
IJSART - Volume 2 Issue 5 –MAY 2016 ISSN [ONLINE]: 2395-1052

Page | 487 www.ijsart.com

Efficient Indexing and Scheduling For Real Time
Android App with Taxi Sharing

M. Dhavamani1, G. Sathish Kumar2

1, 2 Department of Computer Science and Engineering

1, 2 MNSK College Engineering, Pudhukkottai

Abstract- Proposed and developed a taxi-sharing system that
accepts taxi passengers’ real-time ride requests sent from
smart phones and schedules proper taxis to pick up them via
ridesharing, subject to time, capacity, and monetary
constraints. The monetary constraints provide incentives for
both passengers and taxi drivers: passengers will not pay
more compared with no ridesharing and get compensated if
their travel time is lengthened due to ridesharing; taxi drivers
will make money for all the detour distance due to
ridesharing. Taxi riders and taxi drivers use the taxi-sharing
service provided by the system via a smart phone App. The
Cloud first finds candidate taxis quickly for a taxi ride request
using a taxi searching algorithm supported by a spatio-
temporal index. A scheduling process is then performed in the
cloud to select a taxi that satisfies the request with minimum
increase in travel distance. A ride request generator is
developed in terms of the stochastic process modeling real
ride requests learned from the data set.

Keywords- Spatial databases and GIS, Taxi-Sharing, GPS trajectory,
Ridesharing, Urban Computing, Intelligent Transportation Systems

I. INTRODUCTION

Proposed and developed a taxi-sharing system that
accepts taxi passengers’ real-time ride requests sent from
smart phones and schedules proper taxis to pick up them via
ridesharing, subject to time, capacity, and monetary
constraints. The monetary constraints provide incentives for
both passengers and taxi drivers: passengers will not pay more
compared with no ridesharing and get compensated if their
travel time is lengthened due to ridesharing; taxi drivers will
make money for all the detour distance due to ridesharing.

Taxi riders and taxi drivers use the taxi-sharing

service provided by the system via a smart phone App. The
Cloud first finds candidate taxis quickly for a taxi ride request
using a taxi searching algorithm supported by a spatio-
temporal index. A scheduling process is then performed in
the cloud to select a taxi that satisfies the request with
minimum increase in travel distance. A ride request generator
is developed in terms of the stochastic process modeling real
ride requests learned from the data set.

II. PROBLEM DESCRIPTION

Multiple taxi statues may satisfy a ride request, an
objective function is usually applied to find the optimal taxi. A
variety of objective functions have been used in the existing
literature, where a weighted cost function combining multiple
factors such as travel distance increment, travel time
increment and passenger waiting time, is the most common
aim to find the taxi status which satisfies the ride request with
minimum increase in travel distance, formally defined as
follows: given a fixed number of taxis traveling on a road
network and a sequence of ride requests in ascending order of
their submitted time, we aim to serve each ride request Q in
the stream by dispatching the taxi V which satisfies Q with
minimum increase in V ‘s scheduled travel distance on the
road network.

This is obviously a greedy strategy and it does not
guarantee that the total travel distance of all taxis for all ride
requests is minimized. However, we still opt for this definition
due to two major reasons. First, the real-time taxi sharing
problem inherently resembles a greedy problem. In practice,
taxi riders usually expect that their requests can be served
shortly after the submission. Given the rigid real-time context,
the taxi-sharing system only has information of currently
available ride requests and thus can hardly make optimized
schedules based on a global scope, i.e., over a long time span.
Second, the problem of minimizing the total travel distance of
all taxis for the complete ride request stream is NP-complete.

2.1 The Real-Time Taxi-Sharing

The real-time taxi-sharing problem consists of a data
model, constraints, and an objective function. We describe
each part separately below before giving the formal definition
of the problem.

Propose a framework to address the formulated
accuracy estimation problem which has the following layers.

