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Abstract- Frequent itemsets mining (FIM)is the initial step for 
deriving association rules. The problem related to FIM is its 
significant amount of time consumption. When datasets 
become excessively large, single machine algorithms do not 
perform up to the mark. Speeding up FIM is indispensable and 
several algorithms have been developed to do the same. 
Existing algorithms lack a mechanism that brings automatic 
parallelization, load balancing, data distribution and fault 
tolerance. In this paper, we introduce an algorithm for FIM 
process which solves the performance problem of existing 
algorithms when exposed to huge datasets. This algorithm 
incorporates parallelism with the use of Hadoop’smapreduce. 
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I. INTRODUCTION 
 

Data mining is a process of discovering and                   
deriving previously unknown and useful information from 
huge databases. The most widely used data mining 
technologies include association rules discovery, clustering, 
classification, and sequential pattern mining. Among them, the 
most popular technology is association rules mining, which is 
mining the possibility of simultaneous occurrence of items, 
and then building relationships among them in databases. 
 

Association rules mining can be divided into two 
parts: find all frequent itemsets, and generate reliable 
association rules straightforward from all frequent itemsets. 
Because FIM is the most time-consuming procedure, it plays 
an essential rolein mining association rules. 
 

The two well-known categories of existing FIM 
algorithms are Apriori [1] and FP growth[2] algorithms. 
Aprioriis an algorithm using the generate-and-test process that 
generates a large number of candidate itemsets. Apriorihas to 
repeatedly scan an entire database which is indeed time 
consuming. To reduce the time required for scanning 
databases, FP-growth algorithm was developed which avoids 
generating candidate itemsets. 
 

The scalability problem was addressed by Apriori 
and FP-growth like parallel FIM algorithms. However, they 
had their limitations too. Apriori like parallel FIM algorithms 
suffer potential problems of high I/O and synchronization 

overhead, which makes it strenuous to scale up these parallel 
algorithms. And the major disadvantage of FP-growth like 
parallel algorithms lies in the infeasibility to construct in-
memory FP trees to accommodate large-scale databases. 
 

Rather than considering Apriori and FP-growth, we 
introduce a parallel algorithm using Hadoop’smapreduce[3]-
[8]which solves the problem related scalability and 
performance. 
 

II. BACKGROUND 
 

In this section, we briefly explain association rules. 
Then basic idea of Hadoop’sMapreduce programming model. 
 
A. Association Rules 

 
Association rules mining(ARM) provides a strategic 

resource for decision support by extracting the most important 
frequent patterns that frequently occur in large transactional 
database. A typical example of ARM is market basket 
analysis. An association rule, for example, can be “if a 
customer buys A and B, then 70% of them also buy C.” In this 
example, 70% is the confidence of the rule. 
 

Apart from confidence, support is another measure of 
association rules, each of which is an implication in the form 
ofX ⇒Y. Here, X and Y are two itemsets, and X ∩Y = ∅. The 
confidence of a rule X ⇒Y is defined as a ratio between 
support(X ∪Y) and support(X). Note that, an itemsetXhas 
support s if s% of transactions contain the itemset. We denote 
s = support(X); the support of the rule X ⇒Y is support (X ∪Y). 
 

The ultimate objective of ARM is to discover all 
rules that satisfy a user-defined minimum support and 
minimum confidence. The ARM process can be divided into 
two phases:1) identifying all frequent itemsets whose support 
is greater than the minimum support and 2) forming 
conditional implication rules among the frequent itemsets. The 
first phase is more challenging and complicated than the 
second one. As such, most prior studies are primarily focused 
on the issue of discovering frequent itemsets. 
 
