PDM)) and data distribution (e.g.,
data distribution (DD)and intelligent data distribution). In the
count distribution camp, each processor of a parallel system
calculates the local support counts of all candidate itemsets.

Then, all processors compute the total support counts
of the candidates by exchanging the local support counts. The
CD and PDM algorithms have simple communication
patterns, because in every iteration each processor requires
only one round of communication. In the data distribution
camp, each processor only keeps the support counts of a
subset of all candidates. Each processor is responsible for
sending its local database partition to all the other processors
to compute support counts. In general, DD has higher

IJSART - Volume 2 Issue 5 –MAY 2016 ISSN [ONLINE]: 2395-1052

Page | 539 www.ijsart.com

communication overhead than CD, because shipping
transaction data demands more communication bandwidth
than sending support counts.

The cascade running mode in existing Apriori-based
parallel mining algorithms leads to high communication and
synchronization overheads. To reduce time required for
scanning databases and exchanging candidate itemsets, FP-
growth based parallel algorithms were proposed as a
replacement of Apriori-based parallel algorithms. A few
parallel FP-growth-based parallel algorithms were
implemented using multithreading on multicore processors. A
major disadvantage of these parallel mining algorithms lies in
the infeasibility to construct main-memory-based FP trees
when databases are very large. This problem becomes
pronounced when it comes to massive and multidimensional
databases.

V. CONCLUSION

To solve the performance deterioration, load
balancing and scalability challenges of sequential algorithm,
various parallel algorithms were implemented. We gave an
overview of such parallel algorithms. Unfortunately, in
Apriori-like parallel FIM algorithms, each processorhas to
scan a database multiple times and to exchange anexcessive
number of candidate itemsets with other processors.
Therefore, Apriori-like parallel FIM solutions suffer potential
problems of high I/O and synchronization overhead, which
make it strenuous to scale up these parallel algorithms. The
scalability problem has been addressed by the implementation
of a handful of FP-growth-like parallel FIM algorithms.

A major disadvantage of FP-growth like parallel
algorithms, however, lies in the infeasibility to constructin-
memory FP trees to accommodate large-scale databases. This
problem becomes more pronounced when it comes to massive
and multidimensional databases.

To solve the challenges in the existing parallel
mining algorithms for frequent itemsets, we applied the
MapReduce programming model[10] to develop a parallel
frequent itemsets mining algorithm. Itachieves compressed
storage and avoiding the necessity to build conditional pattern
bases. This algorithm seamlessly integrates three MapReduce
jobs to accomplish parallel mining of frequent itemsets. The
third MapReduce jobplays an important role in parallel
mining; its mappers independently decompose itemsets
whereas its reducers construct small ultrametric trees to be
separately mined and hence improving performance for FIM.

REFERENCES

[1] M. J. Zaki, “Parallel and distributed association mining:
Asurvey,” IEEE Concurrency, vol. 7, no. 4, pp. 14–
25,Oct./Dec. 1999.

[2] I. Pramudiono and M. Kitsuregawa, “FP-tax: Tree

structure based generalized association rule mining,” in
Proc. 9th ACM SIGMOD WorkshopRes. Issues Data
Min. Knowl. Disc., Paris, France, 2004, pp. 60–63.

[3] J. Dean and S. Ghemawat, “MapReduce: Simplified data

processing on large clusters,” Commun. ACM, vol. 51,
no. 1, pp. 107–113, Jan. 2008

[4] J. Dean and S. Ghemawat, “MapReduce: A flexible data

processing tool,” Commun. ACM, vol. 53, no. 1, pp. 72–
77, Jan. 2010.

[5] W. Lu, Y. Shen, S. Chen, and B. C. Ooi, “Efficient

processing ofk nearest neighbor joins using
MapReduce,” Proc. VLDB Endow., vol. 5,no. 10, pp.
1016–1027, 2012

[6] J. Dean and S. Ghemawat, “MapReduce: Simplified data

processing onlarge clusters,” Commun. ACM, vol. 51,
no. 1, pp. 107–113, Jan. 2008.

[7] J. Dean and S. Ghemawat, “MapReduce: A flexible data

processingtool,” Commun. ACM, vol. 53, no. 1, pp. 72–
77, Jan. 2010.

[8] W. Lu, Y. Shen, S. Chen, and B. C. Ooi, “Efficient

processing ofk nearest neighbor joins using
MapReduce,” Proc. VLDB Endow., vol. 5,no. 10, pp.
1016–1027, 2012.

[9] D. W. Cheung, S. D. Lee, and Y. Xiao, “Effect of data

skewness andworkload balance in parallel data mining,”
IEEE Trans. Knowl. DataEng., vol. 14, no. 3, pp. 498–
514, May/Jun. 2002.

[10] Y.-J. Tsay, T.-J. Hsu, and J.-R. Yu, “FIUT: A new

method for miningfrequent itemsets,” Inf. Sci., vol. 179,
no. 11, pp. 1724–1737, 2009.