1. Taxi Auto Updating
2. Rider Request
3. Taxi Search
4. Request Scheduling

IJSART - Volume 2 Issue 5 –MAY 2016 ISSN [ONLINE]: 2395-1052

Page | 488 www.ijsart.com

5. Ride Sharing

The framework firstly activates all the coexisting

sensor systems that can monitor the measurements on the
queried states for a given time stamp, and the raw observed
measurements pulled from the systems are firstly processed
through the pre-processing layer. Then the processed
measurements are forwarded to the state estimation layer,
where the states of monitored measurements are estimated
based on sensor observations and available prior over single
timestamp [16]. The next accuracy estimation layer takes the
estimated states of the monitored value together with the pre-
processed sensor measurements as input, and evaluates the
accuracy of measurements with the help of accuracy metric.

2.2 Taxi Search

The taxi searching module quickly selects a small set
of candidate taxis with the help of the spatio-temporal index.
The spatio-temporal index of taxis is built for speeding up the
taxi searching process. Specifically, we partition the road
network using a grid. (Other spatial indices such as R tree can
be applied as well, but we envision that the high dynamics of
taxis will cause prohibitive cost for maintaining such an
index.). This module mainly used for two type of search
techniques first Single Side Taxi Searching techniques and
second Dual Side Taxi Search Techniques. These two
techniques used for taxi searching for very fast way.

Spatio-Temporal Index

The spatio-temporal index of taxis is built for
speeding up the taxi searching process. Specifically, we
partition the road network using a grid. (Other spatial indices
such as R tree can be applied as well, but we envision that the
high dynamics of taxis will cause prohibitive cost for
maintaining such an index.)

Fig. 1. Spatio-temporal index of taxis

.
Searching Algorithms

4.2.1 Single-Side Taxi Searching

Fig.2. Single Side Taxi Searching

Now we are ready to describe our first taxi searching

algorithm. For the sake of the clarity of description, please
con-sider the example shown in Fig. 2. Suppose there is a
query Q : and the current time is tcur : g7 is the grid cell in
which Q: o is located. g7‘s temporally-ordered grid cell list g7 :
lt

g is shown on the right of Fig. 7. g7 is the first grid cell
selected by the algorithm. Any other arbitrary grid cell gi is
selected by the searching algorithm if and only if Eq. (1)
holds, where ti7 represents the travel time from grid cell gi to
grid cell g7. Eq. (1) indicates that any taxi currently within grid
cell gi can enter g7 before the late bound of the pickup window
using the travel time between the two grid cells (if we assume
that each grid cell collapses to its anchor node)

4.2.2 Dual-Side Taxi Searching

The dual-side searching is a bi-directional searching
process which selects grid cells and taxis from the origin side
and the destination side of a query simultaneously. To dive
into the details of the algorithm, consider the ride request
illustrated in Fig. 9 where g7 and g2 are the grid cells in which
Q : o and Q : d are located respectively. Squares filled with
stripes stand for all possible cells searched by the algorithm at
Q : o side. These cells are determined by scan-ning g7 : lt

c, the
temporally-order grid cell list of g7. That is, each grid cell in g7
: lt

c which holds Eq. (2) is a candidate cell to be searched at
the origin side.

Fig 3. Dual-Side Taxi Searching algorithm

Eq. (2) indicates that any taxi currently within grid

cell gi can enter g7 before the late bound of the pickup window

IJSART - Volume 2 Issue 5 –MAY 2016 ISSN [ONLINE]: 2395-1052

Page | 489 www.ijsart.com

using the latest travel time between the two grid cells
(assuming each grid cell collap-ses to its anchor node). The
red number in each such grid cell indicates its relative position
in g7 : ls

c, the spatially-ordered grid list of g7

tcur þ ti7 Q : dw : l: (2)