B. MapReduce Framework 
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MapReduce is a parallel and scalable programming 
model for data-intensive applications and scientific analysis. A 
MapReduce program expresses a large distributed 
computation as a sequence of parallel operations on datasets of 
key/value pairs. A MapReduce computation has two phases, 
namely, the Map and Reduce phases. The Map phase splits the 
input data into a large number of fragments, which are evenly 
distributed to Map tasks across the nodes of a cluster to 
process. Each Map task takes in a key-value pairand then 
generates a set of intermediate key-value pairs. After the 
MapReduce runtime system groups and sorts all the 
intermediate values associated with the same intermediate key, 
the runtime system delivers the intermediate values to Reduce 
tasks. Each Reduce task takes in all intermediate pairs 
associated with a particular key and emits a final set of key 
value pairs. Both input pairs of Map and the output pairs of 
Reduce are managed by an underlying distributed file system. 
MapReduce greatly improves programmability by offering 
automatic data management, highly scalable, and transparent 
fault-tolerant processing. Also, MapReduce is running on 
clusters of cheap commodity servers—an increasingly 
attractive alternative to expensive computing platforms. 
Thanks to the aforementioned advantages, MapReduce has 
been widely adopted by companies like Google, Yahoo, 
Microsoft, and Facebook. Hadoop—one of the most popular 
MapReduce implementations—is running on clusters where 
Hadoop distributed file system (HDFS) stores data to provide 
high aggregate I/O bandwidth. At the heart of HDFS is a 
single NameNode—a master server that manages the file 
system namespace and regulates access to files. The Hadoop 
runtime system establishes two processes called JobTracker 
and TaskTracker. JobTracker is responsible for assigning and 
scheduling tasks; each TaskTracker handles Map or Reduce 
tasks assigned by JobTracker. 
 

III. MAPREDUCE-BASED ALGORITHM 
 

In light of the Hadoop’sMapReduce programming 
model, we introduce a parallel FIM algorithm that enables 
automatic parallelization, load balancing and data distribution 
for parallel mining of frequent itemsets on large clusters. 
  

Aiming to improve data storage efficiency and to 
avert building conditional pattern bases, this algorithm 
incorporates the concept of ultrametric tree rather than 
traditional FP trees.  
 
A. First MapReduce Job 
 

The first MapReduce job discovers all frequent items 
or frequent one-itemsets (see Algorithm 1). In this phase, the 

input of Map tasks is a database, and the output of Reduce 
tasks is all frequent one-itemsets. 
 
 
Algorithm 1 :Parallel Counting: To Generate All Frequent 
One-Itemsets 
 
Input: minsupport, DBi; 
Output: 1-itemsets; 
1: function MAP(key offset, values DBi) 
2: //T is the transaction in DBi 
3: for all T do 
4: items ← split each T; 
5: for all item in items do 
6: output( item, 1); 
7: end for 
8: end for 
9: end function 
10: reduce input: (item,1 ) 
11: function REDUCE(key item, values 1) 
12: sum=0; 
13: for all item do 
14: sum += 1; 
15: end for 
16: output(1-itemset, sum); //item is stored as 1-itemset 
17: if sum >minsupportthen 
18: F − list ← the (1-itemset, sum) //F-list is a CacheFile       
is     storingfrequent 1-itemsets and their count. 
19: end if 
20: end function 
 
B. Second MapReduce Job 

 
The second MapReduce job scans the database again 

to generate k-itemsets by removing infrequent items in each 
transaction (Algorithm 2) 

 

 
Algorithm 2: Generate k-itemsets: To Generate All k-Itemsets 
by Pruning the Original Database 
 
Input: minsupport, DBi; 
Output: k-itemsets; 
1: function MAP(key offset, values DBi) 
2: //T is the transaction in DBi 
3: for all (T) do 
4: items ← split each T; 
5: for all (item in items) do 
6: if (item is not frequent) then 
7: prune the item in the T; 
8: end if 
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9: k-itemset←(k, itemset) /*itemset is the set of frefrquent                                                             
items after pruning, whose length is k */ 

10: output(k-itemset,1); 
11: end for 
12: end for 
13: end function 
14: function REDUCE(key k-itemset, values 1) 
15: sum=0; 
16: for all (k-itemset) do 
17: sum += 1; 
18: end for 
19: output(k, k-itemset+sum);//sum is support of this   I     

itemset 
20: end function 
 
C. Third MapReduce Job 

 
The second phase of FIUT involving the construction 

of a k-FIU(ultrametric) tree and the discovery of frequent k-
itemsets is handled by a third MapReduce job, in which h-
itemsets (2 <= h <= M) are directly decomposed into a list of 
(h − 1)-itemsets, (h − 2)-itemsets,etc.In the third MapReduce 
job, the generation of short itemsets is independent to that of 
long itemsets. In other words, long and short itemsets are 
created in parallel by our parallel algorithm. 
 