Squares filled with dots indicate the candidate grid
cells to be accessed by the searching algorithm at Q : d side.
Like-wise, each such grid cell gj is found by scanning g2 : lt

c to
select all grid cells which holds Eq. (3), which indicates that
any taxi currently in gj can enter the g2 before the late bound
of the delivery window (assuming that each grid cell collap-
ses to its anchor node). In this example, g6 is the only satisfy-
ing grid cell as shown by Fig. 9

tcur þ tj2 Q : dw : l: (3)

K-Nearest Neighbors

The first algorithm we shall investigate is the k-
nearest neighbor algorithm, which is most often used for
classification, although it can also be used for estimation and
prediction. K-Nearest neighbor is an example of instance-
based learning, in which the training data set is stored, so that
a classification for a new unclassified record may be found
simply by comparing it to the most similar records in the
training set. Let’s consider an example. Recall the example
from Chapter 1 where we were interested in classifying the
type of drug a patient should be prescribed based on certain
patient characteristics, such as the age of the patient and the
patient’s sodium/potassium ratio. For a sample of 200 patients,
Figure 5.6 presents a scatter plot of the patients’
sodium/potassium (Na/K) ratio against the patients’ age. The
particular drug prescribed is symbolized by the shade of the
points. Light gray points indicate drug Y; medium gray points
indicate drug A or X; dark gray points indicate drug B or C.

III. PROPOSED SYSTEM

A system based on the mobile cloud architecture,
which enables real-time taxi-sharing in a practical setting.
Taxi drivers independently determine when to join and leave
the service using an App installed on their smart phones.
Passengers submit real-time ride requests using the same App

(if they are willing to share the ride with others).Each ride
request consists of the origin and destination of the trip, time
windows constraining when the passengers want to be picked
up and dropped off (in most case, the pickup time is present).

On receiving a new request, the Cloud will first
search for the taxi which minimizes the travel distance
increased for the ride request and satisfies both the new
request and the trips of existing passengers who are already
assigned to the taxi, subject to time, capacity, and monetary
constraints. The existing passengers assigned to the taxi will
be inquired by the cloud whether they agree to pick up the
new passenger given the possible decrease in fare and increase
in travel time.

3.1 Objective

Easily to identify the available taxi and also use the
single-side taxi searching algorithm, the dual-side taxi
searching algorithm reduced the computation cost by over 50
percent, while the travel distance was only about 1 percent
higher on average.

3.2 System Architecture

System design is the process of defining the
architecture, components, modules, and data for a system to
satisfy specified requirements. One could see it as the
application of systems theory to product development. There
is some overlap with the disciplines of systems analysis,
systems architecture and systems engineering. If the broader
topic of product development blends the perspective of
marketing, design, and manufacturing into a single approach
to product development, then design is the act of taking the
marketing information and creating the design of the product
to be manufactured. System design is therefore the process of
defining and developing systems to satisfy specified
requirements of the user.

Fig.3.1 System Architecture Diagrams

IJSART - Volume 2 Issue 5 –MAY 2016 ISSN [ONLINE]: 2395-1052

Page | 490 www.ijsart.com

3.3 Taxi Auto Updating

The taxi driver registers our taxi info in storage
server and a taxi automatically reports its location to the server
via the mobile App when the taxi establishes the connection
with the system, or a rider gets on and off a taxi, or at a
frequency (e.g., every 20 seconds) while a taxi is connected to
the system. The taxi driver view and modify the taxi
information through our mobile app and also view rider info
for searching the taxi.

Fig.3.2 Taxi Auto Updating

3.4 Ride Request

A Rider submits a new ride request Q to the
Communication Server, the corresponding interface on a
rider’s smart phone where the stands for the current location
of the rider. All incoming ride requests of the system are
streamed into a queue and then processed according to the
first-come-first serve principle. For each ride request Q, the
communication server sends it to the Indexing Server to search
for candidate taxis SV that are likely to satisfy Q, Using the
maintained spatio-temporal index, the indexing server returns
SV to the communication server, communication server sends
ride request Q and the received candidate taxi set SV to the
Scheduling Server Cluster. After schedule a ride request
finally to response for nearest taxi to rider mobile app.

Fig.3.3 Ride Request

3.5 Taxi Search

The taxi searching module quickly selects a small set
of candidate taxis with the help of the spatio-temporal index.

The spatio-temporal index of taxis is built for speeding up the
taxi searching process. Specifically, we partition the road
network using a grid. (Other spatial indices such as R tree can
be applied as well, but we envision that the high dynamics of
taxis will cause prohibitive cost for maintaining such an
index.). This module mainly used for two type of search
techniques first Single Side Taxi Searching techniques and
second Dual Side Taxi Search Techniques. These two
techniques used for taxi searching for very fast way.

 Fig.3.5 Taxi Search

3.6 Request Scheduling

The set of taxi statuses SV retrieved for a ride request
Q by the taxi searching algorithm, the purpose of the taxi
scheduling process is to find the taxi status in SV which
satisfies Q with minimum travel distance increase. To this end,
given a taxi status, to try all possible ways of inserting Q into
the schedule of the taxi status in order to choose the insertion
which results in minimum increase in travel distance. All
possible ways of insertion can be created via three steps: (i)
reorder the points in the current schedule, subject to the
precedence rule, i.e., any origin point precedes the
corresponding destination point. (ii) insert Q:o into the
schedule (iii) insert the Q:d into the schedule. The capacity
and time window constraints are checked in all three steps,
during which the insertion fails immediately if any constraint
is violated. The monetary constraints are then checked for the
insertion after all three steps have been done successfully.
Finally, among all insertions that satisfy all constraints, choose
the insertion that results in minimum increase in travel
distance for the given taxi status.

IJSART - Volume 2 Issue 5 –MAY 2016 ISSN [ONLINE]: 2395-1052

Page | 491 www.ijsart.com

Fig.3.3 Ride Scheduling

3.7 Ride Sharing

This module imposes two constraints which
encourage riders to participate in taxi-sharing by rewarding
them with certain monetary gains. The first rider monetary
constraint says that any rider who participates in taxi-sharing
should pay no more than what she would pay if she takes a
taxi by herself. The second rider monetary constraint says that
if an occupied taxi V is to pick up a new rider Q, then each
rider P currently sitting in V whose travel time is lengthened
due to the pickup of Q, should get a decrease in taxi fare; and
the fare decrease should be proportional to P’s increase in
travel time. One constraint which gives the driver motivation
to participate in taxi-sharing. This constraint says that a driver
should charge for all distances she has travelled. Intuitively
the driver should make money for the distance of reroutes
incurred by the join of any new passenger

Fig.3.7 Ride Sharing

IV. RESULT AND DISCUSSION

All ridesharing methods first show a slight increase

and then keep declining in SR as D increases. This is because
as the value of parameter D starts increasing, the ridesharing
opportunist increase as well. When D is small, the increase in
ridesharing opportunies is larger than the increase in the
number of request, as a result, the satisfaction rate surges.

Two first-fit based taxi-sharing methods show clearly
higher relative distance rate. From the picture, we can see that
taxi-sharing methods save up to 12 percent in travel distance,
depending on delta. Given the fact that there are 67,000 taxis

in Beijing (not in the data set) and each taxi runs 480 km per
day (learned from the data set), the saving achieved by taxi-
sharing here means over 1.5 billion kilometers in distance per
year, which equals to 120 million liter of gas per year
(supposing a taxi consumes 8 liter of gasoline per 100 km) and
2.2 million of carbon dioxide emission per year (supposing
each liter of gas consumption generates 2.3 kg of carbon
dioxide).