 
Algorithm 3 : Mining k-itemsets: Mine All Frequent Itemsets 
 
Input: Pair(k, k-itemset+support);//This is the output of the  
second MapReduce. 
Output: frequent k-itemsets; 
 
1: function MAP(key k, values k-itemset+support) 
2: De-itemset← values.k-itemset; 
3: decompose(De-itemset,2,mapresult); /* To decompose each 
De-itemset into t-itemsets (t is    f   from 2 to De-
itemset.length), and store the 
results to mapresult. */ 
4: for all (mapresult with different item length) do 
5: //t-itemset is the results decomposed by k-Iteitemset(i.e. t ≤ 
k); 
6: for all ( t-itemset ) do 
7: t − FIU − tree ← t-FIU-tree generation(local- F    I  FIU-
tree, t-itemset); 
8: output(t, t-FIU-tree); 
9: end for 
10: end for 
11: end function 
12: function REDUCE(key t, values t-FIU-tree) 
13: for all (t-FIU-tree) do 

14: t − FIU − tree ← combining all t-FIU-tree from   each 
mapper; 
15: for all (each leaf with item name v in t-FIU-tree)do 
16: if ( count(v)/| DB |≥ minsupport ) then 
17: frequent h − itemset← pathitem(v); 
18: end if 
19: end for 
20: end for 
21: output( h, frequent h-itemset); 
22: end function 
----------------------------------------------------------- 
 

The decomposition procedure of each mapper is 
independent of other mappers and this fact makes third 
mapreduce task highly scalable. In other words multiple 
mappers can perform decomposition process parallel. This 
improves data storage efficiency and I/O performance.[9] 
Figure 1 illustrates the overview of the algorithm with sample 
example. 
 

 
Fig1. Overview of MapReduce-based algorithm 

 
IV. RELATED WORK 

 
Parallel frequent itemsets mining algorithms based on 

Apriori can be classified into two camps, namely, count 
distribution (e.g., count distribution (CD), fast parallel mining, 
and parallel data mining (PDM)) and data distribution (e.g., 
data distribution (DD)and intelligent data distribution ). In the 
count distribution camp, each processor of a parallel system 
calculates the local support counts of all candidate itemsets.  
 

Then, all processors compute the total support counts 
of the candidates by exchanging the local support counts. The 
CD and PDM algorithms have simple communication 
patterns, because in every iteration each processor requires 
only one round of communication. In the data distribution 
camp, each processor only keeps the support counts of a 
subset of all candidates. Each processor is responsible for 
sending its local database partition to all the other processors 
to compute support counts. In general, DD has higher 
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communication overhead than CD, because shipping 
transaction data demands more communication bandwidth 
than sending support counts. 
 

The cascade running mode in existing Apriori-based 
parallel mining algorithms leads to high communication and 
synchronization overheads. To reduce time required for 
scanning databases and exchanging candidate itemsets, FP-
growth based parallel algorithms were proposed as a 
replacement of Apriori-based parallel algorithms. A few 
parallel FP-growth-based parallel algorithms were 
implemented using multithreading on multicore processors. A 
major disadvantage of these parallel mining algorithms lies in 
the infeasibility to construct main-memory-based FP trees 
when databases are very large. This problem becomes 
pronounced when it comes to massive and multidimensional 
databases. 
 

V. CONCLUSION 
 

To solve the performance deterioration, load 
balancing and scalability challenges of sequential algorithm, 
various parallel algorithms were implemented. We gave an 
overview of such parallel algorithms. Unfortunately, in 
Apriori-like parallel FIM algorithms, each processorhas to 
scan a database multiple times and to exchange anexcessive 
number of candidate itemsets with other processors. 
Therefore, Apriori-like parallel FIM solutions suffer potential 
problems of high I/O and synchronization overhead, which 
make it strenuous to scale up these parallel algorithms. The 
scalability problem has been addressed by the implementation 
of a handful of FP-growth-like parallel FIM algorithms. 
 

A major disadvantage of FP-growth like parallel 
algorithms, however, lies in the infeasibility to constructin-
memory FP trees to accommodate large-scale databases. This 
problem becomes more pronounced when it comes to massive 
and multidimensional databases. 
 

To solve the challenges in the existing parallel 
mining algorithms for frequent itemsets, we applied the 
MapReduce programming model[10] to develop a parallel 
frequent itemsets mining algorithm. Itachieves compressed 
storage and avoiding the necessity to build conditional pattern 
bases. This algorithm seamlessly integrates three MapReduce 
jobs to accomplish parallel mining of frequent itemsets. The 
third MapReduce jobplays an important role in parallel 
mining; its mappers independently decompose itemsets 
whereas its reducers construct small ultrametric trees to be 
separately mined and hence improving performance for FIM. 
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