V. CONCLUSION

This paper proposed and developed a mobile-cloud
based real-time taxi-sharing system. We presented detail
interactions between end users (i.e. taxi riders and drivers) and
the Cloud. We validated our system based on a GPS
trajectory data set generated by 33,000 taxis over three
months, in which over 10 million ride requests were extracted.
The experimental results demonstrated the effectiveness and
efficiency of our system in serving real-time ride requests.
Firstly, our system can enhance the delivery capability of taxis
in a city so as to satisfy the commute of more people. For
instance, when the ratio between the number of taxi ride
requests and the number of taxis is 6, our proposed system
served three times as many ride requests as that with no taxi-
sharing. Secondly, the system saves the total travel distance of
taxis when delivering passengers, e.g., it saved 11 percent
travel distance with the same ratio mentioned above.

Supposing a taxi consumes 8 liters of gasoline per
100 km and given the fact learned from the real trajectory data
set that the average travel distance of a taxi in a day in Beijing
is about 480 km, the system can save over one third million
liter of gasoline per day, which is over 120 million liter of
gasoline per year (worth about 150 million dollar). Thirdly,
the system can also save the taxi fare for each individual rider
while the profit of taxi drivers does not decrease compared
with the case where no taxi-sharing is conducted. Using the
proposed monetary constraints, the system guarantees that any
rider that participates in taxi-sharing saves 7 percent fare on

IJSART - Volume 2 Issue 5 –MAY 2016 ISSN [ONLINE]: 2395-1052

Page | 492 www.ijsart.com

average. In addition, the experimental results justified the
importance of the dual-side searching algorithm. Compared to
the single- side taxi searching algorithm, the dual-side taxi
searching algorithm reduced the computation cost by over 50
percent, while the travel distance was only about 1 percent
higher on average. The experimental results also suggest that
reordering the points of a schedule before the insertion of the
new ride request is not necessary in practice for the purpose of
travel distance minimization.

REFERENCES

[1] R. Baldacci, V. Maniezzo, and A. Mingozzi, “An exact

method for the car pooling problem based on lagrangean
column generation,” Oper. Res., vol. 52, no. 3, pp. 422–
439, 2004.

[2] R. W. Calvo, F. de Luigi, P. Haastrup, and V. Maniezzo,

“A distributed geographic information system for the
daily carpooling problem,” Comput. Oper. Res., vol. 31,
pp. 2263–2278, 2004.

[3] S. Ma, Y. Zheng, and O. Wolfson, “T-Share: A large-

scale dynamic ridesharing service,” in Proc. 29th IEEE
Int. Conf. Data Eng., 2013, pp. 410–421.

[4] E. Kamar and E. Horvitz, “Collaboration and shared

plans in the open world: Studies of ridesharing,” in Proc.
21st Int. Jont Conf. Artif. Intell., 2009, pp. 187–194.

[5] K. Wong, I. Bell, and G. H. Michael, “Solution of the

dial-a-ride problem with multi-dimensional capacity
constraints,” Int. Trans. Oper. Res., vol. 13, no. 3, pp.
195–208, May 2006.

[6] Z. Xiang, C. Chu, and H. Chen, “A fast heuristic for

solving a large-scale static dial-a-ride problem under
complex constraints,” Eur. J. Oper. Res., vol. 174, no. 2,
pp. 1117–1139, 2006.

[7] J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun,

and Y. Huang, “T-drive: Driving directions based on taxi
trajectories,” in Proc. 18th SIGSPATIAL Int. Conf. Adv.
Geographic Inf. Syst., 2010, pp. 99–108.

[8] J. Yuan, Y. Zheng, X. Xie, and G. Sun, “Driving with

knowledge from the physical world,” in Proc. 17th ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining,
2011, pp. 316–324.

[9] O. Wolfson, A. P. Sistla, B. Xu, J. Zhou, S.

Chamberlain, Y. Yesha, and N. Rishe, “Tracking moving

objects using database technology in DOMINO,” in
Proc. 4th Int. Workshop Next Generation Inf. Technol.
Syst., 1999, pp. 112–119.

[10] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G.-Z. Sun,

“An interactive-voting based map matching algorithm,”
in Proc. 11th Int. Conf. Mobile Data Manage. 2010, pp.
43–52.